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Abstract

This paper proposes an efficient real-time scheduling al-
gorithm for multiprocessor platforms. The algorithm is a
derivative of the Rate Monotonic (RM) algorithm, with its
basis on the portioned scheduling technique. The theoreti-
cal design of the algorithm is well implementable for practi-
cal use. The schedulability of the algorithm is also analyzed
to guarantee the worst-case performance. The simulation
results show that the algorithm achieves higher system uti-
lizations, in which all tasks meet deadlines, with a small
number of preemptions compared to traditional algorithms.

1 Introduction

Embedded real-time applications in recent years have
relied on a power of multiprocessor platforms. With the
trend towards chip multiprocessing [20], processor clock
frequency can be turned down to contain power consump-
tion and heat generation for embedded computing. The con-
cern herein is the guarantee of timing constraints for recur-
rent real-time computing. The well-known Rate Monotonic
(RM) and Earliest Deadline First (EDF) algorithms [15],
which are optimal in uniprocessor scheduling, are no longer
optimal in multiprocessor scheduling [11]. They rather per-
form far poorly depending on properties of task sets. There-
fore, alternative scheduling techniques specific for multi-
processor platforms have been discussed recently.

At present, the Pfair algorithms [1, 7, 8], the EKG algo-
rithm [4], and the LLREF algorithm [9] are known optimal
for multiprocessors. The worst-case bounds on the achiev-
able system utilizations, with the guarantee of real-time
constraints, offered by those algorithms are 100%. How-
ever, their computation complexities and scheduling over-
heads are controversial. Thus, more reasonable scheduling
algorithms, which are not able to achieve utilization bounds
of 100% but perform with less computation complexities
and smaller numbers of task preemptions, are often prefer-
able for practical use. For instance, the EDF-US[1/2] al-
gorithm [5], the EDZL algorithm [10], and the Ehd2-SIP
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algorithm [12] are known to perform relatively well with
small numbers of task preemptions, though their utilization
bounds are down to 50% in the worst case. In fact, no al-
gorithms except for the Pfair, EKG, and LLREF algorithms
have ever achieved worst-case utilization bounds over 50%.

All the algorithms introduced above are categorized into
dynamic-priority scheduling. In general, dynamic-priority
scheduling suffers from the domino-effect problem that a
deadline miss of a job causes another deadline miss of a fol-
lowing job. It also has a disadvantage of variational jitters
in periodic executions, which are not desired in embedded
control applications. The primary advantage of dynamic-
priority scheduling has been its ability of achieving high
utilization bounds, however such an advantage is not likely
to stand on multiprocessors. Meanwhile, static-priority
scheduling does not suffer from the domino-effect and peri-
odic jitter problems, though its achievable utilization bound
has been inferior to dynamic-priority scheduling. In re-
cent years, Andersson et al. proved that static-priority
scheduling is also able to achieve a utilization bound of
50% on multiprocessors, though no higher bounds cannot
be obtained [3]. Therefore, this paper considers that static-
priority scheduling may be more efficient than dynamic-
priority scheduling for multiprocessor platforms.

This paper proposes an efficient real-time scheduling al-
gorithm for multiprocessor platforms. The algorithm is a
derivative of the RM algorithm. The objective of the algo-
rithm to achieve high schedulable utilizations, i.e. system
utilizations in which all recurrent real-time tasks are guar-
anteed to meet deadlines, with a small number of task pre-
emptions. The worst-case utilization bound is also achieved
50%. In addition, this paper aims the theoretical design of
the algorithm being implementable for practical use.

2 Related Work

Traditionally, there have been two approaches for
scheduling real-time tasks on multiprocessors: global
scheduling and partitioned scheduling. In global schedul-
ing, all eligible tasks are stored in a single priority-ordered
queue, and a global scheduler dispatches the same number
of the highest priority tasks as processors from this queue.
The relative order of the task priorities varies depending on
which tasks are eligible, hence a task may migrate among
processors. Meanwhile in partitioned scheduling, each task



is assigned to a single processor, on which each of its jobs
will be executed, and processors are scheduled indepen-
dently. Therefore, a task is executed on a dedicated pro-
cessor and never migrates among processors.

Letting M be the number of processors, the global RM
algorithm can miss a deadline even for the case in which
tasks utilize only 1/M of the system [11]. Baker general-
ized that a set of periodic tasks, all with deadlines equal to
periods, is guaranteed to be schedulable using the RM al-
gorithm, if the total utilization of the tasks does not exceed
M(1−umax)/2+umin, where umax and umin are the maximum
and minimum utilizations of every individual task respec-
tively [6]. Andersson et al. invented a global scheduling
algorithm called RM-US[M2/(3M − 2)] [2], which places
the highest priority to the tasks with utilizations higher than
M2/(3M − 2) and places the RM priorities to the other
tasks. This prioritization boosts the worst-case utilization
bound to M/(3M − 2). Hereinafter, RM-US[M2/(3M − 2)]
is denoted by RM-US for simplicity of description. Rama-
murthy et al. proposed another global scheduling algorithm
called Weight-Monotonic (WM) [21], which extends the
Pfair scheduling method to take the static-priority assign-
ment. In [3], Andersson et al. proved that the worst-case
utilization bound of the WM algorithm is 50% that is higher
than the RM and RM-US algorithms and no static-priority
algorithms can transcend this bound. However, the WM al-
gorithm generates a large number of task preemptions due
to the characteristic of Pfair scheduling.

In general, partitioned scheduling approaches are pre-
ferred to global scheduling approaches for practical use,
because no task migrations occur in partitioned schedul-
ing and the scheduling problem can be reduced to a set
of uniprocessor ones once the tasks are partitioned. The
most well-known algorithm is RM-FF [11], which use the
First-Fit (FF) heuristic to partition the tasks. Appending
a little complexity, the RM-FFDU algorithm [19], which
conducts the FF heuristic after sorting the tasks in decreas-
ing order of utilizations, usually performs better than the
RM-FF algorithm. R-BOUND-MP [14] is another efficient
algorithm that takes similar schedulability tests and heuris-
tics, in which tasks are initially sorted in increasing order of
periods. Oh and Baker proved that a task set is guaranteed
to be schedulable by the RM-FF algorithm if the system uti-
lization does not exceed

√
2−1 � 41% [18]. More recently,

because 41% was a lower bound and there was still room for
improvement, Lopez et al. presented a tighter utilization
bound for the RM-FF algorithm [17]. Using a similar tech-
nique, Lopez et al. also clarified the utilization bound of
the RM-FFDU algorithm [16]. Andersson et al. considered
using the next-fit-ring (NFR) heuristic for the R-BOUND-
MP algorithm instead the FF heuristic, and then derived its
worst-case utilization bound of 50% [3].

