Practical Imprecise Computation Model: Theory and Practice

Hiroyuki Chishiro and Nobuyuki Yamasaki

Department of Information and Computer Science, Keio University, Yokohama, Japan
{chishiro,yamasaki} @ny.ics.keio.ac.jp

Abstract

We introduce the research overview of the practical im-
precise computation model to achieve imprecise real-time
applications. The practical imprecise computation model
has multiple mandatory parts as real-time parts and mul-
tiple optional parts as non-real-time parts. We explain a
new concept of real-time scheduling in the practical impre-
cise computation model, called semi-fixed-priority schedul-
ing. In addition, we explain a semi-fixed-priority schedul-
ing algorithm, called Rate Monotonic with Wind-up Part
(RMWP). RMWP schedules each part in the practical im-
precise computation model in Rate Monotonic order. We
also introduce a real-time operating system for semi-fixed-
priority scheduling algorithms, called RT-Est. We describe
programming paradigms for the practical imprecise com-
putation model in RT-Est. RT-Est has the SIM architecture
for simulating real-time scheduling algorithms and the vi-
sualization tool for drawing simulation results. Finally we
give future research directions for the practical imprecise
computation model in theory and practice.

1. Introduction

Real-time applications have been encountering over-
loaded conditions in dynamic environments. For example,
autonomous mobile robots [22, 19] run in such dynamic en-
vironments. In addition, robots perform tasks to detect and
avoid obstacles periodically by many sensors. In order to
meet the deadline of each task and support overloaded con-
ditions, an imprecise computation model [17] is presented.

The imprecise computation model has the advantage of
supporting overloaded conditions in dynamic environments,
compared to Liu and Layland’s model [18]. The important
point of the imprecise computation model is that the com-
putation in each task is split into two parts: a mandatory
part and an optional part. A mandatory part as a real-time
part affects the correctness of the result and an optional part
as a non-real-time part only affects the quality of the result.
By restricting the execution of the optional part only after

the completion of the mandatory part, imprecise real-time
applications can provide the correct output with lower qual-
ity, by terminating the optional part. Under overloaded con-
ditions, the imprecise task terminates its optional part and
generates the result with lower quality. However, an impre-
cise computation model is not practical because the termi-
nation of each optional part cannot guarantee the schedula-
bility. In order to guarantee the schedulability of the termi-
nation of the optional part, a practical imprecise computa-
tion model [12] is presented.

The practical imprecise computation model has multi-
ple mandatory parts as real-time parts and multiple optional
parts as non-real-time parts. The execution flow of the prac-
tical imprecise task is that mandatory parts and optional
parts are executed one after the other. Note that the first
and last parts are mandatory parts. After executing optional
parts, the practical imprecise computation model executes
mandatory parts to terminate or complete the processing of
optional parts. An example of mandatory part is to output
the result to the actuator for controlling robots.

We have performed the research and development of
the practical imprecise computation model. Now we intro-
duce the research overview of the practical imprecise com-
putation model. We explain a new concept of real-time
scheduling in the practical imprecise computation model,
called semi-fixed-priority scheduling [5]. In addition, we
explain a semi-fixed-priority scheduling algorithm, called
Rate Monotonic with Wind-up Part (RMWP) [5]. RMWP
schedules each part in the practical imprecise computation
model in Rate Monotonic (RM) order [18]. We also in-
troduce a real-time operating system for semi-fixed-priority
scheduling algorithms, called RT-Est [7]. We describe pro-
gramming paradigms for the practical imprecise computa-
tion model in RT-Est. RT-Est has the SIM architecture for
simulating real-time scheduling algorithms and the visual-
ization tool for drawing simulation results. Finally we give
future research directions for the practical imprecise com-
putation model in theory and practice.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces system model for the practical imprecise
computation model. Section 3 explains semi-fixed-priority

’/ Discarded ’/ Discarded
L] I Completed ﬂ Completed
|—Tcrminatcd |—Tcrminatcd

First mandatory part @ First optional part Second mandatory part
H Second optional part Third mandatory part

Figure 1. Practical imprecise task with three
mandaotry parts and two optional parts

scheduling. Section 4 introduces a real-time operating sys-
tem for semi-fixed-priority scheduling algorithms, called
RT-Est. Section 5 compares our work with related work.
Section 6 offers conclusion and gives future research direc-
tions.

