
Semi-Partitioned Fixed-Priority Scheduling on Multiprocessors ∗

Shinpei Kato and Nobuyuki Yamasaki
Department of Information and Computer Science

Keio University, Yokohama, Japan
{shinpei,yamasaki}@ny.ics.keio.ac.jp

Abstract

This paper presents a new algorithm for fixed-priority
scheduling of sporadic task systems on multiprocessors.
The algorithm is categorized to such a scheduling class that
qualifies a few tasks to migrate across processors, while
most tasks are fixed to particular processors. We design
the algorithm so that a task is qualified to migrate, only if
it cannot be assigned to any individual processors, in such
a way that it is never returned to the same processor within
the same period, once it is migrated from one processor to
another processor. The scheduling policy is then conformed
to Deadline Monotonic. According to the simulation results,
the new algorithm significantly outperforms the traditional
fixed-priority algorithms in terms of schedulability.

1 Introduction

In recent years, the scheduling of real-time tasks has
been revised for multiprocessor platforms, given that mul-
ticore technologies have proliferated in the marketplace.
Real-time scheduling techniques for multiprocessors is
mainly classified intoglobal schedulingand partitioned
scheduling. In global scheduling, all tasks are stored in a
global queue, and the same number of the highest priority
tasks as processors are selected for execution. This schedul-
ing class contains optimal algorithms, such as Pfair [10, 9]
and LLREF [12]. Any periodic task systems are scheduled
successfully by those algorithms, if the processor utilization
does not exceed 100%. In partitioned scheduling, on the
other hand, tasks are first assigned to specific processors,
and then executed on those processors without migrations.
Partitioned scheduling is of advantage in that a problem of
multiprocessor scheduling is reduced into a set of unipro-
cessor one, after tasks are partitioned.

∗This work is supported by the fund of Research Fellowships ofthe
Japan Society for the Promotion of Science for Young Scientists. This
work is also supported in part by the fund of Core Research forEvolutional
Science and Technology, Japan Science and Technology Agency.

In terms of fixed-priority algorithms that are often
adopted by commodity real-time operating systems for
practical use, partitioned scheduling may be more attractive
than global scheduling. Anderssonet al. proved in [6] that
both fixed-priority Pfair [26] and Rate Monotonic [21] with
a partitioning technique presented in [6] may cause dead-
lines to be missed, if the processor utilization is greater than
50%. To the best of our knowledge, all other fixed-priority
algorithms based on global scheduling [3, 8, 2] and parti-
tioned scheduling [13, 25, 24, 23, 22] have lower utilization
bounds. Thus, we see little advantage of global schedul-
ing over partitioned scheduling from the viewpoint of fixed-
priority algorithms.

Recent work [1, 7, 4, 5, 15, 16] have made another class,
calledsemi-partitioned schedulingin this paper, for the pur-
pose of improving schedulability with succeeding the ad-
vantage of partitioned scheduling as much as possible. In
semi-partitioned scheduling, most tasks are fixed to partic-
ular processors to reduce runtime overhead, while a few
tasks migrate across processors to improve schedulability.
According to the prior work, a class of semi-partitioned
scheduling offers a significant improvement on schedula-
bility, as compared to a class of partitioned scheduling,
with less preemptions and migrations than a class of global
scheduling. However, little work have studied on fixed-
priority algorithms.

This paper presents a new algorithm for semi-partitioned
fixed-priority scheduling of sporadic task systems on iden-
tical multiprocessors. In terms of schedulability, the newal-
gorithm strictly dominates, and in general significantly out-
performs, the traditional fixed-priority algorithms basedon
partitioned scheduling, while the scheduling policy is sim-
plified to reduce the number of preemptions and migrations
for practical use.

The rest of paper is organized as follows. The next
section reviews prior work on semi-partitioned schedul-
ing. The system model is defined in Section 3. Section
4 then presents a new algorithm based on semi-partitioned
scheduling. Section 5 evaluates the effectiveness of the new
algorithm. This paper is concluded in Section 6.

