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Abstract

This paper presents an algorithm, called Earliest Dead-
line Critical Laxity (EDCL), for the efficient scheduling of
sporadic real-time tasks on multiprocessors systems. EDCL
is a derivative of the Earliest Deadline Zero Laxity (EDZL)
algorithm in that the priority of a job reaching certain lax-
ity is imperiously promoted to the top, but it differs in that
the occurrence of priority promotion is confined to at the
release time or the completion time of a job. This modi-
fication enables EDCL to bound the number of scheduler
invocations and to relax the implementation complexity of
scheduler, while the schedulability is still competitive with
EDZL. The schedulability test of EDCL is designed through
theoretical analysis. In addition, an error in the traditional
schedulability test of EDZL is corrected. Simulation studies
demonstrate the effectiveness of EDCL in terms of guaran-
teed schedulability and exhaustive schedulability by com-
paring with traditional efficient scheduling algorithms.

1 Introduction

The scheduling of recurrent real-time tasks on multipro-
cessors has been one of the primary subjects in the real-time
computing community, ever since Dhall and Liu demon-
strated that the Earliest Deadline First (EDF) scheduling
[13] is no longer optimal on multiprocessors [10]. Because
the trend of embedded real-time systems has been moving
to the multicore platforms in recent years, research on this
subject is now more significant.

It is widely known that a set of independent periodic
tasks, in which the deadline of each task is equal to its pe-
riod, is always successfully scheduled by EDF on a single
processor if the total utilization of the tasks does not exceed
1. Unfortunately, this optimality of EDF breaks down on
multiprocessor systems. A set of periodic tasks cannot be
guaranteed to be schedulable on m identical processors if
the total utilization exceeds m(1 − umax) + umax, where umax

is the maximum utilization of every individual task [11]. In
the worst case, letting umax = 1, EDF may cause a deadline
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to be missed if the total utilization is slightly greater than
1, even though there are m processors. Such performance
deterioration is often called Dhall’s effect.

There are mainly two concepts in the scheduling of real-
time tasks on multiprocessors: optimality and simplicity.
The Pfair family [4, 5, 1] and LLREF [7] are optimal algo-
rithms that achieve the full use of processor time with guar-
anteeing all tasks to meet deadlines. In other words, a set of
periodic tasks is always successfully scheduled by the opti-
mal algorithms on m processors if the total utilization does
not exceed m. On the other hand, the timing constraints of
tasks are generally guaranteed by schedulability test in other
efficient algorithms, such as EDF-US[x] [15, 2] and EDZL
[8, 9]. The primary objective of those algorithms is an ef-
ficient scheduling to offer good performance rather than an
optimal scheduling with complex computation. Since they
are designed with simplified theories, the scheduling over-
head and the implementation complexity are much smaller
than the optimal algorithms, though the guaranteed total uti-
lization is usually less than m. Nonetheless, they perform
far better than EDF. Thus, this paper settles on the subject
matter of such an efficient scheduling without complexity
from the viewpoint of practical use.

EDF-US[x] overcomes the weakness of EDF in an ele-
mentary way. In EDF-US[x] scheduling, the tasks with in-
dividual utilizations greater than x are statically assigned the
highest priority. Baker showed that x = 1/2 is an optimal
configuration for this algorithm, which leads to that a set of
tasks is successfully scheduled on m processors if the total
utilization is no greater than (m + 1)/2 [2]. Unfortunately,
EDF-US[x] can perform worse than EDF depending on the
characteristics of given tasks, namely a set of tasks that can
be successfully scheduled by EDF may not be successfully
scheduled by EDF-US[x].

EDZL is another alternative of EDF, which is known to
be at least as effective as EDF. That is, a set of tasks that can
be successfully scheduled by EDF can be also successfully
scheduled by EDZL. In EDZL scheduling, jobs are priori-
tized by the EDF policy as long as the laxity of every job is
positive. If any job reaches zero laxity, its priority is imperi-
ously promoted to the top to meet its deadline. Accordingly,
the number of scheduler invocations is not far beyond EDF,
while it offers excellent performance far beyond EDF. Piao
et al. proved that a set of periodic tasks can be successfully



scheduled by EDZL on m processors if the total utilization
does not exceed (m+1)/2 [14]. Further schedulability anal-
ysis of EDZL was presented by Cirinei and Baker [9]. They
considered more precise schedulability test of EDZL by ap-
plying the technique of the schedulability test of EDF de-
vised by Bertogna et al. [6].

In EDZL scheduling, a scheduler must be invoked every
time any job reaches zero laxity. Since the zero laxity can
occur at any time, the number of scheduler invocations is
not bounded. In addition, fine-grained timers are required
to make the scheduling points for the priority promotions
at zero laxity. Meanwhile the scheduling points of EDF
and EDF-US[x] are made only at job releases and com-
pletions. In other words, a scheduler needs to be invoked
only when jobs are released and complete. Thus, the num-
ber of scheduler invocations is bounded. Since the use of
fine-grained timers takes additional implementation costs
and the increase of scheduler invocations boosts run-time
overhead, we consider a derivative of EDZL in this paper to
bound the number of scheduler invocations and to relax the
implementation complexity of scheduler.