3 System Model

The system is a memory-shared multiprocessor com-
posed of M processors: P1, P2, ..., PM. The code and data
of programs (tasks) are shared among the processors. The

overhead of inter-processor communications is neglected.
In other words, the cost of task migrations is not taken
into account. Recent advancements of processor technol-
ogy have somewhat allowed such an assumption. For ex-
ample, the responsive multithreaded (RMT) processor, in-
vented by Yamasaki [22], supports a hardware function to
switch a context to another context in four clock cycles re-
gardless the switching occurs whether between processors
or within a processor. In addition, there is little point in
taking notice of the cost of every context switch in terms
of scheduling algorithms, since the cost highly depends on
processor specifications. Thus, it is more variant to focus on
how often context switches occur for the discussion of the
run-time overhead. This paper takes the number of context
switches as a performance metric of the run-time overhead.
This paper also ignores the behavior of a cache system. The
performance deterioration of computations due to transient
degradation of the cache hit ratio, often caused by migra-
tions, is out of focus. This sorts of concerns are turned over
to the worst-case execution time analysis.

The system has a set of N periodic tasks, denoted by Γ =
{τ1, τ2, ..., τN}. The ith periodic task is defined by τi(Ci, Ti)
where Ci is its worst-case execution time and Ti is its period
(Ci ≤ Ti). The processor utilizaion of τi is defined by Ui =

Ci/Ti. A task generates a sequence of jobs periodically. The
jth job of τi is denoted by τi, j that is released at time ri, j

and its deadline is equal to the release time of the next job,
i.e. di, j = ri, j+1 = ri, j + Ti. The total utilization of the
give task set is defined by U(Γ) =

∑
τi∈ΓUi. Also, letting

Λ be any subset of the given task set, the total utilization of
the subset is denoted by U(Λ) =

∑
τi∈Λ Ui. The set of the

tasks executed on a processor Px is denoted by Πx. All the
tasks are preemptive and independent. Therefore, no tasks
synchronize with any task, and make critical sections such
as I/O processing. Any job of a task cannot be executed in
parallel, which means that, for any i and j, τi, j cannot be
executed in parallel on more than one processor.

4 Scheduling Algorithm

This section proposes the Rate Monotonic Deferrable
Portion (RMDP) scheduling algorithm that is a derivative
of the RM algorithm [15], with its basis on the portioned
scheduling technique [12]. The algorithm is designed well
implementable for practical use. In the following subsec-
tions, the basic strategy of the portioned scheduling tech-
nique is first introduced. Then, the theoretical design of
the RMDP algorithm is presented. The schedulable con-
dition and the worst-case utilization bound of the RMDP
algorithm are finally analyzed.

4.1 Portioned Scheduling Technique

The portioned scheduling strategy [12] is formed of the
task assigning phase and the task scheduling phase. In the
task assigning phase, each task is assigned to a particular
processor like the partitioning approach, as long as the task
does not cause the total utilization of the processor to ex-
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Figure 1. Portioning example

ceed its utilization bound. If the total utilization surpasses
the utilization bound, the task is virtually split into two por-
tions in the sense of utilization, whereas in the partition-
ing approach the task is just assigned to another processor
which can receive the full utilization of the task. As for the
virtually-split task, one portion is assigned to the processor
to which the tasks are being assigned, and the other por-
tion is assigned to the next processor to which the following
tasks will be assigned. Notice that “virtually-split” means
that the task is not really divided into two blocks, but its uti-
lization is shared on the two processors. In this paper, such
a task splitting is defined portioning.

Figure 1 shows an example of portioning. The height of a
box in which the name of a task is indicated is the processor
utilization of the task. The example presumes that τi and τ j

are already assigned to Px and τk is about to be assigned,
but if assigned it causes the total utilization of Px to exceed
its utilization bound. The partitioning approach in this case
just assigns τk to another processor, such as Px+1, while the
portioning approach virtually splits τk into two portions τ′k
and τ′′k . In this paper, τ′k is defined the first portion of τk and
τ′′k is defined the second portion of τk. Then, τ′k is assigned
to Px and τ′′k is assigned to Px+1 respectively. As a result,
the portioning approach obviously improves the utilization
of Px compared to the partitioning approach.

In the task scheduling phase, τk is served by τ′k on Px and
is served by τ′′k on Px+1. In other words, letting C′k and C′′k
be the assigned execution times of τ′k and τ′′k respectively,
τk consumes C′k time units on Px and C′′k time units on Px+1

within every period Tk. The execution times of τ′k and τ′′k
are computed as follows.

C′k = Tk(Ub − Ui − U j)

C′′k = Ck −C′k

Note that τ′k and τ′′k form the same task τk, thereby they can-
not be scheduled simultaneously, since no jobs have paral-
lelism under the assumption. Hence, the scheduling algo-
rithm must be designed so that the first portion and the sec-
ond portion of a split task are scheduled exclusively.

4.2 Task Assigning Algorithm

The task assigning algorithm of RMDP is straightfor-
ward. The algorithm assumes that the given task set is
sorted so that the period of τi is smaller than or equal to that

Assumption:
i is the index of the tasks.
x is the index of the processors.
n is the number of the tasks assigned to Px.
cs1 is the execution time of the first portion.
cs2 is the execution time of the second portion.
ts is the period of a split task.
tm is the minimal period of the tasks assigned to Px.
U∗(Px) is the utilization bound of Px.
Γ is sorted so that T1 ≤ T2 ≤ ... ≤ Tn.

