
Portioned EDF-based Scheduling on Multiprocessors ∗

Shinpei Kato and Nobuyuki Yamasaki
Department of Information and Computer Science, Keio University

Yokohama, Japan
shinpei@ny.ics.keio.ac.jp, yamasaki@ny.ics.keio.ac.jp

ABSTRACT
This paper presents an EDF-based algorithm, called Earliest
Deadline Deferrable Portion (EDDP), for efficient schedul-
ing of recurrent real-time tasks on multiprocessor systems.
The design of EDDP is based on the portioned scheduling
technique which classifies each task into a fixed task or a
migratable task. A fixed task is scheduled on the dedi-
cated processor without migrations. A migratable task is
meanwhile permitted to migrate between the particular two
processors. In order to curb the cost of task migrations,
EDDP makes at most M − 1 migratable tasks on M pro-
cessors. The scheduling analysis derives the condition for
a given task set to be schedulable. It is also proven that
no tasks ever miss deadlines, if the system utilization does
not exceed 65%. Beyond the theoretical analysis, the effec-
tiveness of EDDP is evaluated through simulation studies.
Simulation results show that EDDP achieves high system
utilization with a small number of preemptions, compared
with the traditional EDF-based algorithms.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—Schedul-
ing, Multiprocessing/multiprogramming/multitasking ; D.4.7
[Operating Systems]: Organization and Design—Real-
time systems and embedded systems

General Terms
Algorithms, Theory

Keywords
Scheduling Algorithm, Real-Time Systems, Multiprocessor
Systems

∗This work is supported by the fund of Research Fellowships
of the Japan Society for the Promotion of Science for Young
Scientists. This work is also supported in part by the fund
of Core Research for Evolutional Science and Technology,
Japan Science and Technology Agency.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

1. INTRODUCTION
Ever since the Earliest Deadline First (EDF) algorithm

[14] turned out to be no longer optimal on multiprocessors
[10], the real-time computing community have developed al-
ternative scheduling algorithms. The primary focus is at im-
proving the worst-case system utilization with guaranteeing
all tasks to meet deadlines. Unfortunately, most of the de-
veloped algorithms suffer from trade-off between theoretical
schedulability and practical overhead: achieving high sys-
tem utilization leads to complex computations. Solutions
are still widely discussed.

For the scheduling of recurrent real-time tasks on multi-
processors, there have been two approaches: global schedul-
ing and partitioned scheduling. In global scheduling, all eli-
gible tasks are stored in a single priority-ordered queue, and
a global scheduler dispatches the same number of the highest
priority tasks as processors from this queue. The relative or-
der of the task priorities varies depending on which tasks are
eligible, hence a task may migrate among processors. In par-
titioned scheduling, on the other hand, each task is assigned
to a single processor, on which each of its jobs will be ex-
ecuted, and processors are scheduled independently. Thus,
a task is executed on a dedicated processor and never mi-
grates among processors. The main advantage of partitioned
scheduling is that they reduce a multiprocessor scheduling
problem to a set of uniprocessor ones.

Dhall et al. showed that global EDF may cause a deadline
to be missed if the total utilization of a task set is slightly
greater than 1 [10]. Letting M be the number of processors,
the worst-case system utilization is therefore no greater than
1/M . The partitioned scheduling approaches are often more
efficient for multiprocessors. Lopez et al. showed that EDF
with the FF (or BF) heuristic can successfully schedule any
task set with a total utilization at most (βM + 1)/(β +
1), where β = �1/α� and α is the maximum utilization of
every individual task [15]. Letting α = 1 and β = 1, the
total utilization becomes (M +1)/2. That is, the worst-case
system utilization becomes 50% for M → ∞.

This paper presents an EDF-based algorithm for efficient
scheduling of recurrent real-time tasks on multiprocessor
systems. The design of the presented algorithm is based on
the portioned scheduling technique [12, 13] which classifies
each task into a fixed task or a migratable task. The main
advantage of the presented algorithm is that the achievable
worst-case system utilization is 65%, while the previous por-
tioned scheduling algorithms, and most of scheduling algo-
rithms, can never achieve a worst-case system utilization
over 50%. Thus, we believe that the algorithm can be a new

alternative for the scheduling of recurrent real-time tasks on
multiprocessor systems.

The rest of this paper is organized as follows. In the next
section, the system model and the terminology are defined.
Section 4 presents the scheduling algorithm and analyzes
the schedulability. Section 5 evaluates the effectiveness of
the algorithm, compared to the traditional algorithms. This
paper is concluded in Section 6.

2. RELATED WORK
Baruah et al. developed the Pfair scheduling technique

that achieves the optimal scheduling of periodic real-time
tasks on multiprocessors [5, 4]. In Pfair scheduling, each task
is divided into quantum-size pieces so-called subtasks which
have pseudo deadlines. A series of the Pfair algorithms is
then designed so that all subtasks meet their pseudo dead-
lines. The PD2 algorithm [1] is known to be the most effi-
cient in the optimal Pfair algorithms. However, the schedul-
ing overhead is often criticized, since they necessarily gen-
erate many preemptions due to quantum-based scheduling.
The practical implementation of Pfair scheduling has been
therefore considered recently [18, 6].

The LLREF algorithm [7] is another optimal multiproces-
sor scheduling algorithm. Unlike the Pfair algorithms, LL-
REF does not rely on the quantum-based scheduling model
but on the original T-L plane abstraction. In T-L plane ab-
straction, the scheduling decision is made locally within ev-
ery interval of job releases to restrain and bound the number
of preemptions. The algorithm has been extended so that
it moreover reduces the number of preemptions [11], but it
still generates many preemptions compared to non-optimal
scheduling algorithms.

The EKG algorithm [2] considers trade-off between system
utilization and the number of preemptions. EKG classifies
each task into a fixed task or a migratable task. A fixed
task is scheduled on the dedicated processor. A migratable
task is meanwhile permitted to migrate between the partic-
ular two processors. The main advantage of this approach is
that the number of migratable tasks is limited to M − 1 on
M processors, while the migrations of M − 1 tasks improve
system utilization. Thus, the migration overhead is relaxed
compared to the other optimal algorithms. The algorithm
trades an achievable system utilization with the cost of pre-
emptions by adjusting the parameter k, where 2 ≤ k ≤ M .
For k < M , the achievable utilization is k/(k + 1). For
k = M , on the other hand, it is 100%, thereby EKG per-
forms optimally.