This paper presents an EDF-based algorithm, called Ear-
liest Deadline Critical Laxity (EDCL), for the efficient
scheduling of sporadic real-time tasks on multiprocessor
systems. The basic concept of EDCL is that the priority
of a job does not necessarily have to be promoted at zero
laxity to meet its deadline but can be promoted at the re-
lease time or the completion time of a job. This modification
of the priority promotion concept leads to that a scheduler
needs to be invoked only at job releases and completions.
Thus, the number of scheduler invocations is bounded and
the implementation complexity of scheduler is relax, while
the schedulability is still competitive with EDZL.

The remainder of this paper is organized as follows. The
system model and the terminology are defined in the next
section. Section 3 presents the algorithm design. Section 4
then gives the schedulability analysis. The effectiveness of
the presented algorithm is demonstrated though simulation
studies in Section 5. We conclude this work in Section 6.

2 System Model

The system is modeled with m identical processors and
a set of n sporadic tasks, denoted by τ = {τ1, τ2, ..., τn}.
Each task τi is characterized by tuple (ci, di, pi), where ci

is a worst-case computation time, di is a relative deadline,
and pi is a minimum inter-release time (period). Note that
ci ≤ min{di, pi} must hold, otherwise τi would never meet a
deadline. A task generates an infinite sequence of jobs. The
execution time of every job of τ i is assumed to be ci. The
inter-release intervals of any successive jobs of τ i are sepa-
rated by at least pi. When a job of τi is released at time t, the
job has a deadline at time t + di. The remaining execution
time of a job of τi executing at time t is denoted by ei(t), and
its laxity is denoted by xi(t). Note that t + ei(t) + xi(t) = di

holds for any t. For the sake of generalization, the job win-
dow Δi is defined to be Δi = min{di, pi}, and the utilization

(density) λi is defined to be λi = ci/Δi. Finally, the total
utilization U(τ) is defined to be U(τ) =

∑
τi∈τ λi.

A set of ready tasks at any time is denoted by γ. All
tasks are independent and preemptive. More than one task
cannot be executed simultaneously on a processor. A task
cannot be processed in parallel. Jobs of the same task must
be executed sequentially, which means that every job of τ i

cannot start before the preceding job of τ i completes.

3 Algorithm Description

This section gives a theoretical description of EDCL.
EDCL is a derivative of EDZL in that the priority of a job
reaching certain laxity is imperiously promoted to the top,
but it differs in that the occurrence of priority promotion is
confined to at the release time or the completion time of a
job. This modification to EDZL simplifies the design of al-
gorithm, since a scheduler needs to be invoked only at job
releases and completions. Hence, there is no need to use
fine-grained timers to make scheduling points.

We first of all explore the scheduling point at which a job
would miss its deadline unless it is scheduled immediately.
Then, the algorithm is designed so that the priority of a job
which reaches such a point in EDF scheduling is forcefully
promoted to the top to meet its deadline. For simplicity
of description, let ts denote any time at which any job is
released or completes henceforth.

Definition 1. A job of task τi is said to be critical, if its
laxity holds the following condition at time t s, where emin

denotes the minimum remaining execution time of the m jobs
that have the earliest deadlines.

xi(ts) < emin (1)

Then, the laxity xi(ts) is defined critical laxity.

It is clear that a critical job will miss its deadline in EDF
scheduling unless it is dispatched for execution, since the
scheduler will never dispatch the critical job before at least
one of the m jobs with the earliest deadlines completes. An
example of such a deadline miss with three processors is
depicted in Figure 1. A gray-color job with deadline t d be-
comes critical at time ts due to its laxity less than emin. This
job will never meet its deadline, because it can never resume
execution before time t s + emin in EDF scheduling. Note
that jobs with laxity equal to emin are not included in critical
jobs. Those tasks can possibly complete at their deadlines,
only if they can resume execution right after the job with
remaining execution time emin completes.

In order to avoid such a deadline miss without incurring
additional scheduling points, EDCL gives the highest pri-
ority to jobs which reach critical laxity at any job releases
and completions. As long as no jobs are critical, EDCL
completely performs as EDF. Even when it performs differ-
ently, the scheduling points are made only at job releases
and completions. In consequence, EDCL is able to bound
the number of scheduler invocations and to relax the imple-
mentation complexity of scheduler, compared with EDZL.
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Figure 1. A deadline miss in EDF scheduling

Theorem 1. EDCL is at least as effective as EDF.

Proof. EDCL performs as EDF until any job becomes criti-
cal but is not scheduled. EDF will surely cause such a criti-
cal job to miss its deadline, while EDCL may be able to save
it by the priority promotion. Hence, the theorem is true. �

Theorem 2. The number of scheduler invocations per job
release in any interval for EDCL is at most 2.