2. System Model

2.1 Practical
Model

Imprecise = Computation

The practical imprecise computation model [12] has
multiple mandatory parts and multiple optional parts.
Thanks to the following mandatory parts after executing
optional parts, each practical imprecise task guarantees the
schedulability of the processing to output the result. Figure
1 shows the practical imprecise task with three mandatory
parts and two optional parts. Each practical imprecise task
has three execution paths for optional part: discarded, com-
pleted, and terminated. Therefore, each practical imprecise
task can output the proper quality of result without deadline
miss due to the overrun of the optional part.

This paper assumes that the system has M identical pro-
cessors and a task set I' consisting of n periodic tasks with
implicit deadlines. Task 7; is represented as the follow-
ing tuple ((m;), (0;), (OD;), D;, T;): where m; is the to-
tal Worst Case Execution Time (WCET) of the mandatory
parts, o; is the total Required Execution Time (RET) of
the optional parts, OD; is the group of the relative op-
tional deadline, D, is the relative deadline, and T is the
period. The total WCET of mandatory parts of task 7; is
m; = 7t m!, where n™ is the number of mandatory
parts and m/! is the WCET of the /*"* mandatory part. On the

other hand, the total RET of optional parts is 0; = Z?:l o,
where n¢ is the number of optional parts and o! is the RET
of the /" mandatory part. The group of the relative optional

deadline of task 7; is OD; = {OD!,0D?,..,0D"},
where OD! is the ' relative optional deadline of task 7;.
Since the optional deadline is a time to terminate an op-
tional part, the number of optional deadlines is equal to that

of optional parts nJ. The detail of the optional deadline is

Task T

Task T.

A

Task T;

'

|
] ;
0 OD:s OD; tme
First mandatory part @ First optional part Second mandatory part
E Second optional part Third mandatory part

Figure 2. Optional deadline

shown in Subsection 2.2. The relative deadline D; of each
task 7; is equal to its period T;. The j** instance of task 7;
is called job 7; ;. The utilization of each task is defined as
U; = m;/T;. The reason why U; does not include o; is be-
cause the optional part of task 7; is a non-real-time part, so
that completing it is not relevant to scheduling the task set
successfully. Hence, the system utilization within n tasks
can be defined as U =), U; /M. All tasks are ordered by
increasing their periods and task 7; has the shortest period
in the task set.

2.2 Optional Deadline

An optional deadline is defined as a time when an op-
tional part is terminated and a following mandatory part is
released. Each following mandatory part is ready to be ex-
ecuted after each optional deadline and can be completed
if each mandatory part is completed by each optional dead-
line. Each optional deadline is set to the time as late as
possible to expand the executable range of each optional
part. The following mandatory part must not miss its dead-
line if there is idle processor time or lower priority tasks
are executed between the time when the mandatory part is
completed and the following mandatory part is released. If
each task does not complete its mandatory part until its cor-
responding optional deadline, the task may miss its dead-
line. Thanks to this definition, semi-fixed-priority schedul-
ing does not degrade the schedulability compared to fixed-
priority scheduling [5, 6].

Figure 2 shows the behavior of optional deadlines. Solid
up arrow, solid down arrow, and dotted down arrow repre-
sent release time, deadline, and optional deadline, respec-
tively. Now we describe the execution of each task.

e Task 7 executes the first mandatory part. When task
71 completes the first mandatory part, task 7, executes
the first optional part. When O D1 expires, task 71 ter-
minates the first optional part and executes the second

Table 1. Optional deadline

Algorithm Optional Deadline with Two Mandatory Parts Optional Deadline with Multiple Mandatory Parts
. np’ —] Ty] _ o

RMWP OD; = max(0, D —m3 — >, [%-‘ m;) [5] oD} = max(0, D) My, ; ZZ<‘§ [Tﬂ mi) (L=ng) [9]
‘ max(O,ODkJrl — mlfl — olfl) (I <n?)
OD.—mn;“n) (k< Mandl=n?)
0, Dy, — m? k<M max(0, Dy, —my, = ;

