Global EDF-based Scheduling with Efficient Priority Promotion *

Shinpel Kato and Nobuyuki Yamasaki
Department of Information and Computer Science
Keio University, Yokohama, Japan
{shinpei,yamasaki}@ny.ics.keio.ac.jp

Abstract

This paper presents an algorithm, called Earliest Dead-
line Critical Laxity (EDCL), for the efficient scheduling of
sporadic real-time tasks on multiprocessors systems. EDCL
is a derivative of the Earliest Deadline Zero Laxity (EDZL)
algorithmin that the priority of a job reaching certain lax-
ity is imperiously promoted to the top, but it differsin that
the occurrence of priority promotion is confined to at the
release time or the completion time of a job. This modi-
fication enables EDCL to bound the number of scheduler
invocations and to relax the implementation complexity of
scheduler, while the schedulability is still competitive with
EDZL. The schedulability test of EDCL is designed through
theoretical analysis. In addition, an error in the traditional
schedulability test of EDZL is corrected. Smulation studies
demonstrate the effectiveness of EDCL in terms of guaran-
teed schedulability and exhaustive schedulability by com-
paring with traditional efficient scheduling algorithms.

1 Introduction

The scheduling of recurrent real-time tasks on multipro-
cessors has been one of the primary subjectsin thereal-time
computing community, ever since Dhall and Liu demon-
strated that the Earliest Deadline First (EDF) scheduling
[13] is no longer optimal on multiprocessors [10]. Because
the trend of embedded real-time systems has been moving
to the multicore platforms in recent years, research on this
subject is now more significant.

It is widely known that a set of independent periodic
tasks, in which the deadline of each task is equal to its pe-
riod, is always successfully scheduled by EDF on a single
processor if thetotal utilization of the tasks does not exceed
1. Unfortunately, this optimality of EDF breaks down on
multiprocessor systems. A set of periodic tasks cannot be
guaranteed to be schedulable on m identical processors if
the total utilization exceeds M(1 — Umax) + Umax, Where Upax
is the maximum utilization of every individual task [11]. In
the worst case, letting Umax = 1, EDF may cause adeadline

“This work is supported by the fund of Research Fellowships of the
Japan Society for the Promotion of Science for Young Scientists. This
work is aso supported in part by the fund of Core Research for Evolutional
Science and Technology, Japan Science and Technology Agency.

to be missed if the total utilization is slightly greater than
1, even though there are m processors. Such performance
deterioration is often called Dhall’s effect.

There are mainly two concepts in the scheduling of real-
time tasks on multiprocessors: optimality and simplicity.
The Pfair family [4, 5, 1] and LLREF [7] are optimal algo-
rithms that achieve the full use of processor time with guar-
anteeing all tasks to meet deadlines. In other words, a set of
periodic tasks is always successfully scheduled by the opti-
mal algorithms on m processors if the total utilization does
not exceed m. On the other hand, the timing constraints of
tasksare generally guaranteed by schedulability test in other
efficient algorithms, such as EDF-US[X] [15, 2] and EDZL
[8, 9]. The primary objective of those algorithms is an ef-
ficient scheduling to offer good performance rather than an
optimal scheduling with complex computation. Since they
are designed with simplified theories, the scheduling over-
head and the implementation complexity are much smaller
than the optimal algorithms, though the guaranteed total uti-
lization is usualy less than m. Nonetheless, they perform
far better than EDF. Thus, this paper settles on the subject
matter of such an efficient scheduling without complexity
from the viewpoint of practical use.

EDF-US[X] overcomes the weakness of EDF in an ele-
mentary way. In EDF-US[X] scheduling, the tasks with in-
dividual utilizations greater than x are statically assigned the
highest priority. Baker showed that x = 1/2 is an optimal
configuration for this algorithm, which leads to that a set of
tasks is successfully scheduled on m processors if the total
utilization is no greater than (m + 1)/2 [2]. Unfortunately,
EDF-US[X] can perform worse than EDF depending on the
characteristics of given tasks, namely a set of tasks that can
be successfully scheduled by EDF may not be successfully
scheduled by EDF-US[¥].

EDZL is another aternative of EDF, which is known to
be at least as effective asEDF. That is, a set of tasks that can
be successfully scheduled by EDF can be also successfully
scheduled by EDZL . In EDZL scheduling, jobs are priori-
tized by the EDF policy aslong as the laxity of every jobis
positive. If any job reaches zero laxity, its priority isimperi-
ously promoted to the top to meet its deadline. Accordingly,
the number of scheduler invocationsis not far beyond EDF,
while it offers excellent performance far beyond EDF. Piao
et al. proved that a set of periodic tasks can be successfully

scheduled by EDZL on m processors if the total utilization
does not exceed (m+ 1)/2[14]. Further schedulability anal-
ysisof EDZL was presented by Cirinei and Baker [9]. They
considered more precise schedulability test of EDZL by ap-
plying the technique of the schedulability test of EDF de-
vised by Bertognaet al. [6].

In EDZL scheduling, a scheduler must be invoked every
time any job reaches zero laxity. Since the zero laxity can
occur at any time, the number of scheduler invocations is
not bounded. In addition, fine-grained timers are required
to make the scheduling points for the priority promotions
at zero laxity. Meanwhile the scheduling points of EDF
and EDF-US[X] are made only at job releases and com-
pletions. In other words, a scheduler needs to be invoked
only when jobs are released and complete. Thus, the num-
ber of scheduler invocations is bounded. Since the use of
fine-grained timers takes additional implementation costs
and the increase of scheduler invocations boosts run-time
overhead, we consider a derivative of EDZL in this paper to
bound the number of scheduler invocations and to relax the
implementation complexity of scheduler.

This paper presents an EDF-based algorithm, called Ear-
liest Deadline Critical Laxity (EDCL), for the efficient
scheduling of sporadic real-time tasks on multiprocessor
systems. The basic concept of EDCL is that the priority
of ajob does not necessarily have to be promoted at zero
laxity to meet its deadline but can be promoted at the re-
leasetime or the compl etion time of ajob. Thismodification
of the priority promotion concept leads to that a scheduler
needs to be invoked only at job releases and completions.
Thus, the number of scheduler invocations is bounded and
the implementation complexity of scheduler is relax, while
the schedulability is still competitivewith EDZL.