Proof. Let J(I) be the number of jobs which are released
in any interval I. Since a scheduler is invoked only when
jobs are released or complete, it is clear that the number
of scheduler invocations in interval I is bounded to 2J(I).
Hence, the theorem is true. �

Figure 2 illustrates the procedure of the EDCL scheduler.
The scheduler is invoked only when (i) jobs with earlier
deadlines than the current jobs are released, or (ii) any jobs
complete. If there are less than m ready tasks, the scheduler
executes all the ready tasks. Otherwise, the scheduler dis-
patches m tasks with the earliest deadlines in a set of ready
tasks. Then, it computes the minimum remaining execution
time of the m tasks, which is denoted by emin. If there are
ready jobs with laxity less than emin, the priorities of those
jobs are promoted to the top to avoid missing their dead-
lines. Notice that the scheduler needs to break ties among
critical jobs if the number of such critical jobs is greater
than m, since no more than m jobs can be executed simul-
taneously on m processors. In this paper, we take several
policies for tie breaking: ties are broken (i) arbitrarily, (ii)
in favor of shorter remaining execution time, (iii) in favor
of less laxity, and (iv) in favor of earlier deadline.

The first policy makes a benefit that all the scheduler has
to do is to dispatch the first m critical jobs examined by
linear search, meaning that there is no need to scan all the
critical jobs. The other policies, on the other hand, take
more complexity but are expected to perform better than
the first policy. Consider that there are more than m critical
jobs. If the minimum of the remaining execution times of
the dispatched m critical jobs is greater than emin, the rest of
critical jobs will inevitably miss their deadlines. Hence, the
second policy breaks ties in favor of shorter remaining exe-
cution time so that the minimum remaining execution time
is likely to be less than emin and the rest of critical jobs may
still have chance to meet their deadlines. The third policy is

1. when any tasks are released or complete do
2. if |γ| < m then
3. execute all tasks in γ
4. else
5. emin := min{ei(ts) | τi ∈ γ}
6. δ := {τi | xi(ts) < emin}
7. if |δ| ≥ m then
8. execute m tasks in δ
9. else

10. execute all tasks in δ
11. execute m − |δ| tasks with the earliest

deadlines in γ
12. end if
13. end if
14. end when

Figure 2. EDCL scheduling algorithm

encouraged by a similar idea. If ties are broken in favor of
less laxity, the rest of critical jobs have more laxity. That is,
there is more chance for them to meet their deadlines when
the minimum remaining execution time of the selected m
critical jobs is less than emin, since they have more laxity.
The last policy is motivated by the known effectiveness of
the EDF prioritization. The performance difference among
the above tie breaking policies is evaluated through simula-
tion studies presented in Section 5.

The procedure of EDZL is more expensive. The EDZL
scheduler examines whether any job reaches zero laxity be-
fore the next job release or completion (this can be done
by comparing the laxity of each task with emin like EDCL),
since the scheduler must know the occurrence of the zero
laxity to make a preemption. If the zero laxity occurs, the
scheduler next computes the earliest time of its occurrence
and sets a timer to preempt the current job with the zero
laxity job. Meanwhile, EDCL does not require such a pro-
cedure, since the critical laxity must occur only at jobs re-
leases and completions.

Figure 3, Figure 4, and Figure 5 show scheduling exam-
ples of EDF, EDF-US[1/2], and EDCL respectively when
five periodic tasks, τ1 = τ2 = τ3 = τ4 = (3, 10, 10) and
τ5 = (10, 15, 15), are submitted on two processors. As
shown in the figures, τ5 misses a deadline at time 15 in EDF,
and τ4 misses a deadline at time 10 in EDF-US[1/2]. On the
other hand, all the five tasks are successfully scheduled by
EDCL, since the priority of τ5 which would miss a deadline
with the original priority is promoted to the top at time 3 due
to critical laxity. Notice that the five tasks are also success-
fully scheduled by EDZL, but more scheduler invocations
occur, compared with EDCL.

4 Schedulability Analysis

This section analyzes the schedulability of EDCL, us-
ing a similar approach presented in [9]. We focus on a job
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Figure 5. EDCL scheduling example

which first misses a deadline, and consider the conditions
that are necessary for the job to miss its deadline. This job
is called problem job henceforth. The time interval between
the release time of the problem job and its missed deadline
is called problem window. For simplicity of description, let
τk always denote a task which contains the problem job and
td denote the deadline of the problem job.

It is clear that EDCL is a work-conserving scheduling al-
gorithm. Hence, a job can miss its deadline only when com-
peting jobs of other tasks given higher priorities than the
job block the execution of the job for a sufficient amount of
time. Using this property, the analysis (i) explores the lower
bound on the total amount of time that must be consumed
by competing jobs within the problem window to cause the
problem job to miss its deadline, (ii) determines the upper
bound on the maximum amount of time that can be con-
tributed by each individual task, and (iii) examines if the
sum of per-task upper bounds exceed the lower bound.

Notice that the following description is partially redun-
dant to the schedulability analysis of EDZL presented in
[9], however we repeat the description to make the analysis
more comprehensible.

4.1 Lower Bound

We first consider the necessary conditions for the prob-
lem job to miss its deadline. EDCL gives the top priority to
a critical job to meet its deadline. Thus, a critical job can be
only blocked by critical jobs, so a critical job never misses
its deadline unless other critical jobs occupy all the m pro-
cessors. In order for the problem job to miss its deadline,
at least m critical jobs must be scheduled at the same time.

m(d  - c )

time
tdt  - dd k ts

k

k is released
total area must be greater than k k

k would miss a deadline

k k k

Figure 6. Critical condition for τk

When m critical jobs are scheduled at the same time, a nec-
essary condition for the problem job to miss its deadline is
that its laxity is less than the minimum remaining execution
time of the m critical jobs. Note that this condition may hold
even though the problem job does not reach critical laxity,
thereby we give another definition.