G-RMWP OD;, = max(0, D mé) 2 (k=00 [6] | ODj, = max(0, Dy —m,* — I}) (k> Mandl=n2) [
max (0, Dy —mi — Iy) (k> M) R E LY k

max(0, ODk+ — mlj — olj) (I <n)

Table 2. Least upper bound

Algorithm || Imprecise | Multiprocessor Least Upper Bound
RMWP v Uy = n(2Y/™ — 1) [5]
G-RMWP v v | U = 2 (1 — Unax) + Umaz (6]
RM U, = n(2Y/7™ — 1) [18]
G-RM \/ Ulub = %(1 - U’maw) + U’maw [2]

mandatory part. After completing the second manda-
tory part, task 7; executes the second optional part.
When OD% expires, task 7 executes the third manda-
tory part.

e Task 7o executes the first mandatory part and then the
first optional part. When task 7o completes the first op-
tional part, OD3 does not expire, so that task 7o sleeps
until ODJ. Next task 7 executes the second manda-
tory part and the second optional part and sleeps until
OD3. After OD3, task 72 executes the third manda-
tory part.

e Task 73 does not execute the first optional part because
task 73 does not complete the first mandatory part un-
til OD3. Since task 73 does not complete the second
mandatory part until O D3, task 73 does not execute the
second optional part and executes the third mandatory
part.

3. Semi-Fixed-Priority Scheduling

Semi-fixed-priority scheduling [5] is defined as part-
level fixed-priority scheduling in the practical imprecise
computation model. That is to say, semi-fixed-priority
scheduling fixes the priority of each part in the practical im-
precise task and changes the priority of each practical im-
precise task only in the two cases: (i) when the task com-
pletes its mandatory part and executes its following optional
part; (ii) when the task terminates or completes its optional
part and executes the following mandatory part.

We have proposed three semi-fixed-priority schedul-
ing algorithms for uniprocessor scheduling, multiprocessor
global scheduling, and multiprocessor partitioned schedul-
ing, called Rate Monotonic with Wind-up Part (RMWP)
[5], Global Rate Monotonic with Wind-up Part (G-RMWP)

[6], and Partitioned Rate Monotonic with Wind-up Part (P-
RMWP) [8]. RMWP is adapted to uniprocessor schedul-
ing, G-RMWP is adapted to multiprocessor global schedul-
ing, and P-RMWP is adapted to multiprocessor partitioned
scheduling. Global scheduling permits tasks to migrate
among processors dynamically and partitioned scheduling
assigns tasks to processors statically.

RMWP-based schedulers including RMWP, G-RMWP,
and P-RMWP manage tasks in a real-time queue, a non-
real-time queue, and a sleep queue. A real-time queue man-
ages tasks which are ready to execute their mandatory parts.
A non-real-time queue manages tasks which are ready to
execute their optional parts. RMWP and P-RMWP sched-
ule tasks in each queue in RM order. In contrast, G-RMWP
schedules tasks in each queue in Global Rate Monotonic (G-
RM) order. A sleep queue manages tasks which wait until
next releases when they complete their jobs or next optional
deadlines when they complete their previous optional parts.

Table 1 shows optional deadlines with two and multi-
ple mandatory parts in RMWP and G-RMWP. The optional
deadline of each task is statically calculated by these equa-
tions before executing tasks. The worst case interference
time 1 1 in G-RMWP is the same as that in G-RM, so that
the detail of I , 1s shown in [10]. P-RMWP uses equations
of optional deadlines in RMWP after assigning tasks to pro-
CEessors.

Table 2 shows the least upper bounds of RMWP, G-
RMWP, RM, and G-RM. The least upper bounds of RMWP
and G-RMWP with multiple mandatory parts are the same
as those with two mandatory parts, respectively. In addition,
the partitioning test of P-RMWP uses the least upper bound
of RMWP. In G-RMWP and G-RM, U, is the maximum
utilization of all tasks in each task set. We analyzed that the
least upper bounds of RMWP and G-RMWP are the same
as those of RM and G-RM, respectively.