The remainder of this paper is organized as follows. The
system model and the terminology are defined in the next
section. Section 3 presents the algorithm design. Section 4
then gives the schedulability analysis. The effectiveness of
the presented algorithm is demonstrated though simulation
studiesin Section 5. We conclude this work in Section 6.

2 System Model

The system is modeled with midentical processors and
a set of n sporadic tasks, denoted by * = {r1,72,..., Tn}
Each task 7; is characterized by tuple (ci, d;, pi), where ¢
is a worst-case computation time, d; is a relative deadline,
and p; is a minimum inter-release time (period). Note that
¢ < min{d;, pj} must hold, otherwise r; would never meet a
deadline. A task generates an infinite sequence of jobs. The
execution time of every job of 7; is assumed to be ¢;. The
inter-release intervals of any successive jobs of 7; are sepa-
rated by at least p;. When ajob of 7; isreleased at timet, the
job has a deadline at time t + d;. The remaining execution
timeof ajob of r; executing at timet is denoted by g (t), and
its laxity is denoted by x;(t). Notethatt + e(t) + xi(t) = di
holds for any t. For the sake of generalization, the job win-
dow A; is defined to be A; = min{d;, p;}, and the utilization

(density) 2; is defined to be A; = ¢i/Ai. Findly, the total
utilization U(7) isdefinedtobe U (1) = X e Ai-

A set of ready tasks at any time is denoted by y. All
tasks are independent and preemptive. More than one task
cannot be executed simultaneously on a processor. A task
cannot be processed in parallel. Jobs of the same task must
be executed sequentially, which means that every job of 7;
cannot start before the preceding job of 7; completes.

3 Algorithm Description

This section gives a theoretical description of EDCL.
EDCL is a derivative of EDZL in that the priority of ajob
reaching certain laxity is imperiously promoted to the top,
but it differsin that the occurrence of priority promotionis
confined to at the release time or the completion time of a
job. This modification to EDZL simplifies the design of al-
gorithm, since a scheduler needs to be invoked only at job
releases and completions. Hence, there is no need to use
fine-grained timers to make scheduling points.

Wefirst of all explorethe scheduling point at which ajob
would missits deadline unlessit is scheduled immediately.
Then, the algorithm is designed so that the priority of ajob
which reaches such a point in EDF scheduling is forcefully
promoted to the top to meet its deadline. For simplicity
of description, let ts denote any time at which any job is
released or compl etes henceforth.

Definition 1. A job of task 7; is said to be critical, if its
laxity holds the following condition at time ts, where eqin
denotesthe minimumremaining execution time of themjobs
that have the earliest deadlines.

Xi(ts) < €min 1)
Then, the laxity x;(ts) is defined critical laxity.

Itisclear that acritical job will missits deadlinein EDF
scheduling unless it is dispatched for execution, since the
scheduler will never dispatch the critical job before at |east
one of the mjobs with the earliest deadlines completes. An
example of such a deadline miss with three processors is
depicted in Figure 1. A gray-color job with deadline ty4 be-
comes critical at timets dueto its laxity lessthan epin. This
jobwill never meet its deadline, becauseit can never resume
execution before time ts + eqin in EDF scheduling. Note
that jobs with laxity equal to eqin are not includedin critical
jobs. Those tasks can possibly complete at their deadlines,
only if they can resume execution right after the job with
remaining execution time e, completes.

In order to avoid such a deadline miss without incurring
additional scheduling points, EDCL gives the highest pri-
ority to jobs which reach critical laxity at any job releases
and completions. As long as no jobs are critical, EDCL
completely performs as EDF. Even when it performs differ-
ently, the scheduling points are made only at job releases
and completions. In consequence, EDCL is able to bound
the number of scheduler invocations and to relax the imple-
mentation complexity of scheduler, compared with EDZL.

I:l a critical job
I:l jobs with earliest deadlines

| « € min > |

: :
t la

> time

Figure 1. A deadline miss in EDF scheduling

Theorem 1. EDCL is at least as effective as EDF.

Proof. EDCL performsas EDF until any job becomes criti-
cal but is not scheduled. EDF will surely cause such acriti-
cal jobto missitsdeadline, while EDCL may be ableto save
it by the priority promotion. Hence, thetheoremistrue. o

Theorem 2. The number of scheduler invocations per job
releasein any interval for EDCL is at most 2.

Proof. Let J(I) be the number of jobs which are released
in any interval |. Since a scheduler is invoked only when
jobs are released or complete, it is clear that the number
of scheduler invocations in interval | is bounded to 2J(1).
Hence, the theorem is true. O

Figure 2illustratesthe procedure of the EDCL scheduler.
The scheduler is invoked only when (i) jobs with earlier
deadlines than the current jobs are released, or (ii) any jobs
complete. If there are less than m ready tasks, the scheduler
executes al the ready tasks. Otherwise, the scheduler dis-
patches m tasks with the earliest deadlinesin a set of ready
tasks. Then, it computes the minimum remaining execution
time of the m tasks, which is denoted by enn. If there are
ready jobs with laxity less than e, the priorities of those
jobs are promoted to the top to avoid missing their dead-
lines. Notice that the scheduler needs to break ties among
critical jobs if the number of such critical jobs is greater
than m, since nho more than m jobs can be executed simul-
taneously on m processors. In this paper, we take several
policies for tie breaking: ties are broken (i) arbitrarily, (ii)
in favor of shorter remaining execution time, (iii) in favor
of lesslaxity, and (iv) in favor of earlier deadline.

