
Practical Imprecise Computation Model: Theory and Practice

Hiroyuki Chishiro and Nobuyuki Yamasaki

Department of Information and Computer Science, Keio University, Yokohama, Japan

{chishiro,yamasaki}@ny.ics.keio.ac.jp

Abstract

We introduce the research overview of the practical im-

precise computation model to achieve imprecise real-time

applications. The practical imprecise computation model

has multiple mandatory parts as real-time parts and mul-

tiple optional parts as non-real-time parts. We explain a

new concept of real-time scheduling in the practical impre-

cise computation model, called semi-fixed-priority schedul-

ing. In addition, we explain a semi-fixed-priority schedul-

ing algorithm, called Rate Monotonic with Wind-up Part

(RMWP). RMWP schedules each part in the practical im-

precise computation model in Rate Monotonic order. We

also introduce a real-time operating system for semi-fixed-

priority scheduling algorithms, called RT-Est. We describe

programming paradigms for the practical imprecise com-

putation model in RT-Est. RT-Est has the SIM architecture

for simulating real-time scheduling algorithms and the vi-

sualization tool for drawing simulation results. Finally we

give future research directions for the practical imprecise

computation model in theory and practice.

1. Introduction

Real-time applications have been encountering over-

loaded conditions in dynamic environments. For example,

autonomous mobile robots [22, 19] run in such dynamic en-

vironments. In addition, robots perform tasks to detect and

avoid obstacles periodically by many sensors. In order to

meet the deadline of each task and support overloaded con-

ditions, an imprecise computation model [17] is presented.

The imprecise computation model has the advantage of

supporting overloaded conditions in dynamic environments,

compared to Liu and Layland’s model [18]. The important

point of the imprecise computation model is that the com-

putation in each task is split into two parts: a mandatory

part and an optional part. A mandatory part as a real-time

part affects the correctness of the result and an optional part

as a non-real-time part only affects the quality of the result.

By restricting the execution of the optional part only after

the completion of the mandatory part, imprecise real-time

applications can provide the correct output with lower qual-

ity, by terminating the optional part. Under overloaded con-

ditions, the imprecise task terminates its optional part and

generates the result with lower quality. However, an impre-

cise computation model is not practical because the termi-

nation of each optional part cannot guarantee the schedula-

bility. In order to guarantee the schedulability of the termi-

nation of the optional part, a practical imprecise computa-

tion model [12] is presented.

The practical imprecise computation model has multi-

ple mandatory parts as real-time parts and multiple optional

parts as non-real-time parts. The execution flow of the prac-

tical imprecise task is that mandatory parts and optional

parts are executed one after the other. Note that the first

and last parts are mandatory parts. After executing optional

parts, the practical imprecise computation model executes

mandatory parts to terminate or complete the processing of

optional parts. An example of mandatory part is to output

the result to the actuator for controlling robots.

We have performed the research and development of

the practical imprecise computation model. Now we intro-

duce the research overview of the practical imprecise com-

putation model. We explain a new concept of real-time

scheduling in the practical imprecise computation model,

called semi-fixed-priority scheduling [5]. In addition, we

explain a semi-fixed-priority scheduling algorithm, called

Rate Monotonic with Wind-up Part (RMWP) [5]. RMWP

schedules each part in the practical imprecise computation

model in Rate Monotonic (RM) order [18]. We also in-

troduce a real-time operating system for semi-fixed-priority

scheduling algorithms, called RT-Est [7]. We describe pro-

gramming paradigms for the practical imprecise computa-

tion model in RT-Est. RT-Est has the SIM architecture for

simulating real-time scheduling algorithms and the visual-

ization tool for drawing simulation results. Finally we give

future research directions for the practical imprecise com-

putation model in theory and practice.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces system model for the practical imprecise

computation model. Section 3 explains semi-fixed-priority



Discarded

Completed

Terminated

Discarded

Completed

Terminated

First mandatory part First optional part Second mandatory part

Second optional part Third mandatory part

Figure 1. Practical imprecise task with three
mandaotry parts and two optional parts

scheduling. Section 4 introduces a real-time operating sys-

tem for semi-fixed-priority scheduling algorithms, called

RT-Est. Section 5 compares our work with related work.

Section 6 offers conclusion and gives future research direc-

tions.