In general, optimal scheduling algorithms lead to many
preemptions. There are also efficient algorithms that aim
for practical use with a small number of preemptions. The
EDF-US[x] algorithm [17] simply assigns the highest priority
to the tasks with utilizations greater than x. The rest of
the tasks are then scheduled by EDF. Baker showed that
x = 1/2 is the best configuration for this algorithm [3], and
any task set can be successfully scheduled by EDF-US[1/2],
if the total utilization does not exceed (M + 1)/2 on M
processors.

The EDZL algorithm [8] dynamically assigns the highest
priority to the tasks which reach zero laxity. EDZL is more
attractive than EDF-US[x] in that it is at least as effective
as EDF, while EDF-US[x] is not. Piao et al. showed that
any task sets can be successfully scheduled by EDZL if the
total utilization does not exceed (M +1)/2 on M processors

[16]. In recent years, more strict analysis of EDZL has been
presented [9, 19].

The Ehd2-SIP algorithm [12] takes a similar approach to
EKG in such a way that each task is classified into a fixed
task or a migratable task, but the approach is simplified for
practical use. While EKG utilizes the full capacity of every
processor on which a migratable task is executed, Ehd2-
SIP does not fully utilize the processor to reduce the com-
putation complexity. Thus, the scheduling of migratable
tasks is more straightforward than EKG. Such a scheduling
scheme was defined portioned scheduling in [12]. Although
the achievable total utilization was proven to be no greater
than (M+1)/2, the simulation results showed that Ehd2-SIP
is competitive with EKG setting k = 2 in terms of achievable
system utilization.

From the viewpoint of balance between schedulability and
complexity, Ehd2-SIP and EKG with a small parameter k
are attractive. This paper integrates the notions of Ehd2-
SIP and EKG. The developed algorithm succeeds the design
simplicity of Ehd2-SIP for practical use, and at the same
time partially imitates the approach of EKG to improve the
system utilization bound. The resulting advantage is that
the implementation cost is not far beyond the traditional
partitioned scheduling algorithms while the worst-case sys-
tem utilization is no less than 65%.

3. SYSTEM MODEL
The system is composed of M processors: P1, P2, ..., PM .

A periodic task set Γ = {τ1, τ2, ..., τN} is given to the system.
Each task τi is defined by tupple (Ci, Ti) where Ci is its
worst-case execution time and Ti is its period. Note that
Ci ≤ Ti is always satisfied. The processor utilization of τi is
defined by Ui = Ci/Ti. Every task generates a sequence of
jobs periodically. The kth job of τi is denoted by τi,k that is
released at time ri,k and its deadline is equal to the release
time of the next job, i.e. di,k = ri,k+1 = ri,k +Ti. The start
time and the finish time of τi,k are denoted by si,k and fi,k

respectively. All the tasks are preemptive and independent.
Therefore, no tasks make critical sections and synchronize
with other tasks. Any jobs of a task cannot be executed in
parallel, which means that, for any i and j, τi,j cannot be
executed in parallel on more than one processor.

This research has the other assumptions as follows. The
system is a memory-shared multiprocessor. Each processor
shares the code and data. The costs of preempting and mi-
grating tasks are not considered, since those costs depend on
the processor performance. From the viewpoint of schedul-
ing algorithms, it is more variant to focus on how often con-
text switches occur, in order to discuss the runtime overhead
of the system. Hence this paper takes the number of context
switches as a performance metric of the scheduling overhead.
This research also ignores the behavior of a cache system,
because it is dominated by the processor specification and
architecture. In fact, a cache system affects the analysis of
the worst-case execution time rather than scheduling. Such
an analysis is not in the range of this paper.

4. THE EDDP ALGORITHM
This section presents the Earliest Deadline Deferrable Por-

tion (EDDP) algorithm. The design of EDDP is based on
the portioned scheduling technique which is composed of the
task assigning phase and the task scheduling phase. This

Portioning (Split into two portions)

Py

k

Utilization bound of Px

Cannot fit in Px
Px i j

k

i j k'

k"Py

Px

Figure 1: Portioning example

section begins with a review of the portioned scheduling
technique. Then, the task assigning algorithm and the task
scheduling algorithm are presented. Finally, the scheduling
analysis of EDDP is given.

4.1 Portioned Scheduling Technique
The portioned scheduling technique [12] is composed of

the two phases: task assigning phase and task scheduling
phase. In the task assigning phase, each task is assigned to
a particular processor, as long as the task does not cause
the total utilization of the processor to exceed the analyzed
theoretical bound. Such a task is classified into a fixed task.
If the total utilization exceeds the bound, the utilization of
the task is split into two portions. Such a task is classified
into a migratable task. One is assigned to the processor to
which the tasks are being assigned and the other is assigned
to the next processor to which the rest of the tasks will be
assigned.

Notice that the body (program code) of the task is not
really divided into two blocks, but its utilization is shared
on the two processors. In other words, the processor capacity
that the split task will use for execution is reserved on the
two processors. From the scheduling point of view, each split
portion is deemed as a pseudo task to serve the execution of
the original task on each processor.

Figure 1 shows an example of task splitting, called por-
tioning in this paper. The width of the box in which the
task name is indicated is the processor utilization of the
task. This example presumes that a task τk causes the to-
tal utilization of Px to exceed its utilization bound, if it is
assigned to Px. Thus, τk is split into τ ′

k and τ ′′
k . In this

paper, τ ′
k is defined the first portion of τk and τ ′′

k is defined
the second portion of τk. Then, τ ′

k is assigned to Px and τ ′′
k

is assigned to Py . Hence, the portioning approach obviously
improves the total utilization of Px.