Thefirst policy makes a benefit that all the scheduler has
to do is to dispatch the first m critical jobs examined by
linear search, meaning that there is no need to scan al the
critical jobs. The other policies, on the other hand, take
more complexity but are expected to perform better than
thefirst policy. Consider that there are more than m critical
jobs. If the minimum of the remaining execution times of
the dispatched m critical jobsis greater than e, the rest of
critical jobswill inevitably misstheir deadlines. Hence, the
second policy breakstiesin favor of shorter remaining exe-
cution time so that the minimum remaining execution time
islikely to be less than e and the rest of critical jobs may
gtill have chanceto meet their deadlines. Thethird policy is

when any tasks are released or complete do
if |yl < mthen
execute all tasksiny
else
€min = Minfe(ts) | 7i € ¥}
0 = {7i | X(ts) < €min}
if |6 > mthen
execute mtasksin
ese
execute all tasksin ¢
execute m — || tasks with the earliest
deadlinesiny
12. end if
13. end if
14. end when

CooNoU~WNE

ol
=

Figure 2. EDCL scheduling algorithm

encouraged by asimilar idea. If ties are broken in favor of
less laxity, the rest of critical jobs have morelaxity. Thatis,
there is more chance for them to meet their deadlines when
the minimum remaining execution time of the selected m
critical jobs is less than eqin, Since they have more laxity.
The last policy is motivated by the known effectiveness of
the EDF prioritization. The performance difference among
the abovetie breaking policies is evaluated through simula-
tion studies presented in Section 5.

The procedure of EDZL is more expensive. The EDZL
scheduler examines whether any job reaches zero laxity be-
fore the next job release or completion (this can be done
by comparing the laxity of each task with ep,, like EDCL),
since the scheduler must know the occurrence of the zero
laxity to make a preemption. If the zero laxity occurs, the
scheduler next computes the earliest time of its occurrence
and sets a timer to preempt the current job with the zero
laxity job. Meanwhile, EDCL does not require such a pro-
cedure, since the critical laxity must occur only at jobs re-
leases and compl etions.

Figure 3, Figure 4, and Figure 5 show scheduling exam-
ples of EDF, EDF-US[1/2], and EDCL respectively when
five periodic tasks, 71 = 72 = 13 = 74 = (3,10,10) and
5 = (10,15, 15), are submitted on two processors. As
showninthefigures, s missesadeadlineat time 15in EDF,
and 4 missesadeadlineat time 10in EDF-US[1/2]. Onthe
other hand, al the five tasks are successfully scheduled by
EDCL, since the priority of 75 which would miss adeadline
withthe original priority ispromoted to thetop at time 3 due
to critical laxity. Notice that the five tasks are also success-
fully scheduled by EDZL, but more scheduler invocations
occur, compared with EDCL.

4 Schedulability Analysis

This section analyzes the schedulability of EDCL, us-
ing a similar approach presented in [9]. We focus on ajob

missed deadline

Ty T3 Ts

T, Ty

l

| |

T > time
6

|
|
g 10 15 16

S - — —

Figure 3. EDF scheduling example

missed deadline

T]|T2|T3|‘E4‘

T T —T> time
10 15 16

o - — —
w
(=)}

Figure 4. EDF-US[1/2] scheduling example

T, Ts \

T, T | Ty

l

| ey

T T i > time
3

|
6 ‘; 10 15

S - — —

Figure 5. EDCL scheduling example

which first misses a deadline, and consider the conditions
that are necessary for the job to miss its deadline. Thisjob
is called problemjob henceforth. Thetimeinterval between
the release time of the problem job and its missed deadline
is called problem window. For simplicity of description, let
Tk dways denote a task which contains the problem job and
tq denote the deadline of the problem job.

Itisclear that EDCL isawork-conserving scheduling al-
gorithm. Hence, ajob can missits deadline only when com-
peting jobs of other tasks given higher priorities than the
job block the execution of the job for a sufficient amount of
time. Using this property, the analysis (i) exploresthe lower
bound on the total amount of time that must be consumed
by competing jobs within the problem window to cause the
problem job to miss its deadline, (ii) determines the upper
bound on the maximum amount of time that can be con-
tributed by each individual task, and (iii) examines if the
sum of per-task upper bounds exceed the lower bound.

Notice that the following description is partially redun-
dant to the schedulability analysis of EDZL presented in
[9], however we repeat the description to make the analysis
more comprehensible.

41 Lower Bound

We first consider the necessary conditions for the prob-
lem job to missits deadline. EDCL gives the top priority to
acritical job to meet its deadline. Thus, acritical job can be
only blocked by critical jobs, so a critical job never misses
its deadline unless other critical jobs occupy all the m pro-
cessors. In order for the problem job to miss its deadline,
at least m critical jobs must be scheduled at the same time.

total area must be greater than m(d; - ¢;)

Ty is released T would miss a deadline

Tk Tk Tk Tk \
ta-dy L L

> time

Figure 6. Critical condition for 7y

When m critical jobs are scheduled at the same time, a nec-
essary condition for the problem job to missits deadline is
that itslaxity isless than the minimum remaining execution
time of themcritical jobs. Note that this condition may hold
even though the problem job does not reach critical laxity,
thereby we give another definition.

Definition 2. A job of task 7 is said to be strictly-critical,
if its laxity holds the following condition at time ts, where
€, denotes the minimum remaining execution time of the
jobswith priorities higher than or equal to the job.

Xi(ts) < €hin @)
Then, the laxity Xy(ts) is defined strictly-critical laxity.

In consequence, the necessary condition for EDCL to
cause a deadline to be missed is: m jobs become critical
and another job becomes strictly-critical at the same time.
Hereinafter, al such m+ 1 jobs are deemed as problem jobs.

Now, we need to explorethe conditionto driveajob to be
critical or strictly-critical, which is called critical condition
in this paper. As we already described in Section 3, ajob
can becomecritical only when it would missitsdeadlineun-
lessit is scheduled immediately at ascheduling point. A job
can also become strictly-critical only in the same situation,
though blocking jobs must be all critical. Figure 6 showsan
example of the critical condition for ajob of task 7. Let tg
denote the deadline of the job and t s denote the scheduling
point at which the job becomes critical or strictly-critical.
Since EDCL is work-conserving, a job is only blocked by
other jobswith higher or equal priorities, except for its pre-
ceding job. In the figure, the area colored by gray indicates
the executions of such jobs and the area enclosed by dots
indicates their executions blocking 7. Remember that 7y
does not actually miss a deadline if the jobs blocking after
or at scheduling point ts are not all critical.