2. System Model

2.1 Practical Imprecise Computation
Model

The practical imprecise computation model [12] has

multiple mandatory parts and multiple optional parts.

Thanks to the following mandatory parts after executing

optional parts, each practical imprecise task guarantees the

schedulability of the processing to output the result. Figure

1 shows the practical imprecise task with three mandatory

parts and two optional parts. Each practical imprecise task

has three execution paths for optional part: discarded, com-

pleted, and terminated. Therefore, each practical imprecise

task can output the proper quality of result without deadline

miss due to the overrun of the optional part.

This paper assumes that the system has M identical pro-

cessors and a task set Γ consisting of n periodic tasks with

implicit deadlines. Task τi is represented as the follow-

ing tuple ((mi), (oi), (ODi), Di, Ti): where mi is the to-

tal Worst Case Execution Time (WCET) of the mandatory

parts, oi is the total Required Execution Time (RET) of

the optional parts, ODi is the group of the relative op-

tional deadline, Di is the relative deadline, and Ti is the

period. The total WCET of mandatory parts of task τi is

mi =
∑nm

i

l=1
ml

i, where nm
i is the number of mandatory

parts and ml
i is the WCET of the lth mandatory part. On the

other hand, the total RET of optional parts is oi =
∑no

i

l=1
oli,

where no
i is the number of optional parts and oli is the RET

of the lth mandatory part. The group of the relative optional

deadline of task τi is ODi = {OD1

i , OD2

i , ..., OD
no

i

i },

where ODl
i is the lth relative optional deadline of task τi.

Since the optional deadline is a time to terminate an op-

tional part, the number of optional deadlines is equal to that

of optional parts no
i . The detail of the optional deadline is

Task τ1

Task τ2

0 OD1

0 OD2

1

1

OD1
2

OD2
2

Task τ3

time0 OD3
1

OD3
2

First mandatory part First optional part Second mandatory part

Second optional part Third mandatory part

Figure 2. Optional deadline

shown in Subsection 2.2. The relative deadline Di of each

task τi is equal to its period Ti. The jth instance of task τi
is called job τi,j . The utilization of each task is defined as

Ui = mi/Ti. The reason why Ui does not include oi is be-

cause the optional part of task τi is a non-real-time part, so

that completing it is not relevant to scheduling the task set

successfully. Hence, the system utilization within n tasks

can be defined as U =
∑

i Ui/M . All tasks are ordered by

increasing their periods and task τ1 has the shortest period

in the task set.

2.2 Optional Deadline

An optional deadline is defined as a time when an op-

tional part is terminated and a following mandatory part is

released. Each following mandatory part is ready to be ex-

ecuted after each optional deadline and can be completed

if each mandatory part is completed by each optional dead-

line. Each optional deadline is set to the time as late as

possible to expand the executable range of each optional

part. The following mandatory part must not miss its dead-

line if there is idle processor time or lower priority tasks

are executed between the time when the mandatory part is

completed and the following mandatory part is released. If

each task does not complete its mandatory part until its cor-

responding optional deadline, the task may miss its dead-

line. Thanks to this definition, semi-fixed-priority schedul-

ing does not degrade the schedulability compared to fixed-

priority scheduling [5, 6].

Figure 2 shows the behavior of optional deadlines. Solid

up arrow, solid down arrow, and dotted down arrow repre-

sent release time, deadline, and optional deadline, respec-

tively. Now we describe the execution of each task.

• Task τ1 executes the first mandatory part. When task

τ1 completes the first mandatory part, task τ1 executes

the first optional part. When OD1

1
expires, task τ1 ter-

minates the first optional part and executes the second



Table 1. Optional deadline

Algorithm Optional Deadline with Two Mandatory Parts Optional Deadline with Multiple Mandatory Parts

RMWP OD1
k = max(0, Dk −m2

k −

∑

i<k

⌈

Tk

Ti

⌉

mi) [5] ODl
k =

{

max(0, Dk −m
nm

k

k −

∑

i<k

⌈

Tk

Ti

⌉

mi) (l = no
k)

max(0, OD
l+1

k −m
l+1

k − o
l+1

k ) (l < no
k)

[9]

G-RMWP OD1
k =

{

max(0, Dk −m2
k) (k ≦ M)

max(0, Dk −m2
k − Îk) (k > M)