The execution times of τ ′
k and τ ′′

k are denoted by C′
k and

C′′
k respectively. Letting U∗

x be the utilization bound of Px,
C′

k and C′′
k are calculated as: C′

k = Tk(U∗
x − Ui − Uj) and

C′′
k = Ck −C′

k. This means that τk consumes C′
k time units

on Px and C′′
k time units on Py within every Tk. In fact, τ ′

k

and τ ′′
k are scheduled as individual periodic tasks, but they

must be scheduled exclusively on Px and Py, since a task τk

cannot be executed in parallel.

4.2 Task Assigning Phase
This section describes how tasks are assigned and split to

processors in EDDP. Let U∗ denote the utilization bound for

EDDP, which is analyzed in Section 4.4. Then, τi is defined
to be a heavy task, if Condition (1) holds. Otherwise, it is
defined to be a light task.

Ui > U∗ (1)

The EDDP assigning algorithm has two steps: the first
step assigns the heavy tasks to the dedicated processors and
the second step assigns the light tasks to the rest of the
processors. Figure 2 shows the pseudo code of the task as-
signing algorithm. The algorithm assumes that the given
task set includes h heavy tasks and N −h light tasks, where
the heavy tasks are indexed 1 ∼ h and the light tasks are
indexed h + 1 ∼ N . The set of the light tasks is sorted so
that the period of τi is smaller than or equal to that of τi+1.
Basically, the algorithm assigns the tasks to the processors
sequentially, which means that it always assigns τi+1 after
τi. If a task causes the total utilization of a processor to
exceed its utilization bound, it splits the task into two por-
tions. Then it continues to assign the rest of the tasks from
the next processor. A set of the tasks assigned to a processor
Px is denoted by Πx.

The procedure of the algorithm is as follows. If the num-
ber of the heavy tasks is smaller than the number of the
processors, the heavy tasks are first assigned to dedicated
processors P1 ∼ Ph (line 2∼5). Note that each processor
Px (1 ≤ x ≤ h) has only one heavy task. Then, the light
tasks are assigned to the rest of the processors. Each light
task τi is assigned to a processor Px as long as the total
utilization of Px is less than or equal to its utilization bound
denoted by U∗

x (line 8∼9). If the total utilization of Px ex-
ceeds the utilization bound, τi is going to be split into two
portions as follows. At first, the execution times of the first
portion and the second portion of the task being split are
calculated based on the remaining schedulable utilization of
Px, denoted by U∗

x − U(Π) (line 11). Then, τi is split into
τ ′

i(C
′
i, Ti) and τ ′′

i (C′′
i , Ti) based on the remaining schedu-

lable utilization (line 12). τ ′
i is assigned to Px and τ ′′

i is
assigned to Px+1 (line 13). Finally, the utilization bound
of the next processor is calculated using the formula that
is described in Section 4.4 (line 16). If all the tasks can be
assigned to the processors, the algorithm succeeds.

Although the task assigning algorithm of EDDP is similar
to that of Ehd2-SIP, it differs in that the tasks are defined
to be heavy or light, and the heavy tasks are assigned to
dedicated processors. The separation of heavy tasks and
light tasks bring two advantages over Ehd2-SIP. First, it
improves the worst-case system utilization, as described in
Section 4.4. Second, it makes the scheduling easier, because
the processors on which only one heavy task is executed
need no schedulers. In this point, EDDP partially imitates
EKG. However, the scheduling algorithm of EDDP is quite
different from EKG, as described in the next section.

4.3 Task Scheduling Phase
This section describes the task scheduling algorithm of

EDDP. Notice that the processors executing heavy tasks
need no schedulers, since each of them contains only one
heavy task. On the other hand, the processors executing
light tasks need schedulers. Like the traditional partitioned
scheduling algorithms, the schedulers have the same schedul-
ing policy, but each of them is not completely independent,
because two processors next to each other may share a mi-
gratable task.

Assumption:
i indicates the index of the tasks.
x indicates the index of the processors.
h denotes the number of the heavy tasks.
U∗

x indicates the utilization bound of Px.
Task set Γ is sorted so that {τi | 1 ≤ i ≤ h} are heavy
tasks and {τj | h + 1 ≤ j ≤ N} are light tasks.
The light tasks are also sorted so that Tj ≤ Tj+1.
1. ∀Πx = ∅ ;
2. if h > M
3. return FAILURE;
4. for 1 ≤ i ≤ h
5. Πi = {τi} ;
6. x = h + 1 and U∗

x = 1.0 ;
7. for h + 1 ≤ i ≤ n
8. if U(Πx) + Ui ≤ U∗

x

9. Πx = Πx ∪ τi ;
10. else if x < M
11. C′

i = {U∗
x − U(Πx)}Ti and C′′

i = Ci − C′
i ;

12. split τi into τ ′
i(C

′
i, Ti) and τ ′′

i (C′′
i , Ti) ;

13. Πx = Πx ∪ τ ′
i and Πx+1 = {τ ′′

i } ;
14. x = x + 1 ;
15. if i + 1 ≤ N

16. U∗
x = 1.0 − C′′

i (Ti+min{C′
i,C′′

i }−C′′
i)

TiTi+1
;

17. else
18. return FAILURE;
19. return SUCCESS;

Figure 2: EDDP assigning algorithm

Assume that τ ′′
i , τ ′

k, and {τj | i < j < k} (i < k) are
assigned to Px. More specifically, τi is split into Px−1 and
Px, and its second portion τ ′′

i is assigned to Px. In addition,
τk is also split into Px and Px+1, and its first portion τ ′

k is
assigned to Px. Then, the task set is scheduled as follows.

1. If the task with the earliest deadline is τ ′′
i but τ ′

i is
currently executed on Px−1, then the task with the
second earliest deadline is dispatched, since τ ′

i and τ ′′
i ,

which form a same job, cannot be executed in parallel.

