
Scheduling Imprecise Computations with Wind-up Parts

Hidenori Kobayashi Nobuyuki Yamasaki Yuichiro Anzai
School of Science for Dept. of Information Dept. of Information

Open and Environmental Systems and Computer Science and Computer Science
Keio University Keio University Keio University

Yokohama, Kanagawa, Yokohama, Kanagawa, Yokohama, Kanagawa,
223-8522, Japan 223-8522, Japan 223-8522, Japan

kobahide@ny.ics.keio.ac.jp yamasaki@ics.keio.ac.jp anzai@ics.keio.ac.jp

Abstract

The imprecise computation model provides the abil-
ity to cope with unpredictable workloads. However,
there is no consistent way on how to terminate the
computation in its early stage. This paper describes a
novel approach for safely terminating imprecise com-
putations. First, a new logical part called wind-up part
is added to the imprecise computation model. This
wind-up part is used by application programmers to
explicitly specify any operations required to be per-
formed before its optional part is terminated. We have
also developed an algorithm based on the mandatory-
first earliest deadline first strategy to schedule compu-
tations based on the proposed model.

1 Introduction

Real-time systems used to be constructed on sim-
ple hardware and often contained one simple appli-
cation whose behavior had been well analyzed. This
lead to the development of the worst case model still
used these days. However, this worst case model is
no longer effective in modern real-time systems, be-
cause a tight upper bound on the execution time is
now harder to compute. This is due to complex hard-
ware, multiprogramming, and the move towards the
open real-time system. A looser upper bound on the
worst case execution time leads to inefficient use of re-
source, which is not tolerable in systems where cost is
an important factor. It seems that it is high time we
shifted from the worst case model to a more appropri-
ate computation model.

The new computation model requires the ability to
provide flexibility as a whole system to handle the un-
certainty in workloads so that the average resource
utilization ratio is kept high while no hard deadlines
are missed. The imprecise computation model pre-

sented in [1] meets such demands. Tasks based on
the imprecise computation model consists of two parts.
The mandatory part produces logically correct result
whereas the optional part merely enhances the quality
of the result. During overloads, optional parts are ter-
minated or discarded to adjust the system workload.

To our knowledge, no work on the imprecise com-
putation model is efficient and powerful enough to be
adopted in distributed real-time systems whose envi-
ronment is highly unpredictable. For example, in [2],
Hansson et al. describes an approach using OR-ULD
for resolving transient overloads, but it assumes that
the worst case execution time for every tasks is known
a priori. In [3], Hull et al. describes ICS, an environ-
ment for developing imprecise systems. However, it is
not clear how the method can be applied to distributed
systems.

In this paper, we first point out that unrealistic as-
sumptions made in previous imprecise systems were
accounted for by a mismatch between the imprecise
computation model and real-world applications. We
then, focusing on the way computations are termi-
nated, present a practical approach for handling un-
certainty in workloads.

2 The Imprecise Computation with
Wind-up Part Model

One of the problems that the application program-
mers encounter on using the imprecise computation
model is that there is no way to specify how the op-
tional part should be terminated. This requires that
each application be constructed to tolerate sudden ter-
mination. However, real-world applications often re-
quire some compensation codes for the early termi-
nation. Examples of such activities include preparing
for the next period if the task is periodic, transmitting

the result to other nodes, and storing the quality of the
result and other information for statistical feedbacks.
These operations are all mandatory in the sense that
they can not be discarded or terminated. Moreover, it
must not be executed before the optional part.

Since the imprecise computation model does not al-
low any mandatory portion to follow its optional por-
tion, the only choice left to the application program-
mer is to totally rely on the support provided in the
run-time system. Consequently, the constructed ap-
plication is very dependent on the system software.
Since the types of support given by operating systems
differ, it can not be ported to another systems without
modifying its structure.

Our solution to these problems is to introduce an-
other mandatory part called wind-up part . This part is
always executed after the optional part, whether the
computation is terminated, discarded, or completed.
This is because the operations needed to terminate
the computation are usually also needed for normal
completion. The advantage of this extension is that
it allows the programmer to explicitly specify exact
operations needed to terminate the application. As a
result, it is no longer fully dependent on the support
provided by the system software.

In the following, we define a task τi based on this
model with following parameters given a priori.

ri: The absolute release time of the task.

mi: The worst case execution time of the mandatory
part. This does not include the value of wi.

wi: The worst case execution time of the wind-up
part.

di: The deadline of the task relative to ri.

Ti: The period of the task.