[6] ODl
k =











max(0, Dk −m
nm

k

k ) (k ≦ M and l = no
k)

max(0, Dk −m
nm

k

k − Îk) (k > M and l = no
k)

max(0, ODl+1

k −ml+1

k − ol+1

k ) (l < no
k)

[9]

Table 2. Least upper bound

Algorithm Imprecise Multiprocessor Least Upper Bound

RMWP X Ulub = n(21/n − 1) [5]

G-RMWP X X Ulub = M
2
(1− Umax) + Umax [6]

RM Ulub = n(21/n − 1) [18]

G-RM X Ulub = M
2
(1− Umax) + Umax [2]

mandatory part. After completing the second manda-

tory part, task τ1 executes the second optional part.

When OD2

1
expires, task τ1 executes the third manda-

tory part.

• Task τ2 executes the first mandatory part and then the

first optional part. When task τ2 completes the first op-

tional part, OD1

2
does not expire, so that task τ2 sleeps

until OD1

2
. Next task τ2 executes the second manda-

tory part and the second optional part and sleeps until

OD2

2
. After OD2

2
, task τ2 executes the third manda-

tory part.

• Task τ3 does not execute the first optional part because

task τ3 does not complete the first mandatory part un-

til OD1

3
. Since task τ3 does not complete the second

mandatory part until OD2

3
, task τ3 does not execute the

second optional part and executes the third mandatory

part.

3. Semi-Fixed-Priority Scheduling

Semi-fixed-priority scheduling [5] is defined as part-

level fixed-priority scheduling in the practical imprecise

computation model. That is to say, semi-fixed-priority

scheduling fixes the priority of each part in the practical im-

precise task and changes the priority of each practical im-

precise task only in the two cases: (i) when the task com-

pletes its mandatory part and executes its following optional

part; (ii) when the task terminates or completes its optional

part and executes the following mandatory part.

We have proposed three semi-fixed-priority schedul-

ing algorithms for uniprocessor scheduling, multiprocessor

global scheduling, and multiprocessor partitioned schedul-

ing, called Rate Monotonic with Wind-up Part (RMWP)

[5], Global Rate Monotonic with Wind-up Part (G-RMWP)

[6], and Partitioned Rate Monotonic with Wind-up Part (P-

RMWP) [8]. RMWP is adapted to uniprocessor schedul-

ing, G-RMWP is adapted to multiprocessor global schedul-

ing, and P-RMWP is adapted to multiprocessor partitioned

scheduling. Global scheduling permits tasks to migrate

among processors dynamically and partitioned scheduling

assigns tasks to processors statically.

RMWP-based schedulers including RMWP, G-RMWP,

and P-RMWP manage tasks in a real-time queue, a non-

real-time queue, and a sleep queue. A real-time queue man-

ages tasks which are ready to execute their mandatory parts.

A non-real-time queue manages tasks which are ready to

execute their optional parts. RMWP and P-RMWP sched-

ule tasks in each queue in RM order. In contrast, G-RMWP

schedules tasks in each queue in Global Rate Monotonic (G-

RM) order. A sleep queue manages tasks which wait until

next releases when they complete their jobs or next optional

deadlines when they complete their previous optional parts.

Table 1 shows optional deadlines with two and multi-

ple mandatory parts in RMWP and G-RMWP. The optional

deadline of each task is statically calculated by these equa-

tions before executing tasks. The worst case interference

time Îk in G-RMWP is the same as that in G-RM, so that

the detail of Îk is shown in [10]. P-RMWP uses equations

of optional deadlines in RMWP after assigning tasks to pro-

cessors.

Table 2 shows the least upper bounds of RMWP, G-

RMWP, RM, and G-RM. The least upper bounds of RMWP

and G-RMWP with multiple mandatory parts are the same

as those with two mandatory parts, respectively. In addition,

the partitioning test of P-RMWP uses the least upper bound

of RMWP. In G-RMWP and G-RM, Umax is the maximum

utilization of all tasks in each task set. We analyzed that the

least upper bounds of RMWP and G-RMWP are the same

as those of RM and G-RM, respectively.