1. i = x = n = 1
2. cs1 = cs2 = ts = tm = 0
3. ∀Πx = ∅
4. U∗x = rmdp bound(n, Ti, cs1, cs2, ts, tm)
5. if U(Πx) + Ui ≤ U∗x
6. Πx = Πx ∪ τi

7. else if x < M
8. C′i = {U∗x − U(Πx)}Ti and C′′i = Ci −C′i
9. split τi into τ′i (C

′
i , Ti) and τ′′i (C′′i , Ti)

10. Πx = Πx ∪ τ′i and Πx+1 = {τ′′i }
11. x = x + 1
12. n = 0
13. if i + 1 ≤ N
14. cs1 = C′i , cs2 = C′′i , ts = Ti, tm = Ti+1

15. else
16. return FAILURE
17. i = i + 1
18. n = n + 1
19. if i ≤ N
20. go back to step 4
21. return SUCCESS

Figure 2. RMDP assigning algorithm

of τi+1 for any i. Then, the algorithm assigns the tasks to
the processors sequentially, and if some task causes the total
utilization of a processor to exceed its utilization bound, it
splits the task into two portions. The first portion is assigned
to the processor which is caused to exceed its utilization
bound, and the second portion is assigned to the next pro-
cessor to which the following tasks will be assigned. This
procedure is repeated until all the tasks are successfully as-
signed or no processors remain the spare capacities.

Figure 2 shows the pseudo code of the RMDP assigning
algorithm. When the initializations are done (lines 1 to 3),
the algorithm calls the rmdp bound function, which is in-
dicated in Figure 3, to calculate the utilization bound of a
processor Px to which a task τi will be assigned (line 4).
The content of the rmdp bound function, i.e. the method of
calculating the utilization bound, is particularly described in
Section 5. Once the utilization bound U∗x is calculated, the
algorithm assigns τi to a processor Px, as long as the total
utilization of Px will not exceed the utilization bound (lines
5 to 6). If τi causes Px to exceed the utilization bound, τi

is going to be split into τ′i and τ′′i according to the follow-
ing procedure. At first, the execution times of τ′i and τ′′i
are calculated (line 8). Then, τi is split into τ′i (C

′
i , Ti) and



Arguments: (n, Ti, C′s, C′′s , Ts, Tmin)
1. if C′′s = 0
2. return n(21/n − 1)
3. else
4. L = 
(Ti − Ts +C′s)/Ts�
5. U′′s = C′′s /Ts

6. Rs = Tmin/Ts

7. return U ′′s + n{(2 − LU ′′s /Rs)1/n − 1}

Figure 3. rmdp bound function

τ′′i (C′′i , Ti) (line 9). τ′i is assigned to Px and τ′′i is assigned to
Px+1 (line 10). The algorithm saves the values of C′i ,C

′′
i , Ti

and Ti+1 (line 14) for carrying out the rmdp bound function
in the next iteration. Finally, the algorithm goes back to the
step 4 (line 20) as long as there are still tasks remaining to
assign to the processors. When all the tasks are successfully
assigned, the algorithm is succeeded (line 21).

Figure 4 depicts an example of task assignments by the
RMDP assigning algorithm. Consider a task set Γ com-
posed of eight tasks: Ti ≤ Ti+1: τ1(1, 5), τ2(2, 5), τ3(1, 8),
τ4(5, 10), τ5(3, 12), τ6(2, 12), τ7(12, 20), and τ8(4, 20). Note
that Γ is already sorted so that Ti ≤ Ti+1 is satisfied for any i
where ties of periods are broken arbitrarily. As stated above,
the algorithm sequentially assigns the tasks. Evaluating the
rmdp bound function with n = 1, the utilization bound of
100% is obtained, and hence τ1 can be assigned to P1. Next,
the algorithm is supposed to evaluate the rmdp bound func-
tion with n = 2. According to Kuo and Mok [13], the num-
ber of the tasks is reduced to the number of the harmonic
chains in RM scheduling. A harmonic chain is a group of
the tasks whose periods have the same least common multi-
ple. Taking the harmonic chains into account, the 23rd line
of Figure 2 can be extended so that it is carried out only if
the period of the next task is not included in any harmonic
chains. Thus, the example evaluates the rmdp bound func-
tion with n = 1 due to T1 = T2, and τ2 can be of course
assigned to P1. τ3 does not have a period with the same
least common multiple as τ1 and τ2, then n = 2 is input
to the rmdp bound function, while τ4 has a period with the
same least common multiple as them, and hence n = 2 is
remained to the rmdp bound function. The resulting uti-
lization bound of 0.83 is obtained by the rmdp bound func-
tion for n = 2. Since U1 + U2 + U3 + U4 = 1.225 ex-
ceeds 0.83, τ4 is split into τ′4(1, 10) and τ′′4 (4, 10) so that
U1 + U2 + U3 + U ′4 = 0.825 ≤ 0.83 and U ′′4 = U4 − U ′4.
By the same token, the rest of the tasks are classified into
Π2 = {τ′′4 (4, 10), τ5, τ

′
6(1, 12)} and Π3 = {τ′′6 (1, 12), τ7, τ8},

though the utilization bounds are calculated with taking into
account that split tasks are assigned in those sets.

4.3 Task Scheduling Algorithm

This section presents the task scheduling algorithm of
RMDP. Like partitioned scheduling, each processor has its
own scheduler to schedule the assigned tasks on the pro-
cessor. All the schedulers have the same scheduling poli-
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Figure 4. RMDP assigning example

cies. The following descriptions focus on the scheduling on
a processor Px where a task τi submits its second portion τ′′i
and another task τk submits its first portion τ′k. The sched-
ulers on other processors perform in the same manner, since
the same scheduling policies are applied.

The basic policy of the scheduling algorithm is that the
tasks are scheduled according to the RM algorithm except
for the case in which τ′′i is ready but its corresponding first
portion τ′i is on execution on a neighbor processor Px−1. In
this case, the RMDP scheduler dispatches a task with the
second highest priority so as not to execute the first and the
second portions of τi simultaneously. In other words, the
second portion is deferred with the highest priority. There-
fore, the prioritization discipline of the RMDP algorithm is
not static in a true sense.

Figure 5 shows the pseudo code of the RMDP scheduler.
Every time any tasks are released on Px, the schedule Px

function is invoked (lines 1 to 7). Let t be such a time. At
time t, if the split tasks τi and τk are released, the scheduler
needs to reset the variables ti, tk, ei and ek, in order to track
the remaining execution times of those tasks. Note that τi

and τk are not allowed to consume the processor time of
Px over the capacities C′′i and C′k respectively, but the tasks
cannot recognize voluntarily that they exhaust the capaci-
ties. Thus, the scheduler needs to track the remaining exe-
cution times of those tasks to preempt their executions using
timer functions.