2. Otherwise the earliest deadline task is dispatched.

In other words, the tasks are scheduled by EDF except
that τ ′′

i has the earliest deadline but its corresponding first
portion τ ′

i also has the earliest deadline and is in execution
on the neighbor processor Px−1. In this exceptional case,
the scheduler defers execution of τ ′′

i until τ ′
i completes so

that τ ′
i and τ ′′

i are executed exclusively.
Figure 3 depicts an example of EDDP scheduling in which

τi is a migratable task between Px−1 and Px. Suppose that
τi is released at time ri with deadline di that is the earliest
on Px but is not on Px−1, and there are two active tasks,
τj and τk, on Px with deadlines of dj and dk respectively,
both of which are later than di. In such a case, τ ′′

i starts
execution on Px at time ri. Assume that τ ′

i receives the ear-
liest deadline on Px−1 at time t1. Then, τ ′

i is dispatched on
Px−1 and τ ′′

i is preempted even if it has the earliest dead-
line on Px. Instead, τj with the second earliest deadline is
dispatched on Px. Hence, τ ′′

i is deferred, though it has the
earliest deadline. Assume that τ ′

i is preempted by a task
released with an earlier deadline at time t2 and is later re-
sumed at time t3. Then, τ ′′

i can be executed during a time

execution of

Px

Px-1

i i j k

i

execution of j

execution of k

ri di dj dkt1 t4
t

t2 t3

Figure 3: EDDP scheduling example

C'iPx-1

d

C"i

Px

C'iPx-1

d

C'i

Px

C"i

C'i < C"i C'i > C"i

Figure 4: The latest completion for EDDP

interval [t2, t3). When τ ′
i completes at time t4, meaning that

τi consumes C′
i time units, τ ′′

i is resumed.
The above scheduling policy has a potential problem with

respect to deadline assignments. Consider a job of τ ′′
i with a

deadline d. If a set of the tasks assigned to Px, whose total
utilization is less than or equal to 1, is scheduled by EDF
without taking into account exclusive scheduling of τ ′

i and
τ ′′

i , the job of τ ′′
i never misses the deadline d, though the

job may begin at time d−C′′
i and complete at time d in the

latest case. However, applying the above scheduling policy
for the exclusive scheduling of τ ′

i and τ ′′
i , the completion

time of the job may be delayed until time d + min{C′
i, C

′′
i },

if the job of τ ′
i is scheduled during [d − C′

i, d) on Px−1.
Figure 4 depicts such a problematic scheduling. Due to

the execution of the corresponding job of τ ′
i , the job of τ ′′

i

may be blocked for at most C′
i time units if C′

i < C′′
i . On

the other hand, if C′
i ≥ C′′

i , the job of τ ′′
i may be blocked

for at most C′′
i time units.

Taking into account the blocking time of τ ′′
i , EDDP as-

signs job deadlines as follows.

• For a job of τ ′′
i with a deadline d, its deadline is virtu-

ally transformed to d − min{C′
i, C

′′
i }.

• For a job of {τj | i < j < k} and τ ′
k with a deadline d,

its deadline is remained d.

In other words, τ ′′
i is deemed to have a relative deadline

Ti −min{C′
i, C

′′
i }. Once a job of τ ′′

i has the earliest deadline
on Px, no other jobs have earlier deadlines until the job of
τ ′′

i completes, since the period (relative deadline) of τ ′′
i is

guaranteed to be the smallest in Πx by the characteristic of
the task assigning algorithm presented in the previous sec-
tion. Therefore, letting d̄ = d − min{C′

i, C
′′
i }, if a job of τ ′′

i

is guaranteed to complete by time d̄ in EDF scheduling, it is
also guaranteed to complete by time d̄+min{C′

i, C
′′
i } = d in

EDDP scheduling. Since the other jobs are never blocked,
they are guaranteed to complete by their deadlines in EDDP

Assumption:
τi is a migratable task between Px−1 and Px.
τk is a migratable task between Px and Px+1.
t is the current time.
ti is the last time at which τi is dispatched on Px.
tk is the last time at which τk is dispatched on Px.
ei is the remaining execution time of τi.
ek is the remaining execution time of τk.
1. function system tick
2. if any tasks are released on Px

3. if τi is released
4. ei = C′′

i and ti = t.
5. if τk is released
6. ek = C′

k and tk = t.
7. call schedule Px.

8. function schedule Px

9. if Px is idling
10. go to step 15.
11. if τi is currently running on Px

12. ei = ei − (t − ti).
13. else if τk is currently running on Px

14. ek = ek − (t − tk).
15. /* Selection of the next task. */
16. if τi has earliest deadline
17. if τi is in execution on Px−1

18. execute τj with second earliest deadline.
19. else
20. execute τi.
21. let second end invoke at t + ei.
22. ti = t.
23. else if τk has earliest deadline
24. if τk is in execution on Px+1

25. invoke schedule Px+1 on Px+1.
26. execute τk.
27. let first end invoke at t + ek.
28. tk = t.

Figure 5: EDDP scheduling algorithm

scheduling, if they are guaranteed to complete by their dead-
lines in EDF scheduling. The condition for EDDP to guar-
antee all tasks to meet deadlines is presented in detail in the
next section.

Figure 5 shows the pseudo code of the EDDP scheduler.
Every time any tasks are released on Px, a scheduling func-
tion schedule Px is invoked (line 1∼7). Let t be such a time.
At this time, if the migratable tasks τi and τk are released,
the scheduler needs to reset the variables ti, tk, ei and ek

to track their remaining execution times. Since τi and τk

are not allowed to consume more than C′′
i and C′

k time
units respectively on Px, they must be preempted by us-
ing timers.when they exhaust C′′

i and C′
k time units. Thus,

the information of the remaining execution times is required
by the scheduler.

The scheduling function proceeds as follows. First of all,
if the currently-running task is a migratable task, the sched-
uler saves its remaining execution time (line 11∼13). Then,
it selects a task to execute (after line 15). If τi has the earli-
est deadline (line 16), the scheduler examines whether τi is
currently in execution on Px−1 (line 17), since τ ′′

i must wait

1. function job end
2. remove the caller task from a ready set.
3. call schedule Px.

4. function first end
5. remove τr from a ready set.
6. call schedule Px.
7. if τk is ready on Px+1

8. invoke schedule Px+1 on Px+1.