Definition 2. A job of task τk is said to be strictly-critical,
if its laxity holds the following condition at time t s, where
e′min denotes the minimum remaining execution time of the
jobs with priorities higher than or equal to the job.

xk(ts) < e′min (2)

Then, the laxity xk(ts) is defined strictly-critical laxity.

In consequence, the necessary condition for EDCL to
cause a deadline to be missed is: m jobs become critical
and another job becomes strictly-critical at the same time.
Hereinafter, all such m+1 jobs are deemed as problem jobs.

Now, we need to explore the condition to drive a job to be
critical or strictly-critical, which is called critical condition
in this paper. As we already described in Section 3, a job
can become critical only when it would miss its deadline un-
less it is scheduled immediately at a scheduling point. A job
can also become strictly-critical only in the same situation,
though blocking jobs must be all critical. Figure 6 shows an
example of the critical condition for a job of task τ k. Let td
denote the deadline of the job and t s denote the scheduling
point at which the job becomes critical or strictly-critical.
Since EDCL is work-conserving, a job is only blocked by
other jobs with higher or equal priorities, except for its pre-
ceding job. In the figure, the area colored by gray indicates
the executions of such jobs and the area enclosed by dots
indicates their executions blocking τk. Remember that τk

does not actually miss a deadline if the jobs blocking after
or at scheduling point t s are not all critical.

Definition 3. The total amount of time that can be con-
tributed by task τi in certain time interval [a, b) is defined
competing work Wi(a, b).

If dk ≤ pk, it is clear from Figure 6 that the job can
become critical or strictly-critical only when it would be
blocked for longer than dk − ck in the problem window if it
is not scheduled immediately at scheduling point t s. That
is, the following condition must hold for the job of τ k to
become critical or strictly-critical.∑

i�k

Wi(td − dk, td) > m(dk − ck)



If dk > pk, the job will become critical or strictly-critical
when it would be blocked for longer than p k − ck in time in-
terval [td−pk, td) if it is not scheduled immediately, with tak-
ing into account the constraint of its preceding job, though
this expectation is pessimistic as mentioned in [9]. Hence,
the job of τk will become critical or strictly-critical in time
interval [td − pk, tk), if the following condition holds.

∑
i�k

Wi(td − pk, td) > m(pk − ck)

Using the same terminology in [9], time interval [t d−Δk, td)
is called overload window from now on, where Δk =

min{dki, pk}. Then, we can finalize the critical condition for
τk in time interval [td − Δk, td) by Equation (3).

∑
i�k

Wi(td − Δk, td) > m(Δk − ck) (3)

Note that if Equation (3) holds ‘=’, then the job never
becomes critical or strictly-critical. This is a different point
from the EDZL analysis in [9]. Moreover, note again that
the conditions for being critical and strictly-critical are both
unified by Equation (3), though the upper bounds for the
left-hand side of the expression differ depending on the
number of competing critical jobs. We discuss the upper
bounds more specifically in the next section. Finally, we can
derive the following lemma with respect to the necessary
condition for EDCL scheduling to cause a deadline miss.

Lemma 1. If a set of sporadic tasks is scheduled by EDCL
on m processors, at least m + 1 tasks must satisfy Equation
(3) in order to cause a deadline miss.

Proof. It is trivial from the above discussion. �

4.2 Upper Bound

In this section, we obtain the upper bound for competing
work Wi(td − Δk, td) of each task τi, which contributes to
driving problem task τk to be critical or strictly-critical in
overload window [td − Δk, td). If the necessary condition
derived in Lemma 1 does not hold even with those upper
bounds, a given task set can never cause a deadline miss.

Though we assume sporadic tasks in this paper, the ex-
ecution time of each task is assumed to be fixed. Thus, it
is obvious that the competing work cannot be increased by
outspreading the inter-release interval. As a result, the com-
peting work of each task in any overload window is never
larger than the case in which each task is periodically re-
leased at the minimum interval. As for jobs which con-
tribute to the competing work, we only need to concern jobs
with deadlines after td − Δk, since we assume that the first
deadline miss is caused by one of the problem jobs and no
deadlines are missed before the overload window. On the
other hand, jobs with deadlines in the overload window or
at time td are clearly contributors to the competing work.
However, it depends on laxity whether ones with deadlines
after the overload window are contributors or not. If the
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Figure 7. Upper bound of Case 1

jobs are not critical, then they cannot be contributors. On
the other hand, if they are critical, then they can be contrib-
utors. Therefore, we segregate those two cases.

Case1

We first consider the tasks which contain no critical jobs
when the problem job becomes critical. In such a case, jobs
with deadlines after the overload window can never inter-
fere the problem job. Thus, we only need to consider the
jobs with deadlines in the overload window. Note that this
case exactly follows the analysis in [9]. Hence, we can re-
fer to [9] that the maximum competing work of each task τ i

can be never greater than the case in which all the compet-
ing jobs of τi are executed as late as possible and a deadline
of τi is aligned with the deadline of the problem job.