Definition 3. The total amount of time that can be con-
tributed by task 7; in certain time interval [a, b) is defined
competing work Wi (a, b).

If de < p, it is clear from Figure 6 that the job can
become critical or strictly-critical only when it would be
blocked for longer than di — ¢ in the problem window if it
is not scheduled immediately at scheduling point ts. That
is, the following condition must hold for the job of 7 to
become critical or strictly-critical.

Z Wi(tg — dk, tq) > m(dx — cx)

ik

If d« > px, the job will become critical or strictly-critical
when it would be blocked for longer than px — ¢« intimein-
terval [tg—px, tq) if itisnot scheduled immediately, with tak-
ing into account the constraint of its preceding job, though
this expectation is pessimistic as mentioned in [9]. Hence,
the job of 7 will become critical or strictly-critical in time
interval [tq — Pk, t), if the following condition holds.

ZVVi(td = Pk, ta) > M(px — Cx)

i#k

Using the same terminology in [9], timeinterval [tq— A, tg)
is cdled overload window from now on, where Ay =
min{dki, pk}. Then, we can finalize the critical condition for
Tk intimeinterval [ty — A, tq) by Equation (3).

D7 Wita — A, ta) > M(Ax -) 3
ik
Note that if Equation (3) holds ‘=", then the job never
becomes critical or strictly-critical. Thisis adifferent point
from the EDZL analysisin [9]. Moreover, note again that
the conditionsfor being critical and strictly-critical are both
unified by Equation (3), though the upper bounds for the
left-hand side of the expression differ depending on the
number of competing critical jobs. We discuss the upper
boundsmore specifically in the next section. Finally, we can
derive the following lemma with respect to the necessary
condition for EDCL scheduling to cause a deadline miss.

Lemma 1. If a set of sporadic tasksis scheduled by EDCL
on m processors, at least m + 1 tasks must satisfy Equation
(3) in order to cause a deadline miss.

Proof. Itistrivia from the above discussion. O
4.2 Upper Bound

In this section, we obtain the upper bound for competing
work Wi(ty — Ak, tg) of each task 7;, which contributes to
driving problem task 7y to be critical or strictly-critical in
overload window [tq — Ak, tg). If the necessary condition
derived in Lemma 1 does not hold even with those upper
bounds, a given task set can never cause a deadline miss.

Though we assume sporadic tasks in this paper, the ex-
ecution time of each task is assumed to be fixed. Thus, it
is obvious that the competing work cannot be increased by
outspreading the inter-release interval. Asaresult, the com-
peting work of each task in any overload window is never
larger than the case in which each task is periodicaly re-
leased at the minimum interval. As for jobs which con-
tribute to the competing work, we only need to concern jobs
with deadlines after ty — Ak, since we assume that the first
deadline miss is caused by one of the problem jobs and no
deadlines are missed before the overload window. On the
other hand, jobs with deadlines in the overload window or
at time ty are clearly contributors to the competing work.
However, it depends on laxity whether ones with deadlines
after the overload window are contributors or not. If the

carry-in execution

‘ Pi Pi)Zi)Zi

I e
‘ [¢ [¢ [¢

time

ta- A n;p; la

Figure 7. Upper bound of Case 1

jobs are not critical, then they cannot be contributors. On
the other hand, if they are critical, then they can be contrib-
utors. Therefore, we segregate those two cases.

Casel

We first consider the tasks which contain no critical jobs
when the problem job becomes critical. In such acase, jobs
with deadlines after the overload window can never inter-
fere the problem job. Thus, we only need to consider the
jobs with deadlines in the overload window. Note that this
case exactly follows the analysisin [9]. Hence, we can re-
fer to [9] that the maximum competing work of each task 7
can be never greater than the case in which all the compet-
ing jobs of 7; are executed as late as possible and a deadline
of 7; isaigned with the deadline of the problem job.

Figure 7 shows the worst-case phase of 7j, wheren; isthe
number of jobs that have both release times and deadlines
in the overload window, which can be computed as

1

According to [9], the length of interval during which the
carried-in job can be executed is at most max{0, Ak — n;p;}.
Therefore, the length of the carried-in execution can be
never greater than

mln{Cn max{o, Ak =N pl}}

Lemma 2. If a set of sporadic tasksis scheduled by EDCL
on m processors, the upper bound for the competing work
of task 7; in any overload window of the problemjob of 7y,
denoted by W (), is expressed by Equation (4), if a job of
7; cannot be critical when the problemjob becomescritical.

W (7i) = niGi + min{c;, max{A — npi}} (4)

Proof. Itistrivial from the preceding discussion. O

Case2

We next consider the tasks which contain critical jobs
when the problem job becomes critical. In such a case,
jobs with deadlines after the overload window can affect
the problem job, since the jobs are given the top priorities
due to critical laxity. Thus, a deadline of 7; is not neces-
sarily aigned with the deadline of the problem job, and the
worst-case phase of 7 can differ from the previous case.

If atask set is scheduled by EDZL, the worst-case phase
of task 7; can be also described by Figure 7, because jobs
with deadlines after the overload window can interfere the

carry-in execution X;(ta)

‘ 4] pi pis >

! e
‘ ‘cf ‘C/ ‘C/

time

ti- A n; p; ta

Figure 8. Upper bound of Case 2

problemjob only when it has zero laxity and such jobs must
complete at their deadlines due to zero laxity, so after all it
is equivalent to considering the jobs to be executed as late
as possible. However, if atask set is scheduled by EDCL,
critical jobs with deadlines after the overload window can
finish before their deadlines, thereby we cannot apply the
same worst-case phase to EDCL scheduling. Thisisamain
difference from the EDZL analysis.