RM

EDF

RMWP

General

Harmonic

User

x86

ARM

SIM

Uniprocessor

SMP Global

SMP Partitioned

None

Task ID

Earliness

O(1)

Dlist

Bheap

NoSort

IncPeirod

DecUtil

Environment Configuration

Scheduler Configuration

Algorithm Tie-Breaking Task Queue

Architecture Processor

Task Set Sort

Task Set Configuration

Figure 3. Congiurations of RT-Est

4. The RT-Est Real-Time Operating System

The RT-Est real-time operating system [7] has been

developed from scratch to implement semi-fixed-priority

scheduling algorithms in the practical imprecise computa-

tion model. First of all, we describe the configurations of

RT-Est. Next we explain programming paradigms of the

practical imprecise computation model. Then we introduce

the SIM architecture for simulating real-time scheduling

and drawing simulation results.

4.1 Configurations

RT-Est has many configurations to do many experiments

including simulation studies and experimental evaluations.

The primary motivation of supporting these configurations

in RT-Est is to investigate the effectiveness of semi-fixed-

priority scheduling in theory and practice. Using these con-

figurations, developers can perform many experiments in

many environments easily.

Figure 3 shows the configurations of RT-Est. There are

three main configurations: an environment configuration, a

scheduler configuration, and a task set configuration.

The environment configuration sets architectures (x86,

ARM, and SIM) and processors (Uniprocessor, SMP

Global, and SMP Partitioned). x86 is Intel and AMD’s

processors and ARM is ARM’s processors. The detail of

SIM is shown in Subsection 4.3. Uniprocessor is a sin-

gle processor, SMP Global is SMP with global scheduling,

and SMP Partitioned is SMP with partitioned scheduling.

SMP Partitioned includes the following heuristic policies:

first-fit, next-fit, best-fit, and worst-fit.

The scheduler configuration sets algorithms (RM, EDF,

and RMWP), tie-breaking rules (None, Task ID, and Ear-

liness), and task queues (O(1), Dlist, and Bheap). RM,

EDF, and RMWP are RM, EDF [18], and RMWP algo-

rithms, respectively. None does not perform tie-breaking.

Task ID is that the smaller task ID has the higher prior-

ity. Here, the definition of earliness is the subtraction of

the finishing time of the previous job (if it exists) from cur-

rent time, so that smaller earliness has higher cache affinity.

Therefore, Earliness is that the smaller earliness has the

higher priority. O(1) is similar to the O(1) scheduler in the

old version of the Linux kernel. Dlist is the double circular

linked list to manage tasks and Bheap is the binomial heap

queue [26] to manage tasks.

The task set configuration sets task sets (General, Har-

monic, and User) and sorting policies (NoSort, IncPeriod,

and DecUtil). General is that task sets have no relationship

with each other. Harmonic is that periods of tasks are in-

teger multiples of each other, and User is user defined task

set. NoSort does not sort task sets, IncPeriod sorts task

sets by increasing periods, and DecUtil sorts task sets by

decreasing utilizations.

4.2 Programming Paradigms

In this subsection, we introduce programming paradigms

of the practical imprecise computation model in C language.

Using these programming paradigms for a reference, devel-

opers can develop imprecise real-time applications easily.

Figure 4 shows the pseudo code of the practical impre-

cise computation model. This practical imprecise task has

three mandatory parts and two optional parts.

Each task saves its context including general purpose

registers and the program counter in save_context

function. If save_context function is called via the

timer interrupt routine to terminate the optional part at

the optional deadline, save_context function returns

MANDATORY2. Otherwise save_context function re-

turns MANDATORY.

Each task executes the first mandatory part in

exec_mandatory function. After completing its manda-

tory part, each task calls end_mandatory function. If the

return value of end_madnatory function is DISCARD,

each task discards its optional part and executes the

following mandatory part in exec_mandatory2 func-

tion. Otherwise each task executes the first optional

part in exec_optional function. If each task com-

pletes its optional part, each task calls end_optional

function and executes the following mandatory part in



part = save_context();

switch (part) {

case MANDATORY:

/* execute the first mandatory part */

exec_mandatory();

res = end_mandatory();

if (res != DISCARD) {

/* execute the first optional part */

exec_optional();

/* wait until the first optional deadline */

end_optional();

}

case MANDATORY2:

/* execute the second mandatory part */

exec_mandatory2();

res = end_mandatory();

if (res != DISCARD) {

/* execute the second optional part */

exec_optional2();