Figure 7 shows the worst-case phase of τ i, where ni is the
number of jobs that have both release times and deadlines
in the overload window, which can be computed as

ni =

⌊
Δk

pi

⌋
.

According to [9], the length of interval during which the
carried-in job can be executed is at most max{0,Δ k − ni pi}.
Therefore, the length of the carried-in execution can be
never greater than

min{ci,max{0,Δk − ni pi}}.
Lemma 2. If a set of sporadic tasks is scheduled by EDCL
on m processors, the upper bound for the competing work
of task τi in any overload window of the problem job of τk,
denoted by W̄αi (τk), is expressed by Equation (4), if a job of
τi cannot be critical when the problem job becomes critical.

W̄αi (τk) = nici +min{ci,max{Δk − ni pi}} (4)

Proof. It is trivial from the preceding discussion. �

Case2

We next consider the tasks which contain critical jobs
when the problem job becomes critical. In such a case,
jobs with deadlines after the overload window can affect
the problem job, since the jobs are given the top priorities
due to critical laxity. Thus, a deadline of τ i is not neces-
sarily aligned with the deadline of the problem job, and the
worst-case phase of τi can differ from the previous case.

If a task set is scheduled by EDZL, the worst-case phase
of task τi can be also described by Figure 7, because jobs
with deadlines after the overload window can interfere the
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problem job only when it has zero laxity and such jobs must
complete at their deadlines due to zero laxity, so after all it
is equivalent to considering the jobs to be executed as late
as possible. However, if a task set is scheduled by EDCL,
critical jobs with deadlines after the overload window can
finish before their deadlines, thereby we cannot apply the
same worst-case phase to EDCL scheduling. This is a main
difference from the EDZL analysis.

In order to maximize the competing work, the release
times of τi should be still periodic, then we only need to
consider moving the phase of the release times in Figure 7.
We argue that the competing work of τ i is maximized when
the finish time of its final job released before or in the over-
load window is aligned with the deadline of the problem
job, as shown in Figure 8. Note that the start time of the
final job must be td − ci, since it cannot be scheduled unless
it is critical due to its deadline later than td. The following
discussion lead the argument to be correct.

• If we shift forward, i.e. shift later in time, the phase of
τi by amount a ≤ pi − xi(td) in Figure 8, then the com-
peting work of τi at the end of the overload window
is decreased by min{a, ci}. The shift can increase the
competing work at the start of the overload window,
but the amount is at most min{a, ci}. Thus, the forward
movement cannot increase the competing work of τ i.

• If we shift backward the phase of τ i by amount a ≤
xi(ts) in Figure 8, the competing work of τ i at the start
of the overload window is decreased, while no con-
tribution is given at the end of the overload window.
Thus, the backward movement cannot also increase the
competing work of τi.

Now, we need to calculate the competing work of τ i.
Since the laxity is never decreased, the final job of τ i re-
leased before or in the overload window becomes critical
when its laxity is xi(td). It is clear that the competing work
of τi is increased as xi(td) is increased in Figure 8. We can
easily obtain that the maximum value of xi(td) is at most

xi(td) ≤ di − ci.

We also need to remember that the problem job is assumed
not to be critical yet. Hence, the laxity of the problem job
must be greater than or at least equal to that of the final job
of τi, otherwise the problem job must be also critical and it
is contradict to the assumption. That is, xi(td) also holds

xi(td) ≤ dk − ck.

In addition, the condition for a job to be critical is that its
laxity is less than the minimum remaining execution time of

the jobs with higher or equal priorities. So, xi(td) must be
within the range of

xi(td) ≤ max{c j | τ j ∈ τ, j � i}.
Finally, the upper bound of xi(td) for any td of τk, denoted
by x̄i(τk), can be expressed by Equation (5).

x̄i(τk) = min{di − ci, dk − ck,min{c j | τ j ∈ τ, j � i}} (5)

Since the phase of τi is changed, we need to recalculate
the value of ni and the length of the carry-in execution. Us-
ing x̄i(τk) obtained above, the maximum number of jobs of
τi which have both release times and deadlines in the over-
load window can be computed as

ni =

⌊
Δk − (pi − x̄i(τk))

pi

⌋
.

Then, the length of the carry-in execution is bounded to

min{ci,max{Δk − ni pi − (pi − x̄i(τk))}}.
Lemma 3. If a set of sporadic tasks is scheduled by EDCL
on m processors, the upper bound for the competing work
of task τi in any overload window of the problem job of τk,
denoted by W̄βi (τk), is expressed by Equation (6), if a job of
τi can be critical when the problem job becomes critical,
where n′i = ni + 1 due to limitation of space.

W̄βi (τk) = n′ici +min{ci,max{0,Δk − n′i pi + x̄i(τk)}} (6)

Proof. It is trivial from the preceding discussion. �

4.3 Schedulability Test

Although we obtained the upper bound for the contribu-
tion of each task τi to the competing work in any overload
window of the problem job, for more precise analysis we
need to take into account the concept of interference intro-
duced by Bertogna et al. [6], which was also considered
in [9]. The interference of τ i on the problem job is the to-
tal length in which the problem job is blocked by jobs with
higher or equal priorities and a job of τ i is one of the m jobs
blocking the problem job.