In order to maximize the competing work, the release
times of 7; should be still periodic, then we only need to
consider moving the phase of the release timesin Figure 7.
We argue that the competing work of 7; is maximized when
the finish time of itsfinal job released before or in the over-
load window is aligned with the deadline of the problem
job, as shown in Figure 8. Note that the start time of the
final job must be ty — ¢;, sinceit cannot be scheduled unless
itis critical dueto its deadline later than ty. The following
discussion lead the argument to be correct.

o If we shift forward, i.e. shift later in time, the phase of
7; by amount a < p; — i(tq) in Figure 8, then the com-
peting work of 7; at the end of the overload window
is decreased by min{a, ¢;}. The shift can increase the
competing work at the start of the overload window,
but the amount is at most min{a, ¢;}. Thus, the forward
movement cannot increase the competing work of ;.

o If we shift backward the phase of 7; by amount a <
Xi(ts) in Figure 8, the competing work of 7; at the start
of the overload window is decreased, while no con-
tribution is given at the end of the overload window.
Thus, the backward movement cannot also increase the
competing work of ;.

Now, we need to calculate the competing work of ;.
Since the laxity is never decreased, the final job of 7; re-
leased before or in the overload window becomes critical
when its laxity is x;(tg). It is clear that the competing work
of 7; isincreased as x;(tq) isincreased in Figure 8. We can
easily obtain that the maximum value of X;(ty) isat most

Xi(tg) < di — ;.

We also need to remember that the problem job is assumed
not to be critical yet. Hence, the laxity of the problem job
must be greater than or at least equal to that of the final job
of 7, otherwise the problem job must be also critical and it
is contradict to the assumption. That is, x;(tq) aso holds

Xi(tg) < di — Ck.

In addition, the condition for a job to be critical is that its
laxity isless than the minimum remaining execution time of

the jobs with higher or equal priorities. So, X;(ty) must be
within the range of

Xi(ta) < max{cj | tj e, j#i}.

Finaly, the upper bound of x;(tg) for any tq of i, denoted
by Xi(7k), can be expressed by Equation (5).

)?i(rk):min{di—ci,dk—ck,min{cj [tjerj#i}) 5)

Since the phase of 7; is changed, we need to recalculate
the value of n; and the length of the carry-in execution. Us-
ing X;(rx) obtained above, the maximum number of jobs of
7; which have both rel ease times and deadlines in the over-
load window can be computed as

. {Ak —(pi - %(Tk))J
I pi '
Then, the length of the carry-in execution is bounded to

min{ci, max{Ax — nipi — (pi — X (7))}

Lemma 3. If a set of sporadic tasks is scheduled by EDCL
on m processors, the upper bound for the competing work
of task 7; in any overload window of the problemjob of 7y,
denoted by Wf(rk), is expressed by Equation (6), if ajob of
7; can be critical when the problem job becomes critical,
wheren/ = n; + 1 due to limitation of space.

W (zk) = n{c + minfci, max{0, A — n{p; + X(r)}} (6)

Proof. Itistrivial from the preceding discussion.]
4.3 Schedulability Test

Although we obtained the upper bound for the contribu-
tion of each task ; to the competing work in any overload
window of the problem job, for more precise anaysis we
need to take into account the concept of interference intro-
duced by Bertogna et al. [6], which was aso considered
in[9]. The interference of 7; on the problem job is the to-
tal length in which the problem job is blocked by jobs with
higher or equal prioritiesand ajob of 7; is one of the mjobs
blocking the problem job.

According to [6], a sufficient condition to cause a dead-
line of 7y to be missed is that the interference of each r; on
the problem job of 7y in interval [ty — dy, tg), which is the
problem window in this paper, isat least greater than dy —cy.
This upper bound is very intuitive from Figure 6. Assume
that Ty cannot be scheduled immediately at time ts. Then,
7« Will miss a deadline if the plotted area is greater than
m(dx — cx). Since we assume that ajob is not permitted to
execute in parallel, it is sufficient for r; to consider only the
portion of dy — ¢k, even though it can consume more proces-
sor time. Note that we should replace di in [6] with Ag in
this paper, because we permit py < dy.

Let Wi(ry) unify We(r) and W (i) regardiess of
whether 7; contain a critical job when 7 becomes critical
or not. Then, we can derive the following theorem with re-
spect to the schedulability of EDCL.

Theorem 3. A set of sporadic tasks can be successfully
scheduled by EDCL on m processors, unless one of the fol-
lowing conditions holds for at least m + 1 tasks.

o i MinfWi(zk), Ak — G} > M(Ax — G)

o Yiamin{Wi(ry), Ax — G} = M(Ax — ¢) and Vi # k :
Ay — G < Wi(Tk)

Proof. It is obvious from Equation (3) that 7 can contain
critical or strictly-critical jobs if the first condition in the
theorem holds, since Equation (3) isthe necessary condition
for 7 to become critical or strictly-critical.

The validity of the second condition in the theorem is
then considered. If the total interferenceis not greater than
mM(Ax — Ck), Tk cannot miss a deadline. However, if al the
tasks have competing work greater than Ag — ¢, then the
actua total interference must be greater than m(Ax — c),
even though ;. min{Wi(7x), Ax — ¢} = m(Ax — ¢) holds.
In contrast, if at least one task has competing work less than
or equal to Ay — ¢, then the actual total interferenceis still
equivalent to m(Ax — ¢k), and T, cannot become critical or
strictly-critical.

Consequently, T can become critical or strictly-critical
only when either of the above conditions holds. Accord-
ing to Lemma 1, there must be at least m + 1 tasks which
can contain critical or strictly-critical jobs, if a deadlineis
missed. Hence, the theorem istrue. m]

The remaining concern is: how we determine whether
each task can contain critical or strictly-critical jobs. Since
the number of the tasks which can contain critical or
strictly-critical jobs is needed to verify if atask can contain
critical or strictly-critical jobs, a set of those tasks cannot be
obtained easily. We first introduce a pessimistic ideathat all
tasks are assumed to contain critical jobs. From the discus-
sionin Section 4.2, it is clear that the competing work of
for the casein which the final job of 7; released before or in
the overload window of the problem job iscritical is greater
than that for the other case. Thus, the total competing work
cannot be greater than the case in which we assume that all
tasks contain critical jobs.