/* wait until the second optional deadline */

end_optional();

}

case MANDATORY3:

/* execute the third mandatory part */

exec_mandatory3();

}

end_job();

Figure 4. Pseudo code of the practical impre-

cise computation model

exec_mandatory2 function. If each task terminates

its optional part at its optional deadline, the scheduler re-

sumes its context and calls save_context function. In

this case, the return value of save_context function is

MANDATORY2, so that the resumed task executes the sec-

ond mandatory part in exec_mandatory2 function. In

a similar way, each task executes the second optional part

in exec_optional2 function and the third mandatory

part in exec_mandatory3 function. After completing

the third mandatory part, each task calls end_job func-

tion to complete its job.

Figure 5 shows a programming example of lip reading

task to analyze what a speaker says [23]. There are three

mandatory parts and two optional parts as well as Figure 4.

In exec_mandatory function, the task gets the visual

information from camera in get_visual_info

function and analyzes the visual information in

analyze_visual_info function. There are some

metrics to read the lip: the width of the lip, the height

of the lip, and the variation of the height of the lip. In

analyze_visual_info function, one of the metrics is

executed to generate the result with low quality.

In order to improve the quality of result for ana-

lyzing visual information, exec_optional func-

tion calls analyze_visual_info2 function and

analyze_visual_info3 function. These func-

struct info *visual_info, *auditory_info;

void exec_mandatory(void)

{

visual_info = get_visual_info();

analyze_visual_info(visual_info);

}

void exec_optional(void)

{

analyze_visual_info2(visual_info);

analyze_visual_info3(visual_info);

}

void exec_mandatory2(void)

{

auditory_info = get_auditory_info();

analyze_auditory_info(auditory_info);

}

void exec_optional2(void)

{

analyze_auditory_info2(auditory_info);

}

void exec_mandatory3(void)

{

do_sensor_fusion(visual_info, auditory_info);

}

Figure 5. Programming example of lip read-

ing task

tions perform other metrics except the metric in

analyze_visual_info function. Note that the

task may terminate its execution while running in these

functions and resume its context from save_context

function in Figure 4.

In exec_mandatory2 function, the task

gets the auditory information from microphone in

get_auditory_info function and analyzes the au-

ditory information in analyze_auditory_info

function. There are also some metrics to analyze

auditory information: log power spectrum and lin-

ear predictive coding-derived mel-cepstrum [20]. In

analyze_auditory_info function, one of the

metrics is also executed to generate the result with low

quality.

In order to improve the quality of result for ana-

lyzing auditory information, exec_optional2 func-

tion calls analyze_auditory_info2 function. This

function performs other metrics except the metric

in analyze_auditory_info function as well as

exec_optional function.

In exec_mandatory3 function, the task calls

do_sensor_fusion function to integrate the analysis

results of visual and auditory information by neural network

[16] or hidden markov model [21].



0

0

10

10

20

20

30

30

τ1 = ((3, 3), (1), (7), 10, 10)

τ2 = ((3, 2), (1), (1), 15, 15)

1 11 1 11 11

11 1 1 11

τi = ((mi), (oi), (ODi), Di, Ti)

First Mandatory Part Release

Second Mandatory Part Deadline

First Optional Part Optional Deadline

Figure 6. The simulation result in RMWP on uniprocessors

Table 3. Task set
Task mi oi ODi Di Ti

τ1 (3, 3) (1) (7) 10 10

τ2 (3, 2) (1) (1) 15 15

4.3 The SIM Architecture

The SIM architecture is one of the architectures sup-

ported in RT-Est. The primary difference between the SIM

architecture and other architectures such as x86 and ARM

is that the SIM architecture is developed for simulating

real-time scheduling algorithms. The SIM architecture has

an aspect of debugging tool because we use architecture-

independent code to other architectures for developing RT-

Est easily.

RT-Est visualizes simulation results for real-time

scheduling. Figure 6 visualizes the simulation result in

RMWP on uniprocessors. The simulation length is 30 and

the parameter of task set is shown in Table 3. In this exam-

ple, each task has two mandatory parts and one optional

part, so that the optional deadline of each task is calcu-

lated by OD1

k = max(0, Dk − m2

k −
∑

i<k ⌈Tk/Ti⌉mi)
in Table 1. The parameter of each task is represented as

τi = ((mi), (oi), (ODi), Di, Ti). Each part in the practi-

cal imprecise computation model is drawn as each pattern,

respectively. The value drawn in the left of each task execu-

tion is the processor ID. Since the system has one processor,

all values of processor ID are 1. Thanks to this tool, devel-

opers can check simulation results easily if they are correct.