2 Prior Work

Recent work [1, 7, 4, 5, 15, 16] have made a class
of semi-partitioned scheduling, in which most tasks are
fixed to particular processors, while a few tasks may mi-
grate across processors, to improve schedulability over par-
titioned scheduling with a smaller number of preemptions
as well as migrations than global scheduling.

The concept of semi-partitioned scheduling is originally
introduced by EDF-fm [1]. EDF-fm assigns the highest pri-
ority to migratory tasks in a static manner. The fixed tasks
are then scheduled according to EDF, when no migratory
tasks are ready for execution. Since EDF-fm is designed
for soft real-time systems, the schedulability of a task setis
not tightly guaranteed, while the tardiness is bounded.

EKG [7] is designed to guarantee all tasks to meet dead-
lines for implicit-deadline periodic task systems. Unlike
EDF-fm, migratory tasks are executed in certain time slots,
while fixed tasks are scheduled according to EDF. The
achievable processor utilization is traded with the number
of preemptions and migrations, by a parameterk. The con-
figuration ofk = m on m processors leads EKG to be op-
timal, with more preemptions and migrations. In the later
work [4, 5], EKG is extended for sporadic task systems as
well as explicit-deadline systems. The extended algorithms
are also parametric with respect to the length of the time
slots reserved for migratory tasks.

EDDHP [15] is designed in consideration of reducing
context switches. As EDF-fm, the highest priority is as-
signed to migratory tasks, and other fixed tasks have the
EDF priorities, though it differs in that the scheduling policy
guarantees all tasks to meet deadlines. It is shown by simu-
lations that EDDHP outperforms the partitioned EDF algo-
rithms in schedulability, with less preemptions than EKG.
EDDP [16] is an extension of EDDHP in that the priority
ordering is fully dynamic. The worst-case processor utiliza-
tion is then bounded by 65% for implicit-deadline systems.

RMDP [17] is a fixed-priority version of EDDHP: the
highest priority is given to migratory tasks, and other fixed
tasks have the Rate Monotonic priorities. It is shown by
simulations that RMDP improves schedulability over the
traditional fixed-priority algorithms. The worst-case pro-
cessor utilization is bounded by 50% for implicit-deadline
systems. To the best of our knowledge, no other algo-
rithms based on semi-partitioned scheduling consider fixed-
priority assignments.

In the previous algorithms mentioned above, tasks may
migrate across processors, even though there are no needs
of migrations. It would be better to migrate tasks, only if
they are required, because migration costs are not free. The
scheduling policy for migratory tasks is also problematic.
For instance, EKG generates two sets of preemptions and
migrations in every interval of job arrivals, to schedule mi-

gratory tasks. EDDHP, EDDP, and RMDP may also gen-
erate many preemptions and migrations, particularly when
migratory tasks have long inter-arrival time. We address
those concerns in this paper.

3 System Model

The system is composed ofm identical processorsP1,
P2, ..., Pm andn sporadic tasksT1,T2, ...,Tn. Each taskTi

is characterized by a tuple (ci , di, pi), whereci is a worst-
case computation time,di is a relative deadline, andpi is a
minimum inter-arrival time (period). The utilization ofTi is
denoted byui = ci/pi . We assume such a constrained task
model that satisfiesci ≤ di ≤ pi for any Ti . Each taskTi

generates an infinite sequence of jobs, each of which has a
constant execution timeci . A job of Ti released at timet
has a deadline at timet + di. Any inter-arrival intervals of
successive jobs ofTi are separated by at leastpi .

Each task is independent and preemptive. Any job is not
allowed to be executed in parallel. Jobs produced by the
same task must be executed sequentially, which means that
every job ofTi is not allowed to begin before the preceding
job of Ti completes. The costs of scheduler invocations,
preemptions, and migrations are not modeled.

4 New Algorithm

We present a new algorithm, calledDeadline Mono-
tonic with Priority Migration (DM-PM), based on the
concept of semi-partitioned scheduling. In considerationof
the migration and preemption costs, a task is qualified to
migrate, only if it cannot be assigned to any individual pro-
cessors, in such a way that it is never returned to the same
processor within the same period, once it is migrated from
one processor to another processor.