Theorem 4. (Pessimistic schedulability test). A set of spo-
radic tasks can be successfully scheduled by EDCL on m
processors, unless one of the following conditions holds for
at least m+ 1 tasks.

o sk min{\/Tff(Tk), Ax = C} > M(Ax — Cx)
o Yia MW (1), Ak — &} = M(A — &) and Vi # Kk :
A — & < W(zi)
Proof. The proof obviously follows Theorem 3 and the pre-

ceding discussion. m|

We next derive atighter schedulability test, trading with
more computation time. A basic ideais that we recursively
search for the tasks which can contain critical or strictly-
critical jobs. Hereinafter, let @ be a set of the tasks which

cannot contain critical or strictly-critical jobs and B8 be a
set of the tasks which can contain them. For simplicity of
description, we define W? (i) and WA (i) asfollows.

Wo(r) = D minfWe (zi), Ax - &

Ti€a,i#k

WA (1) = Z min{W¢ (i), Ax — o)

Ti€B ik

W¢(1y) isthe total competing work of the tasks which con-
tain no critical jobs when 7 becomes critical in any over-
load window, and WA (ry) is that of the tasks which contain
critical jobs. Using those notations, a tight schedulability
test is described in Figure 9.

The tight schedulability test first assumes that no tasks
become critical or strictly-critical. Under this assumption,
if no tasks hold the critical condition, then no tasks will
surely become critical, which means that the task set can be
successfully scheduled by EDF. However, if any tasks {7}
hold the critical condition, then thetest needsto verify again
whether the taskswhich did not hold the critical conditionin
the preceding test hold the critical condition. At this point,
the test must assume that {r} can become critical, sincethe
preceding test did not assume that. Then, this procedureis
repeated until one of the followings occurs.

e Atleast m+ 1 tasks which can be critical are found out.
Then, the task set is rejected.

o New tasks are not found out to be critical, meaning
that the further recursion will not find out any other
tasks which can be critical. Then, the task set can be
accepted.

Sincethe procedureis repeated at most m+ 1 times, the com-
putation order of the schedulability test depicted in Figure
9is O(n?m), while that of the onein Theorem 4 is O(n?).

Theorem 5. (Tight schedulability test). A set of sporadic
tasks can be successfully scheduled by EDCL on m proces-
sors, if the schedulability test depicted in Figure 9 can ac-
cept the set.

Proof. Itistrivial from the preceding discussion. O

Revision of EDZL Schedulability Test

Here, we report that the schedulability test of EDZL pre-
sented in [9] has a pitfall. Though thisis a digression from
the subject of this paper, it is very important since EDZL is
now widely used and discussed.

Cirinel and Baker in [9] derived that a set of sporadic
tasks can be successfully scheduled by EDZL on m proces-
sors, unless the following condition holds for at least m+ 1
tasks, and it holds strictly > for at least one of them, where
wi(tk) = WP (k) / Ak (the description is dlightly modified).

D minfwi(ri), 1 A > m(1-) (7)

ik

1 Leta=7andB =0.
2. For each 7y € a, calculate W (ry) and WA(ty).

3. For each 7« € a, if one of the following conditions
holds, insert 7y into 8 and remove it from a, i.e. B =
BU{r}anda = a \ {1}

o We(z) + WE(7y) > m(Ax — ¢

o W(r) +WA(r) = m(Av-c) and Vi £ k.7 € a :
A_k—ck <W(rk) and Vi # K, 7 € B Ak — Gk <
WY (7)

4. If no tasks held one of the above conditions, the test
accepts the task set, and the procedure exits.

5. If the number of the tasks in 8 is greater than m, the
test rejects the task set, and the procedure exits.

6. Go back to Step 2.

Figure 9. Tight schedulability test

However, consider a set of m+ 1 tasks. Then, the left-hand
side of Equation (7) for each task 7y is at most m(1 — Ay),
sincethere are only mtasksfor thetargetsof the sigmafunc-
tion and they each can have the value at most 1 — A dueto
the function minfwi(rx), 1 — A}. Thus, none of them + 1
tasks cannot hold >, which meansthat a set of m+ 1 tasksis
always accepted. However, it was reported in [16] that a set
of m+ 1 tasks can cause a deadline missin EDZL schedul-
ing. Hence, it is true that the above test has a pitfall. The
pitfall is an ignorance of the case in which all the tasks take
1 - A for min{wi(rx), 1 — Ak} in Equation (7). Thus, we can
revise the schedulability test of EDZL asfollows.

Theorem 6. (Revised EDZL Schedulability Test). A set
of sporadic tasks can be successfully scheduled by EDZL on
m processors, unless Equation (7) holds for at least m+ 1
tasks, and one of the following conditions holds for at least
one of them.

o ik Minfwi(ty), 1 — A} > m(1 - A)

o YiuMinfwi(rk),1— At = mA - A) and Vi # k :
1- A < wi(tk)

Proof. The proof follows the above discussion. O

5 Simulation Study

In this section, simulation studies evaluate the EDCL al-
gorithm in terms of schedulability, with comparing the tra-
ditional algorithms: EDF, EDF-US[1/2], and EDZL. The
schedulability of each algorithm is estimated as follows.
For certain system utilization U s (0 < Ugs < 1), 100,000
task sets are randomly generated so that Ugs = U(7)/m
holds for al the task sets, and submitted to all the schedul-
ing algorithms. Then, the success ratio of an algorithm is

defined by the following expression.

the number of successfully scheduled task sets
the number of scheduled task sets (100,000)

The system utilization is varied within the range of [0.3, 1].
The schedulability of the algorithm is estimated to be high
asit achieves high success ratio at high system utilization.