The scheduler function proceeds as follows. First of all,
if the currently-running task is either a split portion of τi or
τ j, the scheduler saves its remaining execution time (lines
11 to 13). Then, it selects a task with the shortest period
(line 15). If the selected highest-priority task is τi that has
its second portion on the processor (line 16), the scheduler
examines whether τi is currently in execution on a neighbor
processor Px+1 (line 17). If it is in execution, the sched-
uler re-selects a task with the second shortest period (line
18). Otherwise, τi is going to be dispatched and executed,
so the scheduler updates the timer to invoke the second end
function at time t + ei, which preempts the execution of τi

(line 20). Notice that the second end function may not be
invoked at time t + ei, since it may be updated if τi is pre-
empted and later dispatched again within the same period.



Assumption:
τi is a split task between Px−1 and Px.
τk is a split task between Px and Px+1.
t is the current time.
ti is the last time at which τi is dispatched on Px.
tk is the last time at which τk is dispatched on Px.
ei is the remaining execution time of τi.
ek is the remaining execution time of τk.

1. function system tick
2. if any tasks are released on Px

3. if τi is released
4. ei = C′′i and ti = t
5. if τk is released
6. ek = C′k and tk = t
7. call schedule Px

8. function schedule Px

9. if Px is idling
10. go to step 15
11. if τi is currently running
12. ei = ei − (t − ti)
13. else if τk is currently running
14. ek = ek − (t − tk)
15. let τ j be a task with the shortest period
16. if τ j refers to τi

17. if τi is in execution on Px−1

18. let τ j be a task with the second shortest period
19. else
20. update the timer to invoke p2 finished at t + ei

21. ti = t
22. else if τ j refers to τk

23. update the timer to invoke p1 finished at t + ek

24. tk = t
25. if τk is in execution on Px+1

26. invoke schedule Px+1 on Px+1

27. dispatch and execute τ j on Px

Figure 5. RMDP scheduling algorithm

Time t + ei is just the earliest time at which τi can exhaust
C′′i . As long as the remaining execution time of τi is tracked,
τi is guaranteed not to overrun the capacity C′′i on Px. Af-
ter updating the timer, the scheduler must save the current
time as the last dispatched time of τi for tracking its re-
maining execution time. By the same token, if the selected
task is τk that has its first portion on the processor (line 22),
the scheduler updates the other timer to invoke the first end
function at time t + ek, which preempts the execution of τk,
and saves the current time as the last dispatched time of τk

(lines 23 to 24). Unlike the case of τi, if the correspond-
ing second portion of τk is currently in execution on Px+1

(line 25), the scheduler needs to invoke the scheduler func-
tion that is operating on Px+1 to let it reschedule the tasks
on Px+1 (line 26), since the second portion must be deferred
while the corresponding first portion is executed. Finally,
the scheduler executes the selected task on Px (line 27).

The job finishing functions are indicated in Figure 6.
When any jobs except for those of the split tasks are com-
pleted, the jobs call the job end function (lines 1to 3). The
first end and second end functions are called only through
the timers. Those functions call the scheduler to reschedule

1. function job end
2. remove the caller task from a ready set
3. call schedule Px

4. function first end
5. remove τr from a ready set
6. call schedule Px

7. if τk is ready on Px+1

8. invoke schedule Px+1 on Px+1

9. function second end
10. remove τi from a ready set
11. call schedule Px

Figure 6. Job finishing functions
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the tasks (lines 3, 6, and 11). Only when τk consumes the
capacity C′k on Px but has not consumed the capacity C′′k on
Px+1, the scheduler invokes the scheduler operating on Px+1

to execute τk on Px+1, since τk has the highest priority on
Px+1 but has been deferred.

Figure 7 indicates how the three task sets of Π1 =

{τ1(1, 5), τ2(2, 5), τ3(1, 8), τ′4(1, 10)}, Π2 = {τ′′4 (4, 10),
τ5(3, 12), τ′6(1, 12)} and Π3 = {τ′′6 (1, 12), τ7(12, 20),
τ8(4, 20)}, are scheduled by the RMDP algorithm. Since
Π1 does not include the second portion of a split task, the
task set is scheduled completely according to the RM pol-
icy. Meanwhile, Π2 includes τ′′4 and it is interfered by its
corresponding first portion τ′4. At time t = 0, τ′′4 is sched-
uled on P2 and then completed at time t = 4 without any
interference from τ′4, because τ′4 is scheduled at time t = 4
on P1. As for the second job of τ4, on the other hand, τ′′4
is scheduled at time t = 10 on P2 but is preempted at time
t = 13, because τ′4 is scheduled at this time on P1. Hence,
τ5 is scheduled instead of τ′′4 and τ′′4 is later resumed when
τ′4 is completed at time t = 14. The third job of τ4 also has
the same situation. In this case, there are no ready tasks on
P1 when τ′′4 is preempted at time t = 23. Therefore, the
time slot is left idle. Although Π3 also includes the second
portion τ′′6 , the tasks on P3 can be scheduled without any
restrictions within the example, since τ′6 and τ′′6 are never
overlapped in RM scheduling.

5 Schedulability Analysis

This section provides the schedulability analysis of the
RMDP algorithm to guarantee the worst-case performance.
The analysis has the following assumptions. In the task as-
signing phase, some task τs is split and its second portion
τ′′s is assigned to a processor Px. Then, the following n
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tasks, denoted by τ1, τ2, ..., τn for simplicity of description,
are also assigned to Px. Note that the first portion of a split
task is not a concern, because the RMDP scheduler treats it
in the same manner as the non-split tasks. The goal of the
analysis is to derive a formula leading to the schedulable
condition of Px for any x.