9. function second end
10. remove τi from a ready set.
11. call schedule Px.

Figure 6: The job finishing functions

for τ ′
i . If τi is in execution on Px−1, the scheduler executes a

task with the second earliest deadline (line 18). Otherwise,
τi can be executed (line 20). Because τi cannot overrun C′′

i

time units on Px, the scheduler sets a timer so that it will
invoke a function second end at time t + ei to preempt τi

on Px (line 21). Notice that the second end function may
not be invoked at time t + ei, since the time is updated if
τi is preempted once and later dispatched again within the
same period. So, it is just a time at which τi may exhaust
C′′

i time units. The scheduler must save the current time as
the last dispatched time of τi (line 22) to track its remaining
execution time. Meanwhile, if τk has the earliest deadline
(line 23), the scheduler examines whether τk is in execution
on Px+1. If τk is in execution on Px+1, the scheduler invokes
schedule Px+1 to reschedule Px+1, since τ ′′

k must wait for τ ′
k.

Then, it executes τk (line 26). A timer is also set so that a
function first end will be invoked at time t + ek to preempt
τk on Px (line 27). Finally, it saves the current time as the
last dispatched time of τk (line 28).

Since the scheduler needs to invoke a scheduling function
on the neighbor processor, the processors must support soft-
ware interruptions. The scheduler can easily know if migrat-
able tasks are currently running on the neighbor processor,
because the processors share code and data.

The job finishing functions are shown in Figure 6. Tasks
except for the migratable ones call the job end function,
when jobs of them complete (line 1∼3). The first end and
second end functions are called only through the timers.
Those functions call the scheduling function to reschedule
the tasks (line 3, 6 and 11). Only when τk consumes C′

k

on Px but has not consumed C′′
k on Px+1 yet, the scheduler

invokes the scheduler operating on Px+1 to dispatch and ex-
ecute τk on Px+1, since τk has the earliest deadline on Px+1

but has been deferred.

4.4 Schedulability Analysis
This section derives the schedulable condition for EDDP.

No deadline misses occur on a processor containing a heavy
task, since 100% of processor time is allocated to every heavy
task. Hence, the analysis focuses on the schedulable condi-
tions of processors where the light tasks are assigned. Like
the previous section, let Πx = {τ ′′

i , {τj | i < j < k}, τ ′
k}

(i < k) be a set of the light tasks assigned to a processor Px.
The goal of this section is to derive the schedulable condition
and the utilization bound of Px.

Suppose that a job of some fixed task, i.e. τs ∈ Πx \ τ ′′
i ,

misses its deadline at time d. Let t (< d) be the latest time
instant at which the processor is either idle or is executing a
job whose deadline is after d. The total amount of processor
time consumed by τ ′′

i in the interval of (t, d] is at most equal
to W ′′ expressed by Equation (2).

W ′′ = C′′
i +

—
d + min{C′

i, C
′′
i } − t − C′′

i

Ti

�
C′′

i (2)

Figure 7 shows the case in which τ ′′
i consumes this amount

of time. At time t, a deferred job of τ ′′
i starts with the laxity

of zero and finishes at t + C′′
i , which is its deadline, without

being preempted. Since d must be after or at the pseudo
deadline of the last job of τ ′′

i before time d in Figure 7,
τ ′′

i consumes at most �{(d + C′
i) − (t + C′′

i)}/Ti�C′′
i time

units after t+C′′
i . Hence, the maximal amount of processor

time consumed by τ ′′
i in the interval of (t, d] is calculated by

Equation (2). Since �a� ≤ a for any a, W ′′ must satisfy the
following condition.

W ′′ ≤ C′′
i +

d + min{C′
i, C

′′
i } − t − C′′

i

Ti
C′′

i

= U ′′
i (d − t + Ti + min{C′

i, C
′′
i } − C′′

i)

Here, the total amount of processor time consumed by
each fixed task, i.e. τj ∈ Πx \τ ′′

i , in the interval of (t, d] is at
most Cj(d−t)/Tj, since the tasks except for τ ′′

i are scheduled
by EDF. In order to cause the job of τs to miss its deadline
at time d, the total amount of processor time consumed by
all the jobs with deadlines before or at d needs to exceed
the interval of (t, d]. Hence, the following inequality must
be satisfied. Let L = d − t due to the limitation of space.

L <
X

τj∈Πx\τ ′′
i

Cj

Tj
L + U ′′

i (L + Ti + min{C′
i, C

′′
i } − C′′

i)

If the above inequality is not satisfied, the job never misses
its deadline. Dividing both sides of the above inequality and
considering Ts ≤ d − t, the schedulable condition for τs is
derived by Equation (3).

X
τj∈Πx\τ ′′

i

Uj + U ′′
i

„
1 +

Ti + min{C′
i, C

′′
i } − C′′

i

Ts

«
≤ 1 (3)

Equation (3) implies that all the tasks must satisfy this
condition if the task with the shortest period satisfies this
condition. Since the light tasks are sorted in the order of
increasing period, Ti+1 is the shortest in {Tj | τj ∈ Pix\τ ′′

i }.
Therefore, Equation (4) is the schedulable condition for all
the tasks assigned to Px.

X
τj∈Πx\τ ′′

i

Uj + U ′′
i

„
1 +

Ti + min{C′
i, C

′′
i } − C′′

i

Ti+1

«
≤ 1

⇔
X

τj∈Πx\τ ′′
i

Uj + U ′′
i ≤ 1 − C′′

i (Ti + min{C′
i, C

′′
i } − C′′

i)

TiTi+1
(4)

Notice that the left-hand side of Equation (4) is equal
to the total utilization of Px. Hence, the right-hand side of
Equation (4) is the utilization bound of Px. The task assign-
ing algorithm presented in Section 4.2 uses the right-hand
side of Equation (4) as a formula of obtaining the schedula-
ble utilization bound at line 17 in Figure 2.