Environment Configuration

Architecture | Processor
P SMP Global
. < SIM_> | | <SMP Partitioned >
Scheduler Configuration
{ Algorithm | | Tie-Breaking : | Task Queue '

Task Set Configuration

Task Set Sort

a, P s

Figure 3. Congiurations of RT-Est

4. The RT-Est Real-Time Operating System

The RT-Est real-time operating system [7] has been
developed from scratch to implement semi-fixed-priority
scheduling algorithms in the practical imprecise computa-
tion model. First of all, we describe the configurations of
RT-Est. Next we explain programming paradigms of the
practical imprecise computation model. Then we introduce
the SIM architecture for simulating real-time scheduling
and drawing simulation results.

4.1 Configurations

RT-Est has many configurations to do many experiments
including simulation studies and experimental evaluations.
The primary motivation of supporting these configurations
in RT-Est is to investigate the effectiveness of semi-fixed-
priority scheduling in theory and practice. Using these con-
figurations, developers can perform many experiments in
many environments easily.

Figure 3 shows the configurations of RT-Est. There are
three main configurations: an environment configuration, a
scheduler configuration, and a task set configuration.

The environment configuration sets architectures (x86,
ARM, and SIM) and processors (Uniprocessor, SMP
Global, and SMP Partitioned). x86 is Intel and AMD’s
processors and ARM is ARM’s processors. The detail of
SIM is shown in Subsection 4.3. Uniprocessor is a sin-

gle processor, SMP Global is SMP with global scheduling,
and SMP Partitioned is SMP with partitioned scheduling.
SMP Partitioned includes the following heuristic policies:
first-fit, next-fit, best-fit, and worst-fit.

The scheduler configuration sets algorithms (RM, EDF,
and RMWP), tie-breaking rules (None, Task ID, and Ear-
liness), and task queues (O(1), Dlist, and Bheap). RM,
EDF, and RMWP are RM, EDF [18], and RMWP algo-
rithms, respectively. None does not perform tie-breaking.
Task ID is that the smaller task ID has the higher prior-
ity. Here, the definition of earliness is the subtraction of
the finishing time of the previous job (if it exists) from cur-
rent time, so that smaller earliness has higher cache affinity.
Therefore, Earliness is that the smaller earliness has the
higher priority. O(1) is similar to the O(1) scheduler in the
old version of the Linux kernel. Dlist is the double circular
linked list to manage tasks and Bheap is the binomial heap
queue [26] to manage tasks.

The task set configuration sets task sets (General, Har-
monic, and User) and sorting policies (NoSort, IncPeriod,
and DecULtil). General is that task sets have no relationship
with each other. Harmonic is that periods of tasks are in-
teger multiples of each other, and User is user defined task
set. NoSort does not sort task sets, IncPeriod sorts task
sets by increasing periods, and DecUtil sorts task sets by
decreasing utilizations.

4.2 Programming Paradigms

In this subsection, we introduce programming paradigms
of the practical imprecise computation model in C language.
Using these programming paradigms for a reference, devel-
opers can develop imprecise real-time applications easily.

Figure 4 shows the pseudo code of the practical impre-
cise computation model. This practical imprecise task has
three mandatory parts and two optional parts.

Each task saves its context including general purpose
registers and the program counter in save_context
function. If save_context function is called via the
timer interrupt routine to terminate the optional part at
the optional deadline, save_context function returns
MANDATORY2. Otherwise save_context function re-
turns MANDATORY.

Each task executes the first mandatory part in
exec_mandatory function. After completing its manda-
tory part, each task calls end_mandat ory function. If the
return value of end_madnatory function is DISCARD,
each task discards its optional part and executes the
following mandatory part in exec_mandatory2 func-
tion. Otherwise each task executes the first optional
part in exec_optional function. If each task com-
pletes its optional part, each task calls end_optional
function and executes the following mandatory part in

part = save_context();
switch (part) {
case MANDATORY:
/* execute the first mandatory part =/
exec_mandatory () ;
res = end_mandatory();
if (res != DISCARD) {
/* execute the first optional part =/
exec_optional () ;
/* wait until the first optional deadline */
end_optional () ;
}
case MANDATORY2:
/* execute the second mandatory part x/
exec_mandatory2 () ;
res = end_mandatory();
if (res != DISCARD) {
/+ execute the second optional part =*/
exec_optional2();
/+ wait until the second optional deadline x/
end_optional () ;
}
case MANDATORY3:
/+ execute the third mandatory part =/
exec_mandatory3();
}
end_job () ;