According to the RM analysis [15], the minimal schedu-
lable utilization for n tasks occurs for the case in which all
the tasks are released at the same time with the following
relations: T1 < Tn < 2T1, Ci = Ti+1 − Ti (1 ≤ i ≤ n− 1) and
Cn = 2T1 − Tn. Thus, the minimal schedulable utilization
for non-split n tasks in the RMDP algorithm also occurs for
this condition, those tasks are scheduled according to the
RM algorithm. Now therefore, the worst-case phasing of
τ′′s is a concern. For a fixed value of U ′′s , the remaining uti-
lization of Px is obviously minimized when τ′′s submits as
many jobs as possible. That occurs for the case in which
an arbitrary job of τ′′s is deferred as much as possible and
its following jobs are executed without any preemptions as
soon as they are released. Such worst-case phasing is classi-
fied into three cases, shown in Figure 8, Figure 9 and Figure
10. The difference between the three phases is that τ′′s is ex-
ecuted (i) twice within T1 and Tn in the phase 1, (ii) three
times within T1 and Tn in the phase 2, and (iii) twice with
in T1 and three times within Tn in the phase 3. The analysis
does not need to consider the case in which τ′′s is executed
more than three times within T1 or Tn, since the condition
of the worst-case phasing includes T1 < Tn < 2T1.

For simplicity of description, the fraction of Ts and T1 is
defined Rs = T1/Ts and that of the periods of two consec-
utive tasks τi and τi+1 is defined Ri = Ti+1/Ti henceforth.
Notice that ∀k,R1R2 · · ·Rk−1 = Tk/T1. Also it is necessary
to have the minimum slack S in the figures to obtain the
schedulable utilization. Since τ′′s has the highest priority
on the processor, it is only deferred by τ′s scheduled on the
neighbor processor. Therefore, the latest finish time of τ′′s is
rs,k + C′s + C′′s = rs,k + Cs = rs,k+1 − (Ts − Cs). As a result,
the minimal slack can be expressed by S = Ts −Cs.

5.1 Case of Phase 1

The analysis begins with the simplest case in which τ′′s
is executed twice within T1 and Tn as shown in Figure 8.

Under this relation, the execution times of the n tasks are
denoted as follows.

Ci = Ti+1 − Ti (1 ≤ i ≤ n − 1)
Cn = T1 − 2C′′s −

∑n−1
j=1 C j = 2T1 − 2C′′s − Tn

Hence, the resulting utilization is written as Equation (1).

U =
C′′s
Ts
+

C1

T1
+

C2

T2
+ · · · + Cn

Tn

= U ′′s +
n−1∑
i=1

Ti+1 − Ti

Ti
+

2T1 − 2C′′k − Tn

Tn

= U ′′s +
n−1∑
i=1

Ti+1

Ti
+ 2

(
1 − C′′s

T1

)
T1

Tn
− n

= U ′′s +
n−1∑
i=1

Ri +
2
(
1 − U′′s

Rs

)
R1R2 · · ·Rn−1

− n (1)

In order to minimize U over Ri, the above expression is par-
tially differentiated with respect to Ri.

∂U
∂Ri
= 1 −

2
(
1 − U′′s

Rs

)
R2

i (
∏n−1

j�i R j)

Now, U is minimized when each Ri satisfies the following
equation where P = R1R2 · · ·Rn−1.

RiP = 2

(
1 − U ′′s

Rs

)
(1 ≤ i ≤ n − 1)

That is, U is minimized when all the Ri have the same value.

R1 = R2 = · · · = Rn−1 =

{
2

(
1 − U ′′s

Rs

)}1/n

By substituting the value of each Ri to Equation (1), the
utilization bound Ub is obtained as follows. Here, let K =
2(1 − U ′′s /Rs) due to limitation of space.

Ub = U ′′s + (n − 1)K1/n +
K

Kn−1/n
− n

= U ′′s + nK1/n − K1/n + K1/n − n

= U ′′s + n


(

2(1 − U ′′s )

Rs

)1/n

− 1


The above expression implies that Ub is moreover mini-
mized by reducing the value of Rs. According to Figure
8, the condition below must be satisfied.

n∑
i=1

Ci = T1 − 2C′′s ≥ S = Ts −Cs

Dividing by Ts, the range of Rs is acquired as follows.

Rs − 2U ′′s ≥ 1 − Us

Rs ≥ 2U ′′s − Us + 1

The condition of Ts ≤ T1 leads to Rs ≥ 1. Hence, Ub is
minimized when Rs = max{1, 2U ′′s −Us + 1}. Finally, Ub is
described by Equation (2) where Rs = max{1, 2U ′′s −Us+1}.

Ub = U ′′s + n


{

2

(
1 − U ′′s

Rs

)}1/n

− 1

 (2)
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Figure 9. Case in which τ′′s is executed three
times within T1 and Tn

Taking the limit as n→ ∞, the worst case is derived.

lim
n→∞Ub = U ′′s + ln

{
2

(
1 − U ′′s

Rs

)}
(3)

Equation (3) is a monotonically-increasing function with re-
spect to Rs. Since Ts ≤ T1, Rs is never less than 1. Hence,
Equation (3) is minimized to Equation (4) with Rs = 1.

Ûb = U ′′s + ln{2(1 − U ′′s )} (4)

Consequently, the absolute minimum value of the utiliza-
tion bound becomes Ûb = 0.5 with U ′′s = 0.5 and Us = 1.
Note that this bound is given only for the situation in which
Ts = T1 = T2 = · · · = Tn and C1 = C2 = · · · = Cn = 0.

5.2 Case of Phase 2

The analysis moves on the case in which τ′′s is executed
three times within T1 and Tn as shown in Figure 9. The
execution times of the n tasks are defined as follows.

Ci = Ti+1 − Ti (1 ≤ i ≤ n − 1)
Cn = T1 − 3C′′s −

∑n−1
j=1 C j = 2T1 − 3C′′s − Tn

Hence, the resulting utilization is written as Equation (5).

U = U ′′s +
n−1∑
i=1

Ti+1

Ti
+

(
2 − 3C′′s

T1

)
T1

Tn
− n

= U ′′s +
n−1∑
i=1

Ri +
2 − 3U′′s

Rs

R1R2 · · ·Rn−1
− n (5)

The value of Ri that minimizes Equation (5) can be calcu-
lated by the same step in Section 5.1. That is, the utilization
bound is obtained by the following expression.

Ub = U ′′s + n


(
2 − 3U ′′s

Rs

)1/n

− 1


Notice that the above expression is a monotonically-
increasing function with respect to Rs. Hence, it is mini-
mized by reducing the value of Rs. In order to find the min-
imum value of Rs, the value of T1 must be explored first.
Figure 9 leads to T1 as follows.

T1 = Ts + 2C′′s + S = 2Ts + 2C′′s − Cs

Tk+1

Tk

T1

T2

1

2

k

k+1

0 Tn

Tn-1
n-1

n

's
S

Figure 10. Case in which τ′′s is executed twice
within T1 and three times within Tn

Dividing by Ts, the value of Rs is acquired as follows.