On uniprocessor platforms, Deadline Monotonic (DM)
[20] has been known as an optimal algorithm for fixed-
priority scheduling of sporadic task systems. DM assigns
a higher priority to a task with a shorter relative deadline.
This priority ordering follows Rate Monotonic (RM) [21]
for periodic task systems with all relative deadlines equal
to periods. Given that DM dominates RM, we design the
algorithm based on DM.

4.1 Algorithm Description

As the traditional partitioning approaches [13, 25, 18, 6,
14], DM-PM assigns each task to a particular processor,
according to kinds of bin-packing heuristics, upon which
the schedulable condition for DM is satisfied. In fact, any
heuristics are available for DM-PM. If there are no such
processors, DM-PM tries to share the task among more than

P1 P2

assigned
assigned

assigned

Ti

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P3

Figure 1. Example of sharing a task.

one processor, whereas a task set is decided to be unfeasi-
ble in the partitioning approaches. In the scheduling phase,
the shared task is qualified to migrate across the processors
among which the task is shared.

Figure 1 demonstrates an example of sharing a task
among more than one processor. Let us assume that none
of the m processors has spare capacity enough to accept
full share of a taskTi . According to DM-PM,Ti is for in-
stance shared among the three processorsP1, P2, andP3. In
terms of utilization share,Ti is “split” into three portions.
The share is always assigned to processors with lower in-
dexes. The execution capacity is then given to each share
so that the corresponding processors are filled to capacity.
In other words, the processors have no spare capacity to re-
ceive other tasks, once a shared task is assigned to them.
However, only the last processor to which the shared task
is assigned may still have spare capacity, since the execu-
tion requirement of the last portion of the task is not nec-
essarily aligned with the remaining capacity of the last pro-
cessor. Thus, in the example, no tasks will be assigned to
P1 andP2, while some tasks may be later assigned toP3.
In the scheduling phase,Ti migrates acrossP1, P2 andP3.
We will describe how to compute the execution capacity for
each share in Section 4.2.

Here, we need to guarantee that multiple processors
never execute a shared task simultaneously. To this end,
DM-PM simplifies the scheduling policy as follows.

• A shared task is scheduled by the highest priority
within the execution capacity on each processor.

• Every job of the shared task is released on the proces-
sor with the lowest index, and it is sequentially mi-
grated to the next processor when the execution capac-
ity is consumed on one processor.

• Partitioned tasks are then scheduled according to DM.

P1

P2

P3

inter-arrival time of

migration

Ti

Figure 2. Example of scheduling a shared task

Figure 2 illustrates an example of scheduling a shared
taskTi whose share is assigned to three processorsP1, P2,
andP3. Let c′i,1, c′i,2, andc′i,3 be the execution capacity as-
signed toTi on P1, P2, andP3 respectively. SinceP1 is a
processor with the lowest index, every job of aTi is released
on P1. SinceTi has the highest priority, it is immediately
executed within the time interval of lengthc′i,1. Whenc′i,1 is
consumed,Ti is migrated to the next processorP2, and then
executed by the highest priority withinc′i,2. Ti is finally mi-
grated to the next processorP3 whenc′i,2 is consumed on
P2, and then executed in the same manner.

According to the scheduling policy of DM-PM, the ex-
ecution of a shared taskTi is repeated exactly at its inter-
arrival time on every processor, because it is executed by the
highest priority within a time interval of a constant length
on each processor. A shared taskTi can be thus regarded as
an independent task with an execution timec′i,k and a min-
imum inter-arrival timepi , to which the highest priority is
given, on every processorPk. As a result, all tasks are still
scheduled strictly in order of fixed-priority.

Now, we move on the case in which one processor exe-
cutes two shared tasks. Let us assume that another taskT j

is shared among three processorsT3, T4, andT5, under the
assumption that a former taskTi has been already assigned
to three processorsP1, P2, andP3 but P3 is not filled to ca-
pacity yet, as shown in Figure 3. Here, we need to break a
tie between two shared tasksTi andT j assigned to the same
processorP3. DM-PM is designed so that ties are broken in
favor of the one assigned later to the processor. Thus, in the
example,T j has a higher priority thanTi on P3.