Now we explain how to record scheduling events to gen-

erate Figure 6. When a job releases, the events of release,

deadline, and optional deadline are recorded. When a job

completes its mandatory part, the event of completing the

mandatory part is recorded in end_mandatory function.

When a job completes its optional part, the event of com-

pleting the optional part is recorded in end_optional

function. Note that if a job terminates its optional part at

its optional deadline, this event is not recorded. When a job

completes its last mandatory part (e.g., the second manda-

tory part in Figure 6), the event of completing the job is

recorded in end_job function.

5. Related Work

5.1 Imprecise Algorithms

There are some real-time scheduling algorithms based on

imprecise computation.

Mandatory-First with Earliest Deadline (M-FED) [3] is

based on EDF [18] in the imprecise computation model

[17]. M-FED does not have the processing to terminate

or complete the optional part. Optimization with Least-

Utilization (OPT-LU) [1] requires the WCET of each op-

tional part in the imprecise computation model. However,

robots run in unknown environments, so that the WCET of

each optional part becomes unknown. Therefore, M-FED

and OPT-LU are not adapted to the practical imprecise com-

putation model.

Mandatory-First with Wind-up Part (M-FWP) [13, 15]

and Slack Stealer for Optional Parts (SS-OP) [14] were

proposed to support the practical imprecise computation

model. However, M-FWP and SS-OP are too complex to

be adapted to multiprocessors because M-FWP and SS-OP

calculate the assignable time of each optional part dynam-

ically. In addition, such processing may cause high over-

head.

In contrast, RMWP [5], G-RMWP [6], and P-RMWP [8]

does not calculate the assignable time of each optional part

dynamically, thanks to the optional deadline, so that RMWP

can reduce the runtime overhead, compared to M-FWP and

SS-OP.

5.2 Imprecise Operating Systems

There are some operating systems that actually imple-

ment the imprecise computation model [17].



The Concord system [17] supports the following meth-

ods in a client server structure: a milestone method and a

sieve function method. The milestone method is used for

the imprecise computation model with monotone optional

parts. The milestone method saves intermediate results

while an optional part is executed, so that the best result

is immediately available on termination. The sieve func-

tion method is used for the imprecise computation model

that has optional parts with 0/1 constraints. The sieve func-

tion method requires that the underlying operating system

be capable of telling applications the amount of available

computation time. Thus, the implementation of the method

strongly depends on what scheduling algorithm is used by

the operating system.

The imprecise computation server [11] was developed to

support monotone imprecise computations in as much the

same structure as the Concord system. The imprecise com-

putation server was implemented on top of the RT-Mach

operating system [25]. The drawback of these checkpoint

mechanisms is that the performance of the system can be

degraded substantially, if overheads of checkpoints are not

negligibly low.

In the ARTS system [24], a real-time object is defined

with a time fence, which can be used to implement the im-

precise computation model. The time fence specifies that

a certain operation is executed within a predefined time.

If this constraint cannot be met at run time, a handler is

invoked. The handler should be implemented by the de-

veloper of the object to maintain its consistency on termi-

nation. Using this mechanism, the imprecise computation

model can also be implemented effectively by making the

handler to return the best result on termination.

These operating systems support the imprecise computa-

tion model and do not support the practical imprecise com-

putation model [12].

RT-Frontier [14] was developed to support the practical

imprecise computation model. However, RT-Frontier only

supports uniprocessor scheduling such as M-FWP and SS-

OP. In order to improve the quality of result and achieve

high throughput, imprecise real-time applications usually

require multiprocessors, so that RT-Frontier is not adapted

to them.

RT-Est [7] was developed to support semi-fixed-priority

scheduling in the practical imprecise computation model on

multiprocessors. Therefore, RT-Est can support imprecise

real-time applications requiring multiprocessors.