According to [6], a sufficient condition to cause a dead-
line of τk to be missed is that the interference of each τ i on
the problem job of τk in interval [td − dk, td), which is the
problem window in this paper, is at least greater than dk−ck.
This upper bound is very intuitive from Figure 6. Assume
that τk cannot be scheduled immediately at time t s. Then,
τk will miss a deadline if the plotted area is greater than
m(dk − ck). Since we assume that a job is not permitted to
execute in parallel, it is sufficient for τi to consider only the
portion of dk − ck, even though it can consume more proces-
sor time. Note that we should replace dk in [6] with Δk in
this paper, because we permit pk < dk.

Let W̄i(τk) unify W̄αi (τk) and W̄βi (τk) regardless of
whether τi contain a critical job when τk becomes critical
or not. Then, we can derive the following theorem with re-
spect to the schedulability of EDCL.



Theorem 3. A set of sporadic tasks can be successfully
scheduled by EDCL on m processors, unless one of the fol-
lowing conditions holds for at least m + 1 tasks.

• ∑i�k min{W̄i(τk),Δk − ck} > m(Δk − ck)

• ∑i�k min{W̄i(τk),Δk − ck} = m(Δk − ck) and ∀i � k :
Δk − ck < W̄i(τk)

Proof. It is obvious from Equation (3) that τ k can contain
critical or strictly-critical jobs if the first condition in the
theorem holds, since Equation (3) is the necessary condition
for τk to become critical or strictly-critical.

The validity of the second condition in the theorem is
then considered. If the total interference is not greater than
m(Δk − ck), τk cannot miss a deadline. However, if all the
tasks have competing work greater than Δk − ck, then the
actual total interference must be greater than m(Δk − ck),
even though

∑
i�k min{W̄i(τk),Δk − ck} = m(Δk − ck) holds.

In contrast, if at least one task has competing work less than
or equal to Δk − ck, then the actual total interference is still
equivalent to m(Δk − ck), and τk cannot become critical or
strictly-critical.

Consequently, τk can become critical or strictly-critical
only when either of the above conditions holds. Accord-
ing to Lemma 1, there must be at least m + 1 tasks which
can contain critical or strictly-critical jobs, if a deadline is
missed. Hence, the theorem is true. �

The remaining concern is: how we determine whether
each task can contain critical or strictly-critical jobs. Since
the number of the tasks which can contain critical or
strictly-critical jobs is needed to verify if a task can contain
critical or strictly-critical jobs, a set of those tasks cannot be
obtained easily. We first introduce a pessimistic idea that all
tasks are assumed to contain critical jobs. From the discus-
sion in Section 4.2, it is clear that the competing work of τ i

for the case in which the final job of τ i released before or in
the overload window of the problem job is critical is greater
than that for the other case. Thus, the total competing work
cannot be greater than the case in which we assume that all
tasks contain critical jobs.

Theorem 4. (Pessimistic schedulability test). A set of spo-
radic tasks can be successfully scheduled by EDCL on m
processors, unless one of the following conditions holds for
at least m + 1 tasks.

• ∑i�k min{W̄βi (τk),Δk − ck} > m(Δk − ck)

• ∑i�k min{W̄βi (τk),Δk − ck} = m(Δk − ck) and ∀i � k :

Δk − ck < W̄βi (τk)

Proof. The proof obviously follows Theorem 3 and the pre-
ceding discussion. �

We next derive a tighter schedulability test, trading with
more computation time. A basic idea is that we recursively
search for the tasks which can contain critical or strictly-
critical jobs. Hereinafter, let α be a set of the tasks which

cannot contain critical or strictly-critical jobs and β be a
set of the tasks which can contain them. For simplicity of
description, we define W̄α(τk) and W̄β(τk) as follows.

W̄α(τk) =
∑
τi∈α,i�k

min{W̄αi (τk),Δk − ck}

W̄β(τk) =
∑
τi∈β,i�k

min{W̄βi (τk),Δk − ck}

W̄α(τk) is the total competing work of the tasks which con-
tain no critical jobs when τk becomes critical in any over-
load window, and W̄β(τk) is that of the tasks which contain
critical jobs. Using those notations, a tight schedulability
test is described in Figure 9.

The tight schedulability test first assumes that no tasks
become critical or strictly-critical. Under this assumption,
if no tasks hold the critical condition, then no tasks will
surely become critical, which means that the task set can be
successfully scheduled by EDF. However, if any tasks {τk}
hold the critical condition, then the test needs to verify again
whether the tasks which did not hold the critical condition in
the preceding test hold the critical condition. At this point,
the test must assume that {τk} can become critical, since the
preceding test did not assume that. Then, this procedure is
repeated until one of the followings occurs.

• At least m+1 tasks which can be critical are found out.
Then, the task set is rejected.

• New tasks are not found out to be critical, meaning
that the further recursion will not find out any other
tasks which can be critical. Then, the task set can be
accepted.

Since the procedure is repeated at most m+1 times, the com-
putation order of the schedulability test depicted in Figure
9 is O(n2m), while that of the one in Theorem 4 is O(n2).

Theorem 5. (Tight schedulability test). A set of sporadic
tasks can be successfully scheduled by EDCL on m proces-
sors, if the schedulability test depicted in Figure 9 can ac-
cept the set.