Figure 4. Pseudo code of the practical impre-
cise computation model

exec_mandatory?2 function. If each task terminates
its optional part at its optional deadline, the scheduler re-
sumes its context and calls save_context function. In
this case, the return value of save_context function is
MANDATORY2, so that the resumed task executes the sec-
ond mandatory part in exec_mandatory?2 function. In
a similar way, each task executes the second optional part
in exec_optional?2 function and the third mandatory
part in exec_mandatory3 function. After completing
the third mandatory part, each task calls end_job func-
tion to complete its job.

Figure 5 shows a programming example of lip reading
task to analyze what a speaker says [23]. There are three
mandatory parts and two optional parts as well as Figure 4.

In exec_mandatory function, the task gets the visual
information from camera in get_visual_info
function and analyzes the visual information in
analyze_visual_info function. There are some
metrics to read the lip: the width of the lip, the height
of the lip, and the variation of the height of the lip. In
analyze_visual_info function, one of the metrics is
executed to generate the result with low quality.

In order to improve the quality of result for ana-
lyzing visual information, exec_optional func-
tion calls analyze_visual_info2 function and
analyze_visual_info3 function. These func-

struct info *visual_info, xauditory_info;

void exec_mandatory (void)

{
visual_info = get_visual_info();
analyze_visual_info(visual_info);

}

void exec_optional (void)

{
analyze_visual_info2 (visual_info);
analyze_visual_info3(visual_info);

}

void exec_mandatory2 (void)

{
auditory_info = get_auditory_info();
analyze_auditory_info (auditory_info);

}

void exec_optional2 (void)
{
analyze_auditory_info2 (auditory_info);

}

void exec_mandatory3 (void)
{
do_sensor_fusion(visual_info, auditory_info);

}

Figure 5. Programming example of lip read-
ing task

tions perform other metrics except the metric in
analyze_visual_info function. Note that the
task may terminate its execution while running in these
functions and resume its context from save_context
function in Figure 4.

In exec_mandatory2 function, the task
gets the auditory information from microphone in
get_auditory_info function and analyzes the au-
ditory information in analyze_auditory_info
function. There are also some metrics to analyze
auditory information: log power spectrum and lin-
ear predictive coding-derived mel-cepstrum [20]. In
analyze_auditory_info function, one of the
metrics is also executed to generate the result with low
quality.

In order to improve the quality of result for ana-
lyzing auditory information, exec_optional?2 func-
tion calls analyze_auditory_info2 function. This
function performs other metrics except the metric
in analyze_auditory_info function as well as
exec_optional function.

In exec_mandatory3 function, the task calls
do_sensor_fusion function to integrate the analysis
results of visual and auditory information by neural network
[16] or hidden markov model [21].

> o
&

= ((3,3),(1),(7),10,10)

%

|
|
Ave

20 30

™ = ((3,2), (1), (1),15,15)
0 20 30
7i = ((ma), (0:), (ODy), Dy, Tr)
First Mandatory Part L2Z2277] Release 17
Second Mandatory Part Deadline |,

First Optional PartBEREER Optional Deadline

Figure 6. The simulation result in RMWP on uniprocessors

Table 3. Task set
Task mg 0; ODi Dz‘ Ti
1 3,3) | (D 7 10 | 10
T2 (3,2) | (1) (1) 15 | 15

4.3 The SIM Architecture

The SIM architecture is one of the architectures sup-
ported in RT-Est. The primary difference between the SIM
architecture and other architectures such as x86 and ARM
is that the SIM architecture is developed for simulating
real-time scheduling algorithms. The SIM architecture has
an aspect of debugging tool because we use architecture-
independent code to other architectures for developing RT-
Est easily.