6. Conclusion and Future Research Direction

We introduced the research overview of the practical

imprecise computation model to achieve imprecise real-

time applications. We explained a new priority assign-

ment policy for the practical imprecise computation model,

called semi-fixed-priority scheduling, and some semi-fixed-

priority scheduling algorithms on uniprocessors and multi-

processors. The RT-Est real-time operating system was de-

veloped to implement semi-fixed-priority scheduling algo-

rithms. In addition, we explained programming paradigms

and programming examples for the practical imprecise

computation model. We developed the SIM architecture

for simulating real-time scheduling and visualizing simu-

lation results. We believe that RT-Est is widely used in the

research and development of imprecise real-time applica-

tions.

We give some future research directions as follows.

• We will present optimal multiprocessor semi-fixed-

priority scheduling. Optimal multiprocessor real-

time scheduling can use full processor utilization.

We believe that optimal multiprocessor semi-fixed-

priority scheduling can improve the quality of result

to make use of the remaining processor utilization

compared to non-optimal multiprocessor semi-fixed-

priority scheduling such as G-RMWP and P-RWMP.

• We will analyze the optional deadline to achieve the

best reward (quality of result) in semi-fixed-priority

scheduling. We proposed one of the approaches to cal-

culate the optional deadline in order to avoid deadline

miss if each task overruns, described in Section 3. If

we use different approaches to calculate the optional

deadline, the task may improve the reward.

• We will analyze overhead-aware schedulability of

semi-fixed-priority scheduling. Generally, the over-

heads of real-time scheduling are mainly release,

scheduler, context switch, and tick [4]. We consider

how to set the overhead-aware optional deadline of

each task. The optional deadline is set to the time as

late as possible if the task does not miss its deadline. If

the WCET of each task is underestimated, the task is

overrunning, which may cause its deadline miss. Also,

the overhead-aware reward should be investigated to

clarify the difference between theory and practice. If

these overheads are high, the overhead-aware reward

becomes low.

• We will present the de facto standard for implementing

the practical imprecise computation model. We intro-

duce one of the approaches to implement the practi-

cal imprecise computation model in RT-Est. We also

try to implement the practical imprecise computation

model for other approaches and compare the effective-

ness of existing approaches with considering usability,

versatility, portability, and extendibility. The standard

programming paradigms and APIs for the practical im-

precise computation model are interesting.



Acknowledgement

This research was supported in part by CREST, JST. This

research was also supported in part by Grant in Aid for the

JSPS Fellows.

References

[1] H. Aydin, R. Melhem, D. Mosse, and P. Mejfa-Alvarez.

Optimal Reward-Based Scheduling of Periodic Real-Time

Tasks. In Proceedings of the 20th IEEE Real-Time Systems

Symposium, pages 79–89, Dec. 1999.

[2] T. P. Baker. An Analysis of Fixed-Priority Schedulability on

a Multiprocessor. Real-Time Systems, 32(1-2):49–71, 2006.

[3] S. K. Baruah and M. E. Hickey. Competitive On-line

Scheduling of Imprecise Computations. IEEE Transactions

on Computers, 47:1027–1033, 1996.

[4] B. B. Brandenburg. SCHEDULING AND LOCKING IN

MULTIPROCESSOR REAL-TIME OPERATING SYSTEMS.

PhD thesis, The University of North Carolina at Chapel Hill,

2011.

[5] H. Chishiro, A. Takeda, K. Funaoka, and N. Yamasaki.

Semi-Fixed-Priority Scheduling: New Priority Assignment

Policy for Practical Imprecise Computation. In Proceedings

of the 16th IEEE International Conference on Embedded

and Real-Time Computing Systems and Applications, pages

339–348, Aug. 2010.

[6] H. Chishiro and N. Yamasaki. Global Semi-fixed-priority

Scheduling on Multiprocessors. In Proceedings of the 17th

IEEE International Conference on Embedded and Real-

Time Computing Systems and Applications, pages 218–223,

Aug. 2011.

[7] H. Chishiro and N. Yamasaki. RT-Est: Real-Time Operating

System for Semi-Fixed-Priority Scheduling Algorithms. In

Proceedings of the 2011 International Symposium on Em-

bedded and Pervasive Systems, pages 358–365, Oct. 2011.

[8] H. Chishiro and N. Yamasaki. Experimental Evaluation

of Global and Partitioned Semi-Fixed-Priority Schedul-

ing Algorithms on Multicore Systems. In Proceed-

ings of the 15th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed

Computing, pages 127–134, Apr. 2012.