The execution time of the optional part is intentionally
omitted from the above parameters because its vari-
ations tend to be very wide. This is because the be-
havior of the optional part is highly input driven. For
instance, in a target tracking application, the optional
part may corresponds to analyzing as many targets
as possible, while the mandatory part corresponds to
analyzing just one target which is the nearest to itself.

3 Mandatory-First with Wind-up Part
Algorithm

The drawback of using the wind-up part is that it
complicates the scheduling algorithm. The algorithm

for scheduling tasks based on the imprecise computa-
tion with wind-up part model is required to guaran-
tee that any wind-up part completes before its dead-
line. It should also ensure that no wind-up part is
executed before the optional part of the same task, as
well as scheduling the mandatory part before the op-
tional part. Additionally, the wind-up part should be
executed in a preemptive context because its execution
time can be arbitrarily long.

We have developed an algorithm called Mandatory-
First with Wind-up Part (M-FWP) which fulfills all
the requirements. It assumes that the system consists
of periodic tasks with hard deadline. Their deadlines
are assumed to be same as their period. It also as-
sumes that periodic tasks are not activated and sus-
pended dynamically.

The entire algorithm is shown in Fig. 1. It extends
the mandatory-first strategy addressed in [4]. In or-
der to meet the demands, it manages two queues in
an EDF manner. One is called the mandatory ready
queue (MQ) and holds tasks that are ready to execute
the mandatory part or the wind-up part. The other is
called the optional ready queue (OQ) and holds those
ready to execute its optional part. A ready task is
always sought first in the MQ and then in the OQ,
which forces every mandatory or wind-up part to have
a higher priority than any optional part.

The most important point in scheduling wind-up
parts is the management of processor time that can be
allocated to optional parts. For this purpose, the M-
FWP algorithm holds a variable Ri(t) called remaining
for every ready task. The value of Ri(t) represents the
maximum amount of time that is surely available to
one of the parts which is executed by task τi at time t.
The remaining should be set, in the beginning of each
part, to its worst case execution time and decreased as
the execution proceeds. However, the worst case exe-
cution time of the optional part can not be used here
because it is neither known nor guaranteed. Instead,
the value of remaining for the optional part of task τi

is set to the following:

oi(t) = di − t − wi −
∑

τm∈Γm

Rm(t)

−
∑

τo∈Γo(τi)

(Ro(t) + wo)

−
∑

τop∈Γop(τi)

Dop(rop + Top, di − wi)

−
∑

τs∈Γs

Ds(rs, di − wi) (1)

1. If one of the following event occurred:

(a) a task τi has become ready:

i. initialize its remaining to mi; and
ii. enqueue τi to MQ.

(b) a task τi has completed its mandatory part:

i. set its remaining to max(oi(t), 0);
ii. move τi from the MQ to the OQ; and
iii. subtract total of Ri(t) from the remain-

ing of the other tasks in the OQ with a
later deadline.

(c) a task τi at the head of the OQ has com-
pleted its optional part or Ri(t) has become
zero:

i. add Ri(t) to the remaining of the next
ready task in the OQ if it exists;

ii. set Ri(t) to wi; and
iii. move τi from the OQ to the MQ.

(d) a task has completed its wind-up part:

i. dequeue the task from the MQ.

2. If a ready task exists, execute the task and de-
crease its remaining. A ready task is first searched
in the MQ and then in the OQ.

3. Otherwise, do nothing.

Figure 1: The M-FWP Algorithm

where

Di(t1, t2) =
⌊

t2 − t1
Ti

⌋
(mi + wi)

+ min (mi + wi, (t2 − t1) mod Ti) ,

Γm: tasks in the MQ,

Γo(τi): tasks in the OQ whose deadline is earlier
than or equal to that of τi,

Γop(τi): periodic tasks which belong to Γo(τi), and

Γs: periodic tasks which are not ready.

Here, Di(t1, t2) gives an upper bound for the pro-
cessing time demanded by task τi between t1 and t2,
where t1 is the beginning of its period. Consequently,
oi(t) gives a lower bound for the amount of time not
allocated to any mandatory or wind-up part before di.

ri mi wi Ti

T1 0 1 1 9
T2 0 1 1 5

109876543210

T

T

M

M O W M

W

WO

O
1

2

Figure 2: Sample Schedule

Since the last wind-up part included in the second
term may not have to be executed before di in practice,
the value given by Di(t1, t2) is merely an upper bound.
This situation is illustrated in Fig. 2 where two peri-
odic tasks T1 and T2 are scheduled according to the
M-FWP algorithm. The execution of the mandatory,
optional, and wind-up parts are shown as boxes which
contain letter M, O, and W, respectively. The value
of o1(2) is calculated as 1 according to Eq. (1) despite
the fact that it is actually 2, because its deadline is
earlier than that of T2 in the second cycle. Thus, the
value given by oi(t) can be negative even if the system
is schedulable.