Proof. It is trivial from the preceding discussion. �

Revision of EDZL Schedulability Test

Here, we report that the schedulability test of EDZL pre-
sented in [9] has a pitfall. Though this is a digression from
the subject of this paper, it is very important since EDZL is
now widely used and discussed.

Cirinei and Baker in [9] derived that a set of sporadic
tasks can be successfully scheduled by EDZL on m proces-
sors, unless the following condition holds for at least m + 1
tasks, and it holds strictly > for at least one of them, where
ωi(τk) = Wαi (τk)/Δk (the description is slightly modified).

∑
i�k

min{ωi(τk), 1 − λk} ≥ m(1 − λk) (7)



1. Let α = τ and β = ∅.
2. For each τk ∈ α, calculate W̄α(τk) and W̄β(τk).

3. For each τk ∈ α, if one of the following conditions
holds, insert τk into β and remove it from α, i.e. β =
β ∪ {τk} and α = α \ {τk}.
• W̄α(τk) + W̄β(τk) > m(Δk − ck)

• W̄α(τk)+W̄β(τk) = m(Δk−ck) and ∀i � k, τi ∈ α :
Δk − ck < W̄αi (τk) and ∀i � k, τi ∈ β : Δk − ck <

W̄βi (τk)

4. If no tasks held one of the above conditions, the test
accepts the task set, and the procedure exits.

5. If the number of the tasks in β is greater than m, the
test rejects the task set, and the procedure exits.

6. Go back to Step 2.

Figure 9. Tight schedulability test

However, consider a set of m + 1 tasks. Then, the left-hand
side of Equation (7) for each task τk is at most m(1 − λk),
since there are only m tasks for the targets of the sigma func-
tion and they each can have the value at most 1 − λ k due to
the function min{ωi(τk), 1 − λk}. Thus, none of the m + 1
tasks cannot hold >, which means that a set of m+1 tasks is
always accepted. However, it was reported in [16] that a set
of m + 1 tasks can cause a deadline miss in EDZL schedul-
ing. Hence, it is true that the above test has a pitfall. The
pitfall is an ignorance of the case in which all the tasks take
1− λk for min{ωi(τk), 1− λk} in Equation (7). Thus, we can
revise the schedulability test of EDZL as follows.

Theorem 6. (Revised EDZL Schedulability Test). A set
of sporadic tasks can be successfully scheduled by EDZL on
m processors, unless Equation (7) holds for at least m + 1
tasks, and one of the following conditions holds for at least
one of them.

• ∑i�k min{ωi(τk), 1 − λk} > m(1 − λk)

• ∑i�k min{ωi(τk), 1 − λk} = m(1 − λk) and ∀i � k :
1 − λk < ωi(τk)

Proof. The proof follows the above discussion. �

5 Simulation Study

In this section, simulation studies evaluate the EDCL al-
gorithm in terms of schedulability, with comparing the tra-
ditional algorithms: EDF, EDF-US[1/2], and EDZL. The
schedulability of each algorithm is estimated as follows.
For certain system utilization Usys (0 ≤ Usys ≤ 1), 100,000
task sets are randomly generated so that U sys = U(τ)/m
holds for all the task sets, and submitted to all the schedul-
ing algorithms. Then, the success ratio of an algorithm is

defined by the following expression.

the number of successfully scheduled task sets
the number of scheduled task sets (100,000)

The system utilization is varied within the range of [0.3, 1].
The schedulability of the algorithm is estimated to be high
as it achieves high success ratio at high system utilization.

The successfully-scheduled task set is defined as follows.
For evaluation of the guaranteed schedulability, a task set is
said to be successfully scheduled, if the schedulability test
accepts the task set. The schedulability test of each algo-
rithm is implemented as follows:

• EDF: A given task set τ is accepted if U(τ) ≤ m(1 −
umax) + umax holds [11], where umax is the maximum
utilization of every individual task. Even if the above
condition does not hold, it is also accepted if one of the
following conditions [6] holds.

–
∑

i�k min{ωi(τk), 1 − λk} < m(1 − λk)

–
∑

i�k min{ωi(τk), 1− λk} = m(1− λk) and ∃i � k :
0 < ωi(τk) ≤ 1 − λk

• EDF-US[1/2]: Let h be the smaller of m − 1 or the
number of heavy tasks with utilization greater than 1/2
in a given task set τ. τ is accepted if n − h light tasks
are accepted by the above EDF test.

• EDZL: The schedulability test follows Theorem 6.

• EDCL(P): The schedulability test follows Theorem 4
(’P’ stands for the pessimistic test).

• EDCL(T): The schedulability test follows Theorem 5
(’T’ stands for the tight test).

For evaluation of the exhaustive schedulability, on the
other hand, a task set is said to be successfully scheduled,
if the task set can be actually scheduled by a scheduling
algorithm without missing any deadline.