The successfully-scheduled task set is defined asfollows.
For evaluation of the guaranteed schedulability, atask setis
said to be successfully scheduled, if the schedulability test
accepts the task set. The schedulability test of each algo-
rithm isimplemented as follows:

e EDF: A giventask set 7 is accepted if U(r) < m(1 -
Urmax) + Umax holds [11], where Uyay iS the maximum
utilization of every individual task. Even if the above
conditiondoesnot hold, it is a so accepted if one of the
following conditions [6] holds.

= Zizk Min{wi(ti), 1 = A} < m(1 -)

— Dizk Minfwi(ti), 1 - A} =m(l-A)and i #K:
O< wi(tk) < 1- A

e EDF-US[1/2]: Let h be the smaller of m — 1 or the
number of heavy taskswith utilization greater than 1/2
inagiventask set r. 7 isaccepted if n — h light tasks
are accepted by the above EDF test.

e EDZL: The schedulability test follows Theorem 6.

e EDCL (P): The schedulability test follows Theorem 4
(P standsfor the pessimistic test).

e EDCL(T): The schedulahility test follows Theorem 5
(T standsfor thetight test).

For evaluation of the exhaustive schedulability, on the
other hand, atask set is said to be successfully scheduled,
if the task set can be actually scheduled by a scheduling
algorithm without missing any deadline.

Each task set with U(r) = Ugs X mis generated as
follows. The utilization (density) of a new task r; is deter-
mined based on a uniform distribution within the range of
[0.1,1.0] for fairness. Then, 7; is appended to as long as
U(r) < Ugs x m. When U(r) exceeds Ugs x m, the uti-
lization of 7; is adjusted so that U(r) = Ugs X M holds.
The period of 7; israndomly determined within the range of
[1000, 100000], assuming real-time applications with peri-
ods ranging from 1ms to 100ms. The deadline is equal to
the period, and the execution time is computed asci = A p;.
Thelength of each simulationismin{lem({p; | 7; € 7}), 2%2}.

Figure 10~12 show the results for the success ratio of
each algorithm, which are verified by each schedulability
test. EDCL outperforms EDF substantially, even though
the test is pessimistic. While the success ratio of the EDF
test drops below 100% when the system utilization exceeds
40%, that of the pessimistic EDCL test isretained 100% un-
til the system utilization reaches 60 ~ 62%. However, the
pessimistic EDCL test can be inferior to the EDF-US[1/2]

T
1 S o
e N
N +‘+ \N . * .
0.8 | *4\: \\ « X\]
[} * \ !
8 . o\ X
@ 0.6 + \“ . \\» i
& b %\
S T .
n 04 N \ A\ N E
EDF-test -+ R 1
0o | EDF-USdest - e B |
' EDZL-test —-%- + «
EDCL-test(P) ---=-- B
EDCL-test(T) —=— ‘ Pk
0

) -
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System utilization

Figure 10. Guaranteed success ratio (m= 4).

0.8

0.6

Success ratio

0.4

EDF-test -+ :
| EDF-US-test X
02 EDZL-test —— - oy
EDCL-test(P) --=--- e

EDCH-test(T) s

0

| T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
System utilization

Figure 11. Guaranteed success ratio (m = 8).

test, especially after the success ratio drops below 100%.
The tight EDCL test, meanwhile, always outperforms the
EDF-US[1/2] test by 3 ~ 8% for the system utilization in
which the success ratio can be retained 100%. The EDZL
test achieves the highest success ratio as expected, whichis
about 3% surperior to thetight EDCL test.

According to the simulations, the algorithms except for
EDF are relatively competitive, with respect to the guaran-
teed schedulability. Though EDF-US[1/2] performs com-
petitively with EDCL and EDZL, its exhaustive perfor-
mance is clearly inferior to them, as shown later. EDZL is
always better than EDCL. It is obviousthat the performance
difference between EDCL and EDZL are attributed by their
different rules for priority promotions. The difference can
be shrunk by using the tight schedulability test for EDCL,
but EDCL can never outperform EDZL in term of schedul a-
bility. Instead, EDCL has asmaller bound on the number of
scheduler invocations and can be more easily implemented.
Inthat sense, EDCL and EDZL have relative meritsto each
other with competitive performance.

Figure 13~15 show the results for the success ratio
of each agorithm, which are verified by each exhaustive
scheduling (tasks are actually scheduled until a job misses
its deadline or the simulation exits). The suffixes of ' (R)’,
(L)', and’ (D)’ for EDCL stand for the policies of tie break-
ing respectively: ties are brokenin favor of shorter Remain-

0.8

0.6

Success ratio

0.4

EDF-test -+ ke L

|
02 L EDF-US-test --x \ \ i
: EDZL-test ——% - R
EDCL-test(P) --=--- * AW
EDCL-test(T) —a— L)
0 1 1 1 Sk OESgigg B
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System utilization

Figure 12. Guaranteed success ratio (m = 16).

ing execution time, less Laxity, and earlier Deadline. Note
that ties are broken arbitrarily for EDCL with no suffix.
According to the simulations, EDCL and EDZL perform
far beyond EDF. Asreported in[9], EDZL can successfully
schedule aimost all the task sets, even though the system
utilization is 100%. EDCL can also perform competitively
with EDZL, especialy when ties are broken in favor of less
laxity. Thus, we can observe the effectiveness of breaking
ties. Though EDZL isdlightly better than EDCL, the EDCL
scheduler needs to be invoked only when jobs are released
or complete. As aresult, it can be said again that EDCL
and EDZL are competitive even for the exhaustive schedu-
lability as well as the guaranteed one. EDF-US[1/2] is a
middle-grounder, however we need to remember that it can
perform worse than EDF depending on given task sets.