Rs = 2U ′′s − Us + 2

Hence, Ub is now expressed by Equation (6).

Ub = U ′′s + n


(
2 − 3U ′′s

2U ′′s − Us + 2

)1/n

− 1


= U ′′s + n


(

U ′′s − 2Us + 4

2U ′′s − Us + 2

)1/n

− 1

 (6)

Taking the limit as n→ ∞, the worst case is appeared.

lim
n→∞Ub = U ′′s + ln

(
U ′′s − 2Us + 4

2U ′′s − Us + 2

)
(7)

In order to find the value of U′′s minimizing Ub, Equation
(7) is differentiated with respect to U′′s .

∂Ub

∂U ′′s
=

2U ′′s
2 + (10 − 5Us)U ′′s + 2U2

s − 5Us + 2

(U ′′s − 2Us + 4)(2U ′′s − Us + 2)

Finally, the value of U′′s that minimizes Ub is obtained by
Equation (8).

Û ′′s =
5Us − 10 +

√
9U2

s − 60Us + 84

4
(8)

Since U′′s ≥ 0, the absolute minimum value of the utiliza-
tion bound becomes Ûb � 0.652 with U ′′s � 0.186 and
Us = 1. Since the previous case has a lower utilization
bound of 50%, this case is not the worst case.

5.3 Case of Phase 3

The final case the analysis considers is a combination of
the previous two cases. Since τ′′s is executed twice within
T1 while is executed three times within Tn, the execution
times of the n tasks are denoted as follows.

Ci = Ti+1 − Ti (1 ≤ i ≤ k − 1)
Ck = Tk+1 − C′′s − Tk

Ci = Ti+1 − Ti (k + 1 ≤ i ≤ n − 1)
Cn = T1 − 2C′′s −

∑n−1
j=1 C j = 2T1 −C′′s − Tn



Then, the resulting utilization is written as Equation (9).

U = U ′′s +
k−1∑
i=1

Ti+1 − Ti

Ti
+

Ck

Tk
+

n−1∑
i=k+1

Ti+1 − Ti

Ti
+

2T1 −C′′s − Tn

Tn

= U ′′s +
k−1∑
i=1

Ti+1

Ti
+ Uk +

n−1∑
i=k+1

Ti+1

Ti
+

(
2 − C′′s

T1

)
T1

Tn
−

(n − 1)

= U′′s +
k−1∑
i=1

Ri + Uk +

n−1∑
i=k+1

Ri +
2 − U′′s

Rs

R1R2 · · ·Rn−1
−

(n − 1) (9)

Unfortunately, it is too complicated to explore the value of
Ri that minimizes Equation (9) with respect to two variables
of n and k. Therefore, let the value of k be fixed first. Uk is
described by Uk = Rk−C′′s /Tk−1 due to Ck = Tk+1−C′′s −Tk,
Equation (9) can be transformed as follows.

U = U ′′s +
n−1∑
i=1

Ri − C′′s
Tk
+

2 − U′′s
Rs

R1R2R3 · · ·Rn−1
− n

The above expression implies that Equation (9) is obviously
minimized for k = 1 due to T1 ≤ T2 ≤ · · · ≤ Tn. Therefore,
Equation (9) is reduced as follows.

U = U′′s + U1 +

n−1∑
i=2

Ri +
2Rs − U ′′s

RsR1R2R3 · · ·Rn−1
− (n − 1)

In order to minimize U, the above expression is differenti-
ated with respect to Ri as follows, where 2 ≤ i ≤ n − 1.

∂U
∂Ri

= 1 − 2Rs − U ′′s
RsR1R2

i

∏n−1
j�i R j

That is, U is minimized when all the Ri have the same value.

R2 = R3 = · · · = Rn−1 =

(
2Rs − U ′′s

RsR1

)1/(n−1)

Now, the minimum value of U is described as follows.

U = U ′′s + U1 + (n − 2)

(
2Rs − U ′′s

RsR1

)1/(n−1)

+

2Rs − U ′′s

RsR1

(
2Rs−U′′s

RsR1

)1−1/(n−1)
− (n − 1)

= U ′′s + U1 + (n − 1)


(

2Rs − U ′′s
RsR1

)1/(n−1)

− 1


Ck = Tk+1−C′′s −Tk and k = 1 lead to R1 = U1+U ′′s /Rs+1.
Also, the value of Rs that minimizes the above expression
is max{1, 2U′′s − Us + 1} as in Section 5.1. Finally, the
utilization bound Ub is described by Equation (10) where
Rs = max{1, 2U ′′s − Us + 1} and m = n − 1.

Ub = U ′′s + U1 + m


{

2Rs − U ′′s
Rs(U1 + 1) + U ′′s

}1/m

− 1

(10)

Taking the limit as n→ ∞, the worst case is appeared.

lim
n→∞Ub = U ′′s + U1 + ln

{
2Rs − U ′′s

Rs(U1 + 1) + U ′′s

}
(11)

By the same token as Section 5.1, the minimum of Equation
(11) is expressed by Equation (12).

Ûb = U ′′s + U1 + ln

(
2 − U ′′s

U ′′s + 1 + U1

)
(12)

Seeking the values of U′′s and U1 that minimizes Ûb, the ab-
solute minimum bound is obtained Ûb � 0.5 with U ′′s = 1/2
and U1 = 0. This bound occurs only for the situation in
which Ts = T1 = T2 = · · · = Tk, Tk+1 = Tk+2 = · · · =
Tn = Ts + C′′s and C1 = C2 = · · · = Cn = 0. Comparing
the analyzed three cases, the worst-case utilization bound of
each processor is finally derived 50%. That is, the utiliza-
tion bound of the entire system is also 50%.

5.4 General Case

The tasks are sorted so that Ti ≤ Ti+1, hence T1 is a
known value when τs is split. In other words, Rs is a known
value when τs is split. Therefore, the worst-case is not nec-
essarily presumed, but the utilization bound can be calcu-
lated by either Equation (2), Equation (6), or (10).

The analysis now proceeds to consider the general case.
Equation (5) can be rewritten as follows.

U = U ′′s +
n−1∑
i=1

Ti+1

Ti
+

(
2 − C′′s

T1

)
T1

Tn
− n − 2C′′s

Tn
(13)

Equation (9) can be also rewritten as follows.