[9] H. Chishiro and N. Yamasaki. Semi-Fixed-Priority

Scheduling with Multiple Mandatory Parts. In Pro-

ceedings of the 16th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed

Computing, June 2013.

[10] N. Guan, M. Stigge, W. Yi, and G. Yu. New Response Time

Bounds for Fixed Priority Multiprocessor Scheduling. In

Proceedings of the 30th IEEE Real-Time Systems Sympo-

sium, pages 387–397, Dec. 2009.

[11] D. Hull, W. Feng, and J. W.-S. Liu. Enhancing the Perfor-

mance and Dependability of Real-Time Systems. In Pro-

ceedings of the IEEE International Computer Performance

and Dependability Symposium, pages 174–182, Apr. 1995.

[12] H. Kobayashi. REAL-TIME SCHEDULING OF PRACTI-

CAL IMPRECISE TASKS UNDER TRANSIENT AND PER-

SISTENT OVERLOAD. PhD thesis, Keio University, Mar.

2006.

[13] H. Kobayashi and N. Yamasaki. An Integrated Approach for

Implementing Imprecise Computations. IEICE transactions

on information and systems, 86(10):2040–2048, 2003.

[14] H. Kobayashi and N. Yamasaki. RT-Frontier: A Real-Time

Operating System for Practical Imprecise Computation. In

Proceedings of the 10th IEEE Real-Time and Embedded

Technology and Applications Symposium, pages 255–264,

May 2004.

[15] H. Kobayashi, N. Yamasaki, and Y. Anzai. Scheduling Im-

precise Computations with Wind-up Parts. In Proceedings of

the 18th International Conference on Computers and Their

Applications, pages 232–235, Mar. 2003.

[16] P. Kritsada and K. O. Yang. Sensor Fusion by Neural

Network and Wavelet Analysis for Drill-Wear Monitoring.

Journal of Solid Mechanics and Materials Engineering,

4(6):749–760, 2010.

[17] K. Lin, S. Natarajan, and J. W. S. Liu. Imprecise Results:

Utilizing Partial Computations in Real-Time Systems. In

Proceedings of the 8th IEEE Real-Time Systems Symposium,

pages 210–217, Dec. 1987.

[18] C. Liu and J. Layland. Scheduling Algorithms for Multipro-

gramming in a Hard Real-Time Environment. Journal of the

ACM, 20:46–61, 1973.

[19] I. Mizuuchi, Y. Nakanishi, Y. Sodeyama, Y. Namiki,

T. Nishino, N. Muramatsu, J. Urata, K. Hongo, T. Yoshikai,

and M. Inaba. Advanced Musculoskeletal Humanoid Kojiro.

In Proceedings of the 2007 IEEE-RAS International Confer-

ence on Humanoid Robots, pages 294–299, Nov. 2007.

[20] K. Shikano. Evaluation of LPC spectral matching measures

for phonetic unit recognition. Technical Report CMU-CS-

86-108, Carnegie Mellon University, 1986.

[21] A. Shintani, A. Ogihara, Y. Yamaguchi, Y. Hayashi, and

K. Fukunaga. Speech Recognition Using HMM Based on

Fusion of Visual and Auditory Information. IEICE Transac-

tions on Fundamentals of Electronics, Communications and

Computer Sciences, 77(11):1875–1878, 1994.

[22] T. Taira, N. Kamata, and N. Yamasaki. Design and Imple-

mentation of Reconfigurable Modular Robot Architecture.

In Proceedings of the 2005 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pages 3566–3571,

Aug., 2005.

[23] K. Takahashi. Sensing System Integrating Audio and Vi-

sual Information : Concrete Examples of Sensor Fusion Sys-

tems. Journal of the Institute of Electronics, Information,

and Communication Engineers, 79(2):155–161, 1996.

[24] H. Tokuda and C. W. Mercer. ARTS: A Distributed Real-

Time Kernel. ACM Operating Systems Review, 23(3):29–53,

July 1989.

[25] H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: To-

wards a Predictable Real-Time System. In Proceedings of

USENIX Mach Workshop, pages 73–82, Oct. 1990.

[26] J. Vuillemin. A data structure for manipulating priority

queues. Communications of the ACM, 21:309–315, Apr.

1978.