6 Conclusion

This paper presented the EDCL algorithm, which is a
derivative of EDZL, for the efficient scheduling of sporadic
real-time tasks on multiprocessor systems. We proved that
(i) EDCL is at |east as effective as EDF, and (ii) the number
of scheduler invocations per job releaseis at most 2. EDZL
also hasthe former property but does not havethelatter one.
In addition, since the scheduling points are made only at
job releases and compl etions, the implementation complex-
ity of EDCL is more relaxed than EDZL . We then designed
pessimistic and tight schedulability tests of EDCL. We also
corrected an error in the traditional schedulability test of
EDZL. The simulation studies showed that EDCL can be
competitive with EDZL far beyond EDF, with respect to
both guaranteed schedulability and exhaustive schedul abil-
ity. In conclusion, EDCL is a novel real-time scheduling
algorithm for multiprocessor systems.

Intheend, theinsightsinto the futurework are described.
Though the schedul ability test of EDCL was derivedin this
paper, the utilization bound was not explored. In fact, there
isatask set that cannot be successfully scheduled by EDCL
if the total utilization exceeds (m + 1)/2. Since jobs can
be preempted only at job releases and completions, a set of
m + 1 tasks with all execution times x + ¢ and deadlines 2x

0.8
°
8
o 08
[
(5]
E
@ 04
02 FEpCLR) —=— ‘+»\+ X
EDCL(L) —e— Lo
EDCL(D) —— +~* 9
0 Il Il Il Il Il i ! a
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System utilization

Figure 13. Exhaustive success ratio (m= 4).

038
°
8
o 06
1%
Q
Q
S
(7] 0.4
02 FEpCLR) —=— Sy
EDCL(L) —o— w
EDCL(D) —o— ., X
0 Il Il Il Il e T
03 0.4 05 06 0.7 0.8 0.9 1

System utilization

Figure 14. Exhaustive success ratio (m= 8).

are not schedulable. The argument is true if e — 0. Thus,
the tightness of this utilization bound will be analyzed.

The superiority of EDCL over EDF-US[X] will be also
considered. In this paper, it was demonstrated that EDCL
is at least as effective as EDF. We wonder if EDCL also
strictly dominates EDF-US[X].

According to the simulations results, EDCL has a mean-
ingful gap between guaranteed schedulability and exhaus-
tive schedulability. Thus, the theoretical analysis of EDCL
will be moreover conducted. We will also examineif EDCL
is predictable[12] and sustainable [3].

References

[1] J. Anderson and A. Srinivasan. Early-Release Fair Schedul-
ing. In Proc. of the Euromicro Conference on Real-Time Sys-
tems, pages 3543, 2000.

[2] T.P.Baker. An Anaysis of EDF Schedulability on a Multi-
processor. |EEE Trans. on Parallel and Distributed Systems,
16:760-768, 2005.

[3] S. Baruah and A. Burns. Sustainable Scheduling Analysis.
In Proc. of the |IEEE Real-Time Systems Symposium, pages
159-168, 2006.

[4] S.Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Propor-
tionate Progress: A Notion of Fairness in Resource Alloca-
tion. Algorithmica, 15:600-625, 1996.

19 - , X%

=

0.8 |-

0.6 - i

Success ratio

0.4 - EDF -+) % g

02 | EDCL —&— %

“ [EDCL(R) —=— Y

EDCL(L) —o— S X
EDCL(D) —e— o :

1 1 1 1 ey

0
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

System utilization

Figure 15. Exhaustive success ratio (m = 16).

[5] S.Baruah, J. Gehrke, and C.G. Plaxton. Fast Scheduling of
Periodic Tasks on Multiple Resources. In Proc. of the In-
ternational Parallel Processing Symposium, pages 280-288,
1995.

[6] M. Bertogna, M. Cirinei, and G. Lipari. Improved Schedu-
lability Analysis of EDF on Multiprocessor Platforms. In
Proc. of the Euromicro Conference on Real-Time Systems,
pages 209-218, 2005.

[7] H.Cho, B. Ravindran, and E. Jensen. An Optimal Real-Time
Scheduling Algorithm for Multiprocessors. In Proc. of the
|EEE Real-Time Systems Symposium, pages 101-110, 2006.

[8] S.Cho, SK.Lee, A. Han, and K.J. Lin. Efficient Real-Time
Scheduling Algorithms for Multiprocessor Systems. |EICE
Trans. on Communications, E85-B(12):2859-2867, 2002.

[9] M. Cirinei and T.P. Baker. EDZL Scheduling Analysis. In
Proc. of the Euromicro Conference on Real-Time Systems,
pages 9-18, 2007.

[10] S.K.Dhall and C. L. Liu. On aRea-Time Scheduling Prob-
lem. Operations Research, 26:127-140, 1978.

[11] J. Goossens, S. Funk, and S. Baruah. Priority-driven
Scheduling of Periodic Task Systems on Multiprocessors.
Real-Time Systems, 25:187-205, 2003.

[12] R. Haand J. Liu. Validating Timing Constraints in Multi-
processor and Distributed Real-Time Systems. In Proc. of
the |EEE International Conference on Distributed Comput-
ing Systems, pages 162171, 1994.

[13] C.L.LiuandJ W.Layland. Scheduling Algorithmsfor Mul-
tiprogramming in a Hard Real-Time Environment. Journal
of the ACM, 20:46-61, 1973.

[14] X.Piao, S. Han, H. Kim, M. Park, Y. Cho, and S. Cho. Pre-
dictability of Earliest Deadline Zero Laxity Algorithm for
Multiprocessor Real-Time Systems. In Proc. of the |[EEE In-
ternational Symposium on Object and Component-Oriented
Real-Time Distributed Computing, pages 359-364, 2006.

[15] A. Srinivasan and S.K. Baruah. Deadline-based Scheduling
of Peroidic Task Systems on Multiprocessors. Information
Processing Letters, 84(2):93-98, 2002.

[16] H.W. Wei, Y.H. Chao, S.S. Lin, K.J. Lin, and W.K. Shih.
Current Results on EDZL Scheduling for Multiprocessor
Real-Time Systems. In Proc. of the IEEE International Con-
ference on Embedded and Real-Time Computing Systems
and Applications, pages 120-130, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