Figure 4 depicts an example of scheduling two shared
tasksTi andT j , based on the tie-breaking rule above, that
are assigned to processors as shown in Figure 3. Jobs ofTi

andT j are generally executed by the highest priority. How-
ever, the second job ofTi is blocked by the second job of
T j, when it is migrated toP3 from P2, becauseT j has a
higher priority. The third job ofTi is also preempted and
blocked by the third job ofT j . Here, we see the reason why
ties are broken between two shared tasks in favor of the one

P3 P4

assigned
assigned assigned

C
P

U
 u

ti
liz

a
ti
o

n

0%

100%

Pm

assigned

P5

Ti

Tj

Figure 3. Example of assigning two shared
tasks to one processor.

assigned later to the processor. The execution ofTi is not
affected very much, even if it is blocked byT j , sinceP3 is
a last processor forTi to execute. Meanwhile,P3 is a first
processor forT j to execute, and thus the following execu-
tion would be affected very much, if it is blocked onP3.

Implementation of DM-PM is fairly simplified as com-
pared to the previous algorithms based on semi-partitioned
scheduling, because all we have to renew implementation
of DM is to set a timer, when a job of a shared taskTi is
released on or is migrated to a processorPk at timet, so that
the scheduler will be invoked at timet + c′i,k to preempt the
job of Ti for migration. If Pk is a last processor forTi to
execute, we do not have to set a timer. On the other hand,
many high-resolution timers are required for implementa-
tion of the previous algorithms [7, 4, 15, 16, 17].

4.2 Execution Capacity of Shared Tasks

We now describe how to compute the execution capacity
of a shared task on each processor. The amount of execution
capacity must guarantee that timing constraints of all tasks
are not violated, while processor resource is given to the
shared task as much as possible to improve schedulability.
To this end, we make use of response time analysis.

It has been known [21] that the response time of tasks is
never greater than the case in which all tasks are released
at the same time, so-calledcritical instant, in fixed-priority
scheduling. As we mentioned before, DM-PM guarantees
that all tasks are scheduled strictly in order of priority, the
worst-case response time is also obtained at the critical in-
stant. Henceforth, we assume that all the tasks are released
at the critical instantt0.

Consider two tasksTi andT j, regardless of whether they
are fixed tasks or shared tasks.Ti is assigned a lower prior-
ity thanT j . Let I i, j(di) be the maximum interference (block-

P1

P2

P3

inter-arrival time of Ti

P4

P5
inter-arrival time of Tj

Figure 4. Example of scheduling two shared
tasks on one processor.

ing time) thatTi receives fromT j within a time interval of
lengthdi . Since we assume that all tasks meet deadlines, a
job of Ti is blocked byT j for at mostI i, j(di). Given the re-
lease at the critical instantt0, it is clear that the total amount
of time consumed by a task within any interval [t0, t1) is
maximized, when the following two conditions hold.

1. The task is released periodically at its minimum inter-
arrival time.

2. Every job of the task consumes exactlyci time units
without being preempted right after its release.

The formula ofI i, j(di), the maximum interference thatTi

receives fromT j within di , is derived as follows. According
to [11], the maximum interference that a task receives from
another task depends on the relation among execution time,
period, and deadline. Hereinafter, letF = ⌊di/p j⌋ denote
the maximum number of jobs ofT j that complete within a
time interval of lengthdi .

We first consider the case ofdi ≥ Fp j + c j , in which the
deadline ofTi occurs whileT j is not executed, as shown in
Figure 5. In this case,I i, j(di) is obtained by Equation (1).

I i, j(di) = Fc j + c j = (F + 1)c j (1)

We next consider the case ofdi ≤ Fp j + c j , in which
the deadline ofTi occurs whileT j is executed, as shown in
Figure 6. In this case,I i, j(di) is obtained by Equation (2).