The condition which the M-FWP algorithm re-
quires to guarantee Ri(t) ≥ 0 for all tasks in the sys-
tem is that the essential system utilization defined as:

U =
∑
τi

mi + wi

Ti
(2)

does not exceed one. Under this condition, we can
safely set the remaining to zero even if the value cal-
culated by oi(t) is negative due to the error contained
in D(t1, t2).

When a new remaining for τi is set on the start of
its optional part, the remaining of tasks in the OQ
whose deadline is later than di may decrease. This is
because the time requested as oi(t) is obtained from
above tasks by collecting, in the increasing order of
the deadline, as much time as possible until enough
time is obtained or no more task exists in the OQ.

4 Experimental Results

We have developed a real-time operating system
called RT-Frontier which implements the proposed
scheme on a network of Responsive Processors , each
of which is connected by Responsive Links . Details of
the hardware are found in [5].

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100
 15

 20

 25

 30

 35

 40
R

at
io

 o
f C

om
pl

et
ed

 O
pt

io
na

l P
ar

t

A
rr

iv
al

 T
im

e
R

el
at

iv
e

to
 R

eq
ue

st
 T

im
e

[m
s]

Essential System Utilization [%]

Arrival Time
Quality

Figure 3: Quality and Arrival Time of Results

We set up an client-server application in order to
evaluate the ability of the proposed scheduling algo-
rithm to ensure the completions of wind-up parts. In
the experiment, a client was set up to wake up every 40
ms to make a request and, at the same time, check the
result of the last request. A server was activated by the
request and returns, in its wind-up part, the ratio of
the completed optional part, which corresponds to the
quality of the result in real applications. The execu-
tion time of the mandatory, optional and wind-up part
of the server were set to 4ms, 10ms, and 1ms, respec-
tively, though the execution time of the optional part
was hidden from the scheduler. The relative deadline
of the server was set to 38ms, considering the commu-
nication latency.

The result is shown in Fig. 3. The normalized aver-
age quality of the results obtained by the client task is
shown with a dotted line which uses the vertical axis
on the left side. It shows that the optional parts of the
server are gracefully cut to adjust the system utiliza-
tion and that without the wind-up part, no result was
transmitted. The solid line and the vertical axis on the
right side show the average arrival time of the result on
the client node. It shows that each results successfully
arrived to the client node before the deadline.

5 Conclusions

We have presented a new form of the imprecise
computation model for handling unpredictable work-
loads in real-time systems. We have also developed a
scheduling algorithm for such computations. The pro-

posed approach makes it easier to realize flexible com-
putations in real-world applications in two points: no
particular knowledge of optional parts is required; and
the programmer can explicitly specify what to be done
on its premature completion, for example, transmit-
ting the results. The presented approach also allows
the application to be reused in different systems, be-
cause the effect of changes in its environment is safely
absorbed by the optional part as long as the manda-
tory part and the wind-up part are schedulable. As
future work, we are currently working to extend the
approach to support 0/1-constraint optional parts.

Acknowledgement

This study was performed through Special Coordi-
nation Funds of the Ministry of Education, Culture,
Sports, Science and Technology of the Japanese Gov-
ernment.

References

[1] K. Lin, S. Natarajan, and J.-S. Liu, “Imprecise
Results: Utilizing Partial Computations in Real-
Time Systems,” in Proceedings of the IEEE 8th
Real-Time Systems Symposium, pp. 210–217, De-
cember 1987.

[2] J. Hansson, M. Thuresson, and S. H. Son, “Impre-
cise Task Scheduling and Overload Management
using OR-ULD,” in Proceedings of the Seventh In-
ternational Conference on Real-Time Computing
Systems and Applications, pp. 307–314, December
2000.

[3] D. Hull, W. Feng, and J.-S. Liu, “Enhancing the
Performance and Dependability of Real-Time Sys-
tems,” in Proceedings of the IEEE International
Computer Performance and Dependabilility Sym-
posium, pp. 174–182, April 1995.

[4] H. Aydin, P. Mejia-Alvarez, R. Melhem, and
D. Mossé, “Optimal Reward-Based Scheduling of
Periodic Real-Time Tasks,” in Proceedings of the
20th IEEE Real-Time Systems Symposium, pp. 79–
89, December 1999.

[5] N. Yamasaki, “Design and Implementation of Re-
sponsive Processor for Parallel/Distributed Con-
trol and Its Development Environment,” Jour-
nal of Robotics and Mechatronics, vol. 13, no. 2,
pp. 125–133, 2001.