RT-Est visualizes simulation results for real-time
scheduling. Figure 6 visualizes the simulation result in
RMWP on uniprocessors. The simulation length is 30 and
the parameter of task set is shown in Table 3. In this exam-
ple, each task has two mandatory parts and one optional
part, so that the optional deadline of each task is calcu-
lated by OD}, = max (0, D, — mg — >, 1, [T/Ty] m;)
in Table 1. The parameter of each task is represented as
7 = ((my), (0;), (OD;), D;, T;). Each part in the practi-
cal imprecise computation model is drawn as each pattern,
respectively. The value drawn in the left of each task execu-
tion is the processor ID. Since the system has one processor,
all values of processor ID are 1. Thanks to this tool, devel-
opers can check simulation results easily if they are correct.

Now we explain how to record scheduling events to gen-
erate Figure 6. When a job releases, the events of release,
deadline, and optional deadline are recorded. When a job
completes its mandatory part, the event of completing the
mandatory part is recorded in end_mandatory function.
When a job completes its optional part, the event of com-
pleting the optional part is recorded in end_optional
function. Note that if a job terminates its optional part at
its optional deadline, this event is not recorded. When a job

completes its last mandatory part (e.g., the second manda-
tory part in Figure 6), the event of completing the job is
recorded in end__job function.

5. Related Work

5.1 Imprecise Algorithms

There are some real-time scheduling algorithms based on
imprecise computation.

Mandatory-First with Earliest Deadline (M-FED) [3] is
based on EDF [18] in the imprecise computation model
[17]. M-FED does not have the processing to terminate
or complete the optional part. Optimization with Least-
Utilization (OPT-LU) [1] requires the WCET of each op-
tional part in the imprecise computation model. However,
robots run in unknown environments, so that the WCET of
each optional part becomes unknown. Therefore, M-FED
and OPT-LU are not adapted to the practical imprecise com-
putation model.

Mandatory-First with Wind-up Part (M-FWP) [13, 15]
and Slack Stealer for Optional Parts (SS-OP) [14] were
proposed to support the practical imprecise computation
model. However, M-FWP and SS-OP are too complex to
be adapted to multiprocessors because M-FWP and SS-OP
calculate the assignable time of each optional part dynam-
ically. In addition, such processing may cause high over-
head.

In contrast, RMWP [5], G-RMWP [6], and P-RMWP [8]
does not calculate the assignable time of each optional part
dynamically, thanks to the optional deadline, so that RMWP
can reduce the runtime overhead, compared to M-FWP and
SS-OP.

5.2 Imprecise Operating Systems

There are some operating systems that actually imple-
ment the imprecise computation model [17].

The Concord system [17] supports the following meth-
ods in a client server structure: a milestone method and a
sieve function method. The milestone method is used for
the imprecise computation model with monotone optional
parts. The milestone method saves intermediate results
while an optional part is executed, so that the best result
is immediately available on termination. The sieve func-
tion method is used for the imprecise computation model
that has optional parts with 0/1 constraints. The sieve func-
tion method requires that the underlying operating system
be capable of telling applications the amount of available
computation time. Thus, the implementation of the method
strongly depends on what scheduling algorithm is used by
the operating system.

The imprecise computation server [11] was developed to
support monotone imprecise computations in as much the
same structure as the Concord system. The imprecise com-
putation server was implemented on top of the RT-Mach
operating system [25]. The drawback of these checkpoint
mechanisms is that the performance of the system can be
degraded substantially, if overheads of checkpoints are not
negligibly low.

In the ARTS system [24], a real-time object is defined
with a time fence, which can be used to implement the im-
precise computation model. The time fence specifies that
a certain operation is executed within a predefined time.
If this constraint cannot be met at run time, a handler is
invoked. The handler should be implemented by the de-
veloper of the object to maintain its consistency on termi-
nation. Using this mechanism, the imprecise computation
model can also be implemented effectively by making the
handler to return the best result on termination.

These operating systems support the imprecise computa-
tion model and do not support the practical imprecise com-
putation model [12].

RT-Frontier [14] was developed to support the practical
imprecise computation model. However, RT-Frontier only
supports uniprocessor scheduling such as M-FWP and SS-
OP. In order to improve the quality of result and achieve
high throughput, imprecise real-time applications usually
require multiprocessors, so that RT-Frontier is not adapted
to them.

RT-Est [7] was developed to support semi-fixed-priority
scheduling in the practical imprecise computation model on
multiprocessors. Therefore, RT-Est can support imprecise
real-time applications requiring multiprocessors.