Now the analysis derives the worst-case utilization bound
by minimizing the right-hand side of Equation (4). Let Ū

t d

C"i C"i C"iC"i

Pseudo deadline

min{C'i, C"i}
Ti Ti Ti

t + C"i

Figure 7: τ ′′
i consumes the most time

denote the right-hand side of Equation (4). Since Ti ≤ Ti+1,
Ū is minimized when Ti+1 is reduced to Ti.

Ū ≥ 1 − C′′
i (Ti + min{C′

i, C
′′
i } − C′′

i)

T 2
i

The analysis first considers the case of C′
i ≥ C′′

i . In this
case, the relations of U ′

i ≥ U ′′
i and Ui = U ′

i + U ′′
i derive

U ′′
i ≤ Ui/2. Hence, Ū is minimized as follows.

Ū ≥ 1 − C′′
i (Ti + C′′

i − C′′
i)

T 2
i

≥ 1 − Ui

2

Remember that the utilization of a light task is at most U∗

according to Equation (1), which means that Ū is minimized
when Ui = U∗. Hence, the worst-case utilization bound for
the case of C′

i ≥ C′′
i is U∗ = 1 − U∗/2, that is, U∗ = 2/3 �

66%. Next, the analysis considers the case of C′
i ≤ C′′

i . In
this case, Ū is minimized as follows with taking U ′

i = Ui−U ′′
i

into account.

Ū ≥ 1 − C′′
i (Ti + C′

i − C′′
i)

T 2
i

= 1 − U ′′
i (1 + U ′

i − U ′′
i)

= 1 − U ′′
i (1 + Ui − 2U ′′

i)

= 2U ′′
i

2 − (1 + Ui)U
′′
i + 1

= 2

„
U ′′

i − 1 + Ui

4

«2

+ 1 − (1 + Ui)
2

8

≥ 1 − (1 + Ui)
2

8

By the same token as the case of C′
i ≥ C′′

i , Ū is minimized
when Ui = U∗. Hence, the worst-case utilization bound for
the case of C′

i ≤ C′′
i is U∗ = 1 − (1 + U∗)2/8, that is,

U∗ = 4
√

2 − 5 � 65%. This is the absolute worst-case
utilization bound of Px for EDDP. This utilization bound is
valid for any processor containing light tasks. In addition,
the utilization of any processor containing a heavy task is
assigned is equal to the utilization of the heavy task, which is
guaranteed to be higher than U∗ = 4

√
2−5. In consequence,

the utilization bound of the whole system for EDDP is also
4
√

2 − 5 � 65%.

5. SIMULATION
Beyond the theoretical analysis, this section simulates the

following algorithms: EDDP, Ehd2-SIP, EDF-FF, EDF-BF,
EDZL, and EKG. Ehd2-SIP is renamed by EDDHP in the
simulations, which stands for Earliest Deadline Deferrable
Highest-priority Portion. EKG offers two versions. EKG-
2 takes a parameter k = 2 with a lower utilization bound
of 66% and fewer preemptions. EKG-M takes a parame-
ter k = M with the optimal utilization bound of 100% in

exchange for more preemptions. EDF and EDF-US[x] were
not included in the simulations, since they are dominated by
EDZL [9] The Pfair algorithms and LLREF were also not in-
cluded in the simulations, since they are known to generate
more preemptions than EKG-M [11].

5.1 Experimental Setup
Simulations estimate the schedulability of an algorithm as

follows. Every system utilization Usys ranging from 30% to
100%, 1000 task sets with different properties, whose system
utilizations are all Usys equally, are generated and submitted
to the algorithm. Then, the success ratio, defined by the
following expression, is measured.

the number of successfully scheduled task sets

the number of task sets

If an algorithm has high success ratio, it is estimated to
offer high system utilization with a guarantee of timing con-
straints. The definition of a successfully-scheduled task set
depends on an algorithm. For EDDP, EDDHP, EDF-FF,
EDF-BF, EKG-2, and EKG-M, a task set is said to be suc-
cessfully scheduled if all the tasks can be assigned to the
processors, since they are designed so that no tasks will miss
the deadline once they are successfully assigned to the pro-
cessors. For EDZL, on the other hand, a task set is said to
be successfully scheduled if the schedulability test, presented
in [9], accepts the task set.

Simulations estimate the number of preemptions for an
algorithm by calculating its average number, defined by the
following expression.

the total number of preemptions in the task sets

the number of task sets

Simulations are characterized by M , Umax, Umin and Utot.
M is the number of processors. Umax and Umin are the
maximum and minimum values of the processor utilization
of every individual task in a given task set. Utot is the total
processor utilization of the tasks. Then, the system uti-
lization is defined by Usys = Utot/M , ranging from 0% to
100%. The system utilization is determined within the range
of [30%, 100%], since most algorithms never cause deadline
misses if the system utilization is below 30%. Due to the
limitation of space, simulations attempt only the following
combinations of the parameters. M has three cases: 4, 8,
and 16. A set of (Umin, Umax) has then two cases: (0.01, 0.5)
and (0.01, 1.0).

A task set Γ is generated as follows. A new periodic task is
appended to Γ as long as U(Γ) ≤ Utot is satisfied. For each
task τi, its utilization Ui is computed based on a uniform
distribution within the range of [Umin, Umax]. Only the uti-
lization of the task generated at the very end is adjusted so
that U(Γ) becomes equal to Utot. Ti is determined within
the range of [100, 3000] randomly, since the feedback peri-
ods of control and multimedia tasks in embedded systems
are often set about 1 ∼ 30ms. Then, the execution time of
the task Ci = UiTi is calculated.

5.2 The Success Ratio
Figure 8, Figure 9, and Figure 10 depict the success ratio

for each algorithm with respect to task sets in which the
utilization of every individual task ranges within [0.01, 0.5].
Hereinafter, the term schedulable utilization refers to the
maximum system utilization where the success ratio is main-
tained 100%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 8: Success ratio: Umax = 0.5, M = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 9: Success ratio: Umax = 0.5, M = 8

The results indicate that EDDP, EDDHP, EDF-BF, and
EKG-2 are competitive. EDDHP slightly outperforms the
rest of the algorithms: EDDHP achieves the schedulable
utilization of 90%, while the rest of the algorithms achieves
that of 85 ∼ 87%. It is remarkable that EDDHP performs
better than EDDP, though the worst-case utilization bound
for EDDP is 65% that is higher than 50% achievable by ED-
DHP. This fact implies that the approach of assigning the
highest priority to the second portion of a migratable task,
which is conducted in EDDHP, may provide better schedu-
lability than the approach of assigning the virtual deadline,
which is conducted in EDDP.