Each task set τ with U(τ) = Usys × m is generated as
follows. The utilization (density) of a new task τ i is deter-
mined based on a uniform distribution within the range of
[0.1, 1.0] for fairness. Then, τ i is appended to τ as long as
U(τ) ≤ Usys × m. When U(τ) exceeds Usys × m, the uti-
lization of τi is adjusted so that U(τ) = Usys × m holds.
The period of τi is randomly determined within the range of
[1000, 100000], assuming real-time applications with peri-
ods ranging from 1ms to 100ms. The deadline is equal to
the period, and the execution time is computed as c i = λi pi.
The length of each simulation is min{lcm({pi | τi ∈ τ}), 232}.

Figure 10∼12 show the results for the success ratio of
each algorithm, which are verified by each schedulability
test. EDCL outperforms EDF substantially, even though
the test is pessimistic. While the success ratio of the EDF
test drops below 100% when the system utilization exceeds
40%, that of the pessimistic EDCL test is retained 100% un-
til the system utilization reaches 60 ∼ 62%. However, the
pessimistic EDCL test can be inferior to the EDF-US[1/2]
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Figure 10. Guaranteed success ratio (m = 4).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S
uc

ce
ss

 r
at

io

System utilization

EDF-test
EDF-US-test

EDZL-test
EDCL-test(P)
EDCL-test(T)

Figure 11. Guaranteed success ratio (m = 8).

test, especially after the success ratio drops below 100%.
The tight EDCL test, meanwhile, always outperforms the
EDF-US[1/2] test by 3 ∼ 8% for the system utilization in
which the success ratio can be retained 100%. The EDZL
test achieves the highest success ratio as expected, which is
about 3% surperior to the tight EDCL test.

According to the simulations, the algorithms except for
EDF are relatively competitive, with respect to the guaran-
teed schedulability. Though EDF-US[1/2] performs com-
petitively with EDCL and EDZL, its exhaustive perfor-
mance is clearly inferior to them, as shown later. EDZL is
always better than EDCL. It is obvious that the performance
difference between EDCL and EDZL are attributed by their
different rules for priority promotions. The difference can
be shrunk by using the tight schedulability test for EDCL,
but EDCL can never outperform EDZL in term of schedula-
bility. Instead, EDCL has a smaller bound on the number of
scheduler invocations and can be more easily implemented.
In that sense, EDCL and EDZL have relative merits to each
other with competitive performance.

Figure 13∼15 show the results for the success ratio
of each algorithm, which are verified by each exhaustive
scheduling (tasks are actually scheduled until a job misses
its deadline or the simulation exits). The suffixes of ’(R)’,
’(L)’, and ’(D)’ for EDCL stand for the policies of tie break-
ing respectively: ties are broken in favor of shorter Remain-
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Figure 12. Guaranteed success ratio (m = 16).

ing execution time, less Laxity, and earlier Deadline. Note
that ties are broken arbitrarily for EDCL with no suffix.

According to the simulations, EDCL and EDZL perform
far beyond EDF. As reported in [9], EDZL can successfully
schedule almost all the task sets, even though the system
utilization is 100%. EDCL can also perform competitively
with EDZL, especially when ties are broken in favor of less
laxity. Thus, we can observe the effectiveness of breaking
ties. Though EDZL is slightly better than EDCL, the EDCL
scheduler needs to be invoked only when jobs are released
or complete. As a result, it can be said again that EDCL
and EDZL are competitive even for the exhaustive schedu-
lability as well as the guaranteed one. EDF-US[1/2] is a
middle-grounder, however we need to remember that it can
perform worse than EDF depending on given task sets.

6 Conclusion

This paper presented the EDCL algorithm, which is a
derivative of EDZL, for the efficient scheduling of sporadic
real-time tasks on multiprocessor systems. We proved that
(i) EDCL is at least as effective as EDF, and (ii) the number
of scheduler invocations per job release is at most 2. EDZL
also has the former property but does not have the latter one.
In addition, since the scheduling points are made only at
job releases and completions, the implementation complex-
ity of EDCL is more relaxed than EDZL. We then designed
pessimistic and tight schedulability tests of EDCL. We also
corrected an error in the traditional schedulability test of
EDZL. The simulation studies showed that EDCL can be
competitive with EDZL far beyond EDF, with respect to
both guaranteed schedulability and exhaustive schedulabil-
ity. In conclusion, EDCL is a novel real-time scheduling
algorithm for multiprocessor systems.

In the end, the insights into the future work are described.
Though the schedulability test of EDCL was derived in this
paper, the utilization bound was not explored. In fact, there
is a task set that cannot be successfully scheduled by EDCL
if the total utilization exceeds (m + 1)/2. Since jobs can
be preempted only at job releases and completions, a set of
m + 1 tasks with all execution times x + ε and deadlines 2x
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Figure 13. Exhaustive success ratio (m = 4).
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Figure 14. Exhaustive success ratio (m = 8).

are not schedulable. The argument is true if ε → 0. Thus,
the tightness of this utilization bound will be analyzed.

The superiority of EDCL over EDF-US[x] will be also
considered. In this paper, it was demonstrated that EDCL
is at least as effective as EDF. We wonder if EDCL also
strictly dominates EDF-US[x].

According to the simulations results, EDCL has a mean-
ingful gap between guaranteed schedulability and exhaus-
tive schedulability. Thus, the theoretical analysis of EDCL
will be moreover conducted. We will also examine if EDCL
is predictable [12] and sustainable [3].
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