6. Conclusion and Future Research Direction

We introduced the research overview of the practical
imprecise computation model to achieve imprecise real-
time applications. We explained a new priority assign-
ment policy for the practical imprecise computation model,

called semi-fixed-priority scheduling, and some semi-fixed-
priority scheduling algorithms on uniprocessors and multi-
processors. The RT-Est real-time operating system was de-
veloped to implement semi-fixed-priority scheduling algo-
rithms. In addition, we explained programming paradigms
and programming examples for the practical imprecise
computation model. We developed the SIM architecture
for simulating real-time scheduling and visualizing simu-
lation results. We believe that RT-Est is widely used in the
research and development of imprecise real-time applica-
tions.
We give some future research directions as follows.

e We will present optimal multiprocessor semi-fixed-
priority scheduling. Optimal multiprocessor real-
time scheduling can use full processor utilization.
We believe that optimal multiprocessor semi-fixed-
priority scheduling can improve the quality of result
to make use of the remaining processor utilization
compared to non-optimal multiprocessor semi-fixed-
priority scheduling such as G-RMWP and P-RWMP.

e We will analyze the optional deadline to achieve the
best reward (quality of result) in semi-fixed-priority
scheduling. We proposed one of the approaches to cal-
culate the optional deadline in order to avoid deadline
miss if each task overruns, described in Section 3. If
we use different approaches to calculate the optional
deadline, the task may improve the reward.

e We will analyze overhead-aware schedulability of
semi-fixed-priority scheduling. Generally, the over-
heads of real-time scheduling are mainly release,
scheduler, context switch, and tick [4]. We consider
how to set the overhead-aware optional deadline of
each task. The optional deadline is set to the time as
late as possible if the task does not miss its deadline. If
the WCET of each task is underestimated, the task is
overrunning, which may cause its deadline miss. Also,
the overhead-aware reward should be investigated to
clarify the difference between theory and practice. If
these overheads are high, the overhead-aware reward
becomes low.

e We will present the de facto standard for implementing
the practical imprecise computation model. We intro-
duce one of the approaches to implement the practi-
cal imprecise computation model in RT-Est. We also
try to implement the practical imprecise computation
model for other approaches and compare the effective-
ness of existing approaches with considering usability,
versatility, portability, and extendibility. The standard
programming paradigms and APIs for the practical im-
precise computation model are interesting.

Acknowledgement

This research was supported in part by CREST, JST. This
research was also supported in part by Grant in Aid for the
JSPS Fellows.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

[11]

H. Aydin, R. Melhem, D. Mosse, and P. Mejfa-Alvarez.
Optimal Reward-Based Scheduling of Periodic Real-Time
Tasks. In Proceedings of the 20th IEEE Real-Time Systems
Symposium, pages 79—-89, Dec. 1999.

T. P. Baker. An Analysis of Fixed-Priority Schedulability on
a Multiprocessor. Real-Time Systems, 32(1-2):49-71, 2006.
S. K. Baruah and M. E. Hickey. Competitive On-line
Scheduling of Imprecise Computations. /[EEE Transactions
on Computers, 47:1027-1033, 1996.

B. B. Brandenburg. SCHEDULING AND LOCKING IN
MULTIPROCESSOR REAL-TIME OPERATING SYSTEMS.
PhD thesis, The University of North Carolina at Chapel Hill,
2011.

H. Chishiro, A. Takeda, K. Funaoka, and N. Yamasaki.
Semi-Fixed-Priority Scheduling: New Priority Assignment
Policy for Practical Imprecise Computation. In Proceedings
of the 16th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages
339-348, Aug. 2010.

H. Chishiro and N. Yamasaki. Global Semi-fixed-priority
Scheduling on Multiprocessors. In Proceedings of the 17th
IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, pages 218-223,
Aug. 2011.

H. Chishiro and N. Yamasaki. RT-Est: Real-Time Operating
System for Semi-Fixed-Priority Scheduling Algorithms. In
Proceedings of the 2011 International Symposium on Em-
bedded and Pervasive Systems, pages 358-365, Oct. 2011.
H. Chishiro and N. Yamasaki. Experimental Evaluation
of Global and Partitioned Semi-Fixed-Priority Schedul-
ing Algorithms on Multicore Systems. In Proceed-
ings of the 15th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing, pages 127-134, Apr. 2012.