Note that the success ratio for EKG-M drops below 100%
before the system utilization reaches 100%, though EKG is
supposed to become optimal for k = M . Since the execu-
tion time of a task cannot be split less than the minimum
time unit of 1 in the simulations, each processor inevitably
remains a little room unless its remaining utilization in split-
ting τi is an integer multiple of 1/Ti. As a result, a few tasks
may fail to be assigned to any processor, if the system uti-
lization is very close to 100%.

EDF-FF performs relatively well, but its schedulable uti-
lization is around 77% that is 8% behind EDF-BF. Since the
BF heuristic packs items more efficiently than the FF heuris-
tic, the performance of EDF-BF is also better than EDF-FF.
EDZL has lower schedulable utilizations, which are around
50%. Since the schedulability analysis of EDZL was claimed

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 10: Success ratio: Umax = 0.5, M = 16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 11: Success ratio: Umax = 1.0, M = 4

to have room for improvement in [9], the potential schedu-
lability of EDZL may be better than the simulated results.
However, no better schedulability test has been presented at
the moment.

Figure 11, Figure 12, and Figure 13 depict the success ra-
tios for each algorithm with respect to task sets in which the
utilization of every individual task ranges within [0.01, 1.0].
EDDP, EDDHP, and EKG-2 are still competitive. However,
contrary to the previous case, EDDP slightly outperforms
EDDHP and EKG-2 in most cases. In general, the schedu-
lability of an algorithm is likely to drop under the presence
of heavy tasks, since the condition of the system leads to the
worst case. Thus, EDDP performs better than EDDHP due
to its higher worst-case utilization bound of 65%.

While the above three algorithms are competitive, EDF-
BF declines the maximum schedulable utilization to 67%.
The schedulable utilization for EDF-FF is also declined to
60%. This inferiority of EDF-BF and EDF-FF is due to
the the presence of heavy tasks. Even though the total re-
maining utilization of all the processors is sufficient, a heavy
task may fail to be assigned to any processor, since the ac-
ceptance of a task does not depend on the total remaining
utilization but on the remaining utilization of every individ-
ual processor.

EDZL, on the other hand, improves a schedulable utiliza-
tion up to 60% that is about 15% higher than the previous
case. The schedulable utilization for EDZL is dominated by

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 12: Success ratio: Umax = 1.0, M = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 r
at

io

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 13: Success ratio: Umax = 1.0, M = 16

the opportunity that the number of the tasks which can have
the zero laxity at the same time becomes greater than the
number of the processors. The case in which there are heavy
tasks leads the total number of the tasks to be smaller than
the case in which there are only light tasks, which results in
less opportunity that the number of the tasks have can have
the zero laxity at the same time is greater than the number
of the processors. As a result, EDZL performs well in the
presence of heavy tasks.

5.3 The Average Number of Preemptions
For counting preemptions, the interval of the simulations

is set the smaller of the least common multiple of the task
periods in the given task set and 232. For each algorithm,
the average number of preemptions in the 1000 task sets is
calculated every system utilization. Then, the number of
preemptions for each algorithm relative to that for EDDP is
calculated only for system utilizations at which both EDDP
and the measured algorithm have success ratios of 100%.

Figure 14, Figure 15, and Figure 16 depict the average
number of preemptions for each algorithm with respect to
task sets in which the utilization of every individual task
ranges within [0.01, 0.5]. EDDP has slightly fewer preemp-
tions than EDDHP. Since EDDP makes several processors
which have only one heavy task, no preemptions occur on
those processors. As a result, the number of preemptions
for EDDP is totally reduced compared to EDDHP. EDF-FF

 0

 1

 2

 3

 4

 5

 6

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 r
el

at
iv

e
nu

m
be

r
of

 ta
sk

 p
re

em
pt

io
ns

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 14: Task preemptions: Umax = 0.5, M = 4

 0

 2

 4

 6

 8

 10

 12

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 r
el

at
iv

e
nu

m
be

r
of

 ta
sk

 p
re

em
pt

io
ns

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 15: Task preemptions: Umax = 0.5, M = 8

and EDF-BF have around 0.65 ∼ 0.85 times as many pre-
emptions as EDDP. The primary reason why the numbers
of preemptions for EDF-FF and EDF-BF are smaller than
those for the others is that those algorithms simply schedule
the tasks by EDF on each processor without any interfer-
ence from other processors, while the other algorithms have
more or less interferences among the processors.

EDZL has slightly more preemptions, which is about 1.5
times, than EDDP. A global scheduling method has only one
scheduler which handles all the tasks, thereby the ordering
of the task priority is likely to be changed. Since a preemp-
tion occurs every time the ordering of the task priority is
changed, those algorithms cause more preemptions.

EKG causes more preemptions than the other algorithms
regardless of the parameter k. More specifically, EKG-2
causes around 2.0 ∼ 2.5 times as many preemptions as
EDDP, though the schedulable utilization is competitive to
EDDP. EKG-M causes far too many preemptions. EKG pre-
empts a migratable task twice during every interval of job
arrivals on the related processors, which inevitably increase
preemptions.