U = U′′s +
n−1∑
i=1

Ti+1

Ti
+

(
2 − C′′s

T1

)
T1

Tn
− n −

Tn
Tk

C′′s
Tn

(14)

Notice that Tn/Tk in Equation (14) never exceeds 2, because
τ′′s must be executed twice within Tk and three times within
Tn. Hence, Equation (5) is always smaller than Equation
(9) with respect to the same set of {Ts, T1, T2, ..., Tn}. This
fact implies that the utilization bound for the case in which
τ′′s is executed L times within T1 and Tn is always smaller
than that for the case in which τ′′s is executed F < L times
within T1 and is executed L times within Tn. Therefore,
the analysis needs to concern only the case in which τ′′s is
executed L times within Tn for the general case. Referring
to Figure 9, L can be described by the following expression.

L = 1 +

⌈
Tn − C′′s − S

Ts

⌉
= 1 +

⌈
Tn − Ts +C′s

Ts

⌉

Finally, the utilization utilization for the general case is ob-
tained by Equation (15).

Ub = U ′′s + n


(
2 − LU ′′s

Rs

)1/n

− 1

 (15)

The value of Equation (15) is 50% with L = 2, Us = 1
and U′′s = 0.5. Hence, the worst case is contained. Letting



U ′′s = 0, the analysis also contains the case in which there is
no task that has the second portion on Px. In fact, this case
leads to Equation (16) which is the well-known utilization
bound of the RM algorithm [15].

Ub = n(21/n − 1) (16)

6 Simulation Studies

This section evaluates the effectiveness of the RMDP
algorithm in terms of the schedulability and the number
of task preemptions. The utilization bound was proved in
the previous section, and hence the RMDP algorithm can
be compared with the traditional algorithms theoretically.
However, in order to estimate the performances of the algo-
rithms truly, the sufficient number of task sets with different
properties must be submitted to the algorithms, since the
utilization bounds of the algorithms actually vary depend-
ing on given task sets. The number of task preemptions
are also dominated by the characteristics of the given task
sets. The evaluations compare the RMDP algorithm with
the traditional RM-based algorithms: RM-FF, RM-FFDU,
R-BOUND-MP-NFR, RM, RM-US, and WM.

6.1 Experimental Setup

The simulations estimate the schedulability of an algo-
rithm as follows. Every system utilization Usys ranging
from 30% to 100%, 1000 task sets with different properties,
whose system utilizations are all Usys equally, are generated
and submitted to the algorithm. Then, the success ratio, de-
fined by the following expression, is measured.

the number of successfully scheduled task sets
the number of scheduled task sets

Algorithms having high success ratios are estimated to
offer high schedulable utilizations. The definition of a
successfully-scheduled task set depends on a scheduling
algorithm. For the RMDP, RM-FF, RM-FFDU, and R-
BOUND-MP-NFR algorithms, a task set is said to be suc-
cessfully scheduled if all the tasks can be assigned to the
processors, since those algorithms are designed so that no
tasks will miss the deadline once they are successfully as-
signed to the processors. For the RM, RM-US and WM
algorithms, on the other hand, a task set is said to be suc-
cessfully scheduled if all tasks are scheduled without miss-
ing any deadlines, since the theoretical utilization bounds
of those algorithms are very pessimistic. Meanwhile, the
simulations estimate the number of preemptions for an al-
gorithm by calculating its average number, defined by the
following expression.

the total number of preemptions in the scheduled task sets
the number of scheduled task sets

Each simulation is characterized by the four parameters:
M, Umax, Umin and Utotal. M is the number of the processors.
Umax and Umin are the maximum and minimum values of
the processor utilization of every individual task in a given

task set. Utotal refers to the total processor utilization of the
tasks. The system utilization is defined by Usys = Utotal/M,
which ranges from 0% to 100%. Although many combina-
tions of the parameters can be considered, the simulations
attempt the following combinations due to the limitation of
space. The system utilization is determined within the range
of [30%, 100%]. Most of the existing algorithms can suc-
cessfully schedule a task set with a system utilization below
30%, hence system utilizations below 30% are removed. As
for the number of the processors, the simulations prepare
the three sets: M = 4, M = 8, and M = 16. The target sys-
tems of this research, such as humanoid robots, would make
use of multicore processors having such number of cores.
In those systems, simple activities can be realized with only
light tasks (tasks with low utilizations), whereas enhanc-
ing the quality of the activities requires heavy tasks (tasks
with high utilizations). Thereby, the simulations prepare the
two sets of Umin and Umax: (Umin,Umax) = (0.01, 0.1) and
(Umin,Umax) = (0.01, 1.0).

6.2 Schedulability Results

Figure 11 shows the success ratios for each algorithm
with respect to task sets in which the utilization of ev-
ery individual task ranges from within [0.01, 0.1]. The R-
BOUND-MP-NFR algorithm is abbreviated as R-BOUND-
MP for simplicity. The schedulable utilizations of the
RMDP algorithm are around 70 ∼ 73%. The RM-FF, RM-
FFDU and R-BOUND-MP algorithms are also competi-
tive, achieving schedulable utilizations around 65 ∼ 67%,
though the RMDP algorithm slightly outperform the others.
Therefore, the simulations demonstrate that the partitioned
scheduling approaches have little performance difference to
light task sets in which tasks have low processor utiliza-
tions. The RM and RM-US algorithms generate the same
schedule for the case with Umax = 0.1 < M/(3M − 2).
It is remarkable that the RM and RM-US algorithms per-
form much better than the RMDP and partitioned schedul-
ing algorithms. Since the schedulable utilizations of the RM
and RM-US algorithms are dominated by the maximum uti-
lization of every individual task, those algorithms offer ex-
cellent performance. However, remember that the timing
constraints cannot be guaranteed by the RM and RM-US
algorithms, if the system utilization exceeds M/(3M − 2)
[2]. Thus, those algorithms are not desired in safe sys-
tems. The WM algorithm achieves schedulable utilizations
around 90%, which are much better than the other algo-
rithms. Such a superiority of the WM algorithm is derived
from the characteristic of Pfair scheduling, which can make
an optimal schedule. Unfortunately, the WM algorithm is
not implementable for practical use, since it may invoke a
scheduler every quanta.