H. Chishiro and N. Yamasaki. Semi-Fixed-Priority
Scheduling with Multiple Mandatory Parts. In Pro-
ceedings of the 16th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed
Computing, June 2013.

N. Guan, M. Stigge, W. Yi, and G. Yu. New Response Time
Bounds for Fixed Priority Multiprocessor Scheduling. In
Proceedings of the 30th IEEE Real-Time Systems Sympo-
sium, pages 387-397, Dec. 2009.

D. Hull, W. Feng, and J. W.-S. Liu. Enhancing the Perfor-
mance and Dependability of Real-Time Systems. In Pro-
ceedings of the IEEE International Computer Performance
and Dependability Symposium, pages 174—182, Apr. 1995.

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

H. Kobayashi. REAL-TIME SCHEDULING OF PRACTI-
CAL IMPRECISE TASKS UNDER TRANSIENT AND PER-
SISTENT OVERLOAD. PhD thesis, Keio University, Mar.
2006.

H. Kobayashi and N. Yamasaki. An Integrated Approach for
Implementing Imprecise Computations. /EICE transactions
on information and systems, 86(10):2040-2048, 2003.

H. Kobayashi and N. Yamasaki. RT-Frontier: A Real-Time
Operating System for Practical Imprecise Computation. In
Proceedings of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 255-264,
May 2004.

H. Kobayashi, N. Yamasaki, and Y. Anzai. Scheduling Im-
precise Computations with Wind-up Parts. In Proceedings of
the 18th International Conference on Computers and Their
Applications, pages 232-235, Mar. 2003.

P. Kritsada and K. O. Yang. Sensor Fusion by Neural
Network and Wavelet Analysis for Drill-Wear Monitoring.
Journal of Solid Mechanics and Materials Engineering,
4(6):749-760, 2010.

K. Lin, S. Natarajan, and J. W. S. Liu. Imprecise Results:
Utilizing Partial Computations in Real-Time Systems. In
Proceedings of the 8th IEEE Real-Time Systems Symposium,
pages 210-217, Dec. 1987.

C. Liu and J. Layland. Scheduling Algorithms for Multipro-
gramming in a Hard Real-Time Environment. Journal of the
ACM, 20:46-61, 1973.

I. Mizuuchi, Y. Nakanishi, Y. Sodeyama, Y. Namiki,
T. Nishino, N. Muramatsu, J. Urata, K. Hongo, T. Yoshikai,
and M. Inaba. Advanced Musculoskeletal Humanoid Kojiro.
In Proceedings of the 2007 IEEE-RAS International Confer-
ence on Humanoid Robots, pages 294-299, Nov. 2007.

K. Shikano. Evaluation of LPC spectral matching measures
for phonetic unit recognition. Technical Report CMU-CS-
86-108, Carnegie Mellon University, 1986.

A. Shintani, A. Ogihara, Y. Yamaguchi, Y. Hayashi, and
K. Fukunaga. Speech Recognition Using HMM Based on
Fusion of Visual and Auditory Information. /EICE Transac-
tions on Fundamentals of Electronics, Communications and
Computer Sciences, T7(11):1875-1878, 1994.

T. Taira, N. Kamata, and N. Yamasaki. Design and Imple-
mentation of Reconfigurable Modular Robot Architecture.
In Proceedings of the 2005 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 3566-3571,
Aug., 2005.

K. Takahashi. Sensing System Integrating Audio and Vi-
sual Information : Concrete Examples of Sensor Fusion Sys-
tems. Journal of the Institute of Electronics, Information,
and Communication Engineers, 79(2):155-161, 1996.

H. Tokuda and C. W. Mercer. ARTS: A Distributed Real-
Time Kernel. ACM Operating Systems Review, 23(3):29-53,
July 1989.

H. Tokuda, T. Nakajima, and P. Rao. Real-Time Mach: To-
wards a Predictable Real-Time System. In Proceedings of
USENIX Mach Workshop, pages 73-82, Oct. 1990.

J. Vuillemin. A data structure for manipulating priority
queues. Communications of the ACM, 21:309-315, Apr.
1978.