Figure 17, Figure 18, and Figure 19 depict the average
number of task preemptions for each algorithm with respect
to task sets in which the utilization of every individual task
ranges within [0.01, 1.0]. In this case, EDDP has about
1.3 ∼ 2.0 times as many preemptions as EDF-FF and EDF-
BF. According to EDDP, the second portion of a migratable

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 r
el

at
iv

e
nu

m
be

r
of

 ta
sk

 p
re

em
pt

io
ns

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 16: Task preemptions: Umax = 0.5, M = 16

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 r
el

at
iv

e
nu

m
be

r
of

 ta
sk

 p
re

em
pt

io
ns

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 17: Task preemptions: Umax = 1.0, M = 4

task is preempted when its corresponding first portion por-
tion is dispatched or preempted on the neighbor processor,
while such an extra preemption never occurs for EDF-FF
and EDF-BF. Since the execution time of each task tends to
be long due to Umax = 1.0, the first and second portions of
a migratable task are easily overlapped. As a result, EDDP
causes more extra preemptions. However, EDDP suppresses
the number of preemptions to about 0.5 ∼ 0.7 times as many
as EKG-2 that takes a similar splitting task approach. EKG-
M causes at most about 20 times as many preemptions as
EDDP in exchange for its optimality. Meanwhile, EDZL
causes about 1.5 times as many preemptions as EDDP.

6. CONCLUSION
This paper presented the EDDP algorithm for efficient

scheduling of recurrent real-time tasks on multiprocessors.
The algorithm was designed based on the portioned schedul-
ing technique. The schedulable condition for all tasks to
meet deadlines was derived by scheduling analysis. The
worst-case system utilization with guarantee of timing con-
straints was then proven to be 65%. To the best of our
knowledge, any non-optimal algorithms can achieve higher
worst-case system utilization.

Beyond the theoretical analysis, the effectiveness of EDDP
was validated by several sets of simulations in terms of the
achievable system utilization and the average number of

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 r
el

at
iv

e
nu

m
be

r
of

 ta
sk

 p
re

em
pt

io
ns

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 18: Task preemptions: Umax = 1.0, M = 8

 0

 5

 10

 15

 20

 25

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
he

 r
el

at
iv

e
nu

m
be

r
of

 ta
sk

 p
re

em
pt

io
ns

System utilization

EDDP
EDDHP
EDF-FF
EDF-BF

EDZL
EKG-2
EKG-M

Figure 19: Task preemptions: Umax = 1.0, M = 16

preemptions. The simulation results showed that EDDP
achieved higher system utilizations with a smaller number
of preemptions, compared to EDZL, EDDHP and EKG-2.
Although EKG with large k outperformed EDDP in terms of
achievable system utilization, it caused more preemptions.
EDF-FF and EDF-BF offered less preemptions, however
their achievable system utilizations were much lower than
EDDP. In consequence, this paper believes that EDDP can
be a new alternative for the scheduling of recurrent real-time
tasks on multiprocessors.

7. REFERENCES
[1] J. Anderson and A. Srinivasan. Early-Release Fair

Scheduling. In Proc. of the Euromicro Conference on
Real-Time Systems, pages 35–43, 2000.

[2] B. Andersson and E. Tovar. Multiprocessor Scheduling
with Few Preemptions. In Proc. of the IEEE
International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 322–334,
2006.

[3] T. Baker. An Analysis of EDF Schedulability on a
Multiprocessor. IEEE Transactions on Parallel and
Distributed Systems, 16:760–768, 2005.

[4] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel.
Proportionate Progress: A Notion of Fairness in
Resource Allocation. Algorithmica, 15:600–625, 1996.

[5] S. Baruah, J. Gehrke, and C. Plaxton. Fast Scheduling
of Periodic Tasks on Multiple Resources. In Proc. of
the International Parallel Processing Symposium,
pages 280–288, 1995.

[6] J. Calandrino, H. Leontyev, A. Block, U. Devi, and
J. Anderson. LITMUSRT: A Testbed for Empirically
Comparing Real-Time Multiprocessor Schedulers. In
Proc. of the IEEE Real-Time Systems Symposium,
pages 111–123, 2006.

[7] H. Cho, B. Ravindran, and E. Jensen. An Optimal
Real-Time Scheduling Algorithm for Multiprocessors.
In Proc. of the IEEE Real-Time Systems Symposium,
pages 101–110, 2006.

[8] S. Cho, S. Lee, A. Han, and K. Lin. Efficient
Real-Time Scheduling Algorithms for Multiprocessor
Systems. IEICE Transactions on Communications,
E85-B(12):2859–2867, 2002.

[9] M. Cirinei and T. Baker. EDZL Scheduling Analysis.
In Proc. of the Euromicro Conference on Real-Time
Systems, pages 9–18, 2007.

[10] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling
Problem. Operations Research, 26:127–140, 1978.

[11] K. Funaoka, S. Kato, and N. Yamasaki.
Work-Conserving Optimal Real-Time Scheduling on
Multiprocessors. In Proc. of the Euromicro Conference
on Real-Time Systems, pages 13–22, 2008.

[12] S. Kato and N. Yamasaki. Real-Time Scheduling with
Task Splitting on Multiprocessors. In Proc. of the
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications,
pages 441–450, 2007.

[13] S. Kato and N. Yamasaki. Portioned Static-Priority
Scheduling on Multiprocessors. In Proc. of the IEEE
International Parallel and Distributed Processing
Symposium, 2008.

[14] C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard Real-Time
Environment. Journal of the ACM, 20:46–61, 1973.

[15] J. Lopez, J. Diaz, and D. Garcia. Utlization Bounds
for EDF Scheduling on Real-Time Multiprocessor
Systems. Real-Time Systems, 28:39–68, 2004.

[16] X. Piao, S. Han, H. Kim, M. Park, Y. Cho, and
S. Cho. Predictability of Earliest Deadline Zero Laxity
Algorithm for Multiprocessor Real-Time Systems. In
Proc. of the IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed
Computing, pages 359–364, 2006.

[17] A. Srinivasan and S. Baruah. Deadline-based
Scheduling of Peroidic Task Systems on
Multiprocessors. Information Processing Letters,
84(2):93–98, 2002.

[18] A. Srinivasan, P. Holman, J. Anderson, and S. Baruah.
The Case for Fair Multiprocessor Scheduling. In Proc.
of the IEEE International Parallel and Distributed
Processing Symposium, pages 22–26, 2003.

[19] H. Wei, Y. Chao, S. Lin, K. Lin, and W. Shih.
Current Results on EDZL Scheduling for
Multiprocessor Real-Time Systems. In Proc. of the
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications,
pages 120–130, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