Figure 12 shows the success ratios for each algorithm
with respect to task sets in which the utilization of every in-
dividual task ranges from within [0.01, 1.0]. Note that this
ranging generates heavy tasks. Unlike the previous results
in which only light tasks are generated, the RMDP algo-
rithm clearly outperform the other algorithms except for the
WM algorithm. The schedulable utilizations of the RMDP
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Figure 11. Success ratios (Umax = 0.1)

algorithm are around 70 ∼ 73% as well as the previous re-
sults. Meanwhile, the RM-FF, RM-FFDU and R-BOUND-
MP algorithms have schedulable utilizations around 50 ∼
60%, that is, the RMDP outperform about 10 ∼ 20% over
the partitioned scheduling algorithms. Therefore, the simu-
lations show that the effectiveness of portioned scheduling
is likely to appear with task sets in which some tasks have
high utilizations. The RM and RM-US algorithms, on the
other hand, offer very low schedulable utilizations. Hence,
the simulations evince that the performances of those algo-
rithms are truly affected by heavy tasks. However, it is in-
teresting results that the RM algorithm retains high success
ratios in high system utilizations. It even trades the success
ratios with the RMDP algorithm in system utilizations over
80%. As stated above, the RM algorithm does not conduct
a schedulability test in the simulations, whereas the RMDP,
RM-FF, RM-FFDU and R-BOUND-MP algorithms carry-
ing out schedulability tests may reject task sets that can be
in fact successfully scheduled. As a result, the four algo-
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Figure 12. Success ratios (Umax = 1.0)

rithms have lower success ratios than the RM algorithm in
high system utilizations. Recall that the timing constraints
cannot be guaranteed by the RM algorithm, if the system
utilization exceeds 1/M. It is surprising that the RM-US
algorithm performs much worse than the RM algorithm.
It can be considered that the RM-US algorithm disobeys
the RM prioritization, thereby deadlines are more likely to
be missed, though it improves the worst-case schedulabil-
ity. The WM algorithm still offers good performance in the
presence of heavy tasks in exchange for a great deal of com-
putation complexity.

6.3 Preemption Results

For calculation of task preemptions, the simulation in-
tervals are set the smaller of the least common multiple of
the task periods in the given task set and 232. Then, for
each algorithm, the average number of task preemptions
in the 1000 task sets is calculated every system utilization.
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Figure 13. Task preemptions (Umax = 0.1)

Then, the number of task preemptions for each algorithm
relative to that for the RMDP algorithm is calculated only
only for the case in which both the target algorithm and the
RMDP algorithm have a schedulable utilization of 100%.
The WM algorithm consistently generate more than fifty
times as many preemptions as the RMDP algorithm, hence
it is not included in the results.

Figure 13 shows the numbers of task preemptions for
each algorithm relative to that for the RMDP algorithm with
respect to task sets in which the utilization of every indi-
vidual task ranges from within [0.01, 0.5]. The RMDP al-
gorithm causes slightly more preemptions than the RM-FF,
RM-FFDU and R-BOUND-MP algorithms, but they are al-
most competitive. The additional preemptions occur in the
RMDP algorithm for the case in which the first portions of
split tasks are dispatched when their corresponding second
portions are in execution. Since the utilizations of the tasks
are relatively low in the discussed simulations, the first and
the second portions of split tasks have less chance to be
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Figure 14. Task preemptions (Umax = 1.0)

overlapped. As a result, the number of preemptions in the
RMDP algorithm is not increased very much. The RM and
RM-US algorithms generate about 1.5 ∼ 1.7 times as many
preemptions as the RMDP algorithm. In those algorithms,
one global scheduler manages all the tasks, and hence the
priority order of the tasks are more likely to be changed
compared to the RMDP and partitioned scheduling algo-
rithms. As a result, the RM and RM-US algorithms grow
the numbers of preemptions.

Figure 14 shows the numbers of task preemptions for
each algorithm relative to that for the RMDP algorithm with
respect to task sets in which the utilization of every indi-
vidual task ranges from within [0.01, 1.0]. The presence
of heavy tasks expands the performance difference between
the RMDP algorithm and the partitioned scheduling algo-
rithms. In the RMDP algorithm, preemptions occur every
time the first portions of split tasks are dispatched while
their corresponding second portions are in execution. Since
the tasks are likely to have high utilizations, such preemp-



tions are likely to happen, and hence the numbers of pre-
emptions in the RMDP algorithm are boosted up, compared
to the partitioned scheduling algorithms in which such pre-
emptions never occur. The resulting numbers of preemp-
tions in the RMDP algorithm are 2.0 ∼ 2.5 times as many
as those in the partitioned scheduling algorithms, though
they are much fewer than the RM and RM-US algorithms.

The impact of the performance difference in the number
of preemptions to the system depends on the ratio of the pro-
cessor time consumed by the task executions and the pro-
cessor time consumed by the task preemptions. For exam-
ple, the RMDP algorithm achieves schedulable utilizations
about 10% higher than the RM-FFDU algorithm, while it
incurs about 1.8 times as many preemptions. Therefore, the
RM-FFDU algorithm may be better than the RMDP algo-
rithm, if the scheduler consumes more than about 11% of
the overall system time for the task preemptions. The sys-
tem designer should take this fact into account. As long
as this paper simulated, the RMDP algorithm seems better
than the RM-FFDU algorithm, because the scheduler hardly
consumes 11% of the system time for the task preemptions,
considering the specifications of the current processors.

7 Conclusion

This paper presented the RMDP algorithm that combines
the portioned scheduling technique and the Rate Monotonic
algorithm. The theoretical description gave that the RMDP
algorithm is well implementable, since it incurs only a lit-
tle implementation in addition to the partitioned RM algo-
rithm. The schedulability analysis derived that the worst-
case utilization bound of the RMDP algorithm is 50%. The
simulation studies demonstrated that the RMDP algorithms
successfully scheduled the task sets with higher system uti-
lizations than the traditional RM-based algorithms, without
generating many preemptions. Besides, it is guaranteed by
the theory that the degree of task migrations for the RMDP
algorithm is suppressed so that at most M−1 tasks occur mi-
grations and each of them migrates between the restrictive
two processors. In consequence, this paper believes that the
RMDP algorithm can be a new choice for scheduling recur-
rent real-time tasks on multiprocessor platforms.
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