I i, j(di) = di − F(p j − c j) (2)

For the sake of simplicity of description, the notation
of I i, j(di) unifies Equation (1) and Equation (2) afterwards.

pj pj pj

c j

t d
time

c j c j c j

0 i

Figure 5. Case 1: di ≥ Fp j + c j

pj pj pj

c j

t d
time

c j c j c j

0 i

Figure 6. Case 2: di ≤ Fp j + c j

The worst-case response timeRi,k of each taskTi on Pk is
then given by Equation (3), wherePk is a set of tasks that
have been assigned toPk, andHi is a set of tasks that have
priorities higher than or equal toTi.

Ri,k =

∑

T j∈Pk∩Hi

I i, j(di) + ci (3)

We then consider the total amount of time that a shared
task competes with another task. LetTs be a shared task,
andPk be a processor to which the share ofTs is assigned.
As we mention in Section 4.1, a shared taskTs can be re-
garded as an independent task with an execution timec′s,k
and a minimum inter-arrival timeps, to which the highest
priority is given, on every processorPk. The maximum total
amountWs,k(di) of time thatTs competes with a taskTi on
Pk within a time interval of lengthdi is therefore obtained
by Equation (4).

Ws,k(di) =

⌈

di

ps

⌉

c′s,k (4)

In order to guarantee all tasks to meet deadlines, the fol-
lowing condition must hold for every taskTi on every pro-
cessorPk to which a shared taskTs is assigned.

Ri,k +Ws,k(di) ≤ di (5)

It is clear that the value ofc′s,k is maximized forRi,k +

Ws,k(di) = di. Finally, c′s,k is given by Equation (6), where
G = ⌈di/ps⌉.

c′s,k = min

{

di − Ri,k

G

∣

∣

∣

∣

∣

Ti ∈ Pk

}

(6)

In the end, we describe how to assign tasks to proces-
sors. As most partitioning algorithms [13, 25, 18, 14] do,
each task is assigned to the first processor upon which a
schedulable condition is satisfied. The schedulable condi-
tion of Ti for Pk here is defined byRi,k ≤ di . If Ti does

1. for each Pk ∈ Π

2. creq := cs;
3. c′s,k := 0;
4. for each Ti ∈ Pk

5. if Ti is a shared taskthen
6. x := (di − ci)/⌈di/ps⌉;
7. else
8. x := (di − Ri,k)/⌈di/ps⌉;
9. end if

10. if x < c′s,k then
11. c′s,k := max(0, x);
12. end if
13. end for
14. if c′s,k , 0 then
15. Pk := Pk ∪ {Ts}:
16. creq := creq− c′s,k:
17. if creq = 0 then
18. Π := Π \ {Pk}:
19. returnS UCCES S:
20. else if creq < 0 then
21. c′s,k := c′s,k + creq:
22. returnS UCCES S:
23. else
24. Π := Π \ {Pk}:
25. end if
26. end if
27. end for
28. returnFAILURE:

Figure 7. Pseudo code of splitting Ts.

not satisfy the schedulable condition, its utilization share is
going to be split across processors.

Figure 7 shows the pseudo code of splittingTs. Π is a set
of processors processors that have spare capacity to accept
tasks.creq is a temporal variable that indicates the remain-
ing execution requirement ofTs, which must be assigned to
some processors. For each processor, the algorithm com-
putes the value ofc′s,k until the total of thosec′s,k reaches
cs. The value of eachc′s,k is based on Equation (6). Notice
that if Ti is a shared task that has been assigned toPk be-
fore Ts, the temporal execution capacity is not denoted by
(di − c′i,k)/⌈di/pi⌉ but by (di − ci)/⌈di/pi⌉ (line 6), because a
job of Ti released at timet always completes at timet + ci

given thatTi is assigned the highest priority. Otherwise, it
is denoted by (di − Ri,k)/⌈di/ps⌉ (line 8). The value ofc′s,k
must be non-negative (line 11). Ifc′s,k is successfully ob-
tained, the share ofTs is assigned toPk (line 15). Nowcreq

is reduced tocreq−c′s,k (line 16). A non-positive value ofcreq

means that the utilization share ofTs has been entirely as-
signed to some processors. Thus, it declares success. Here,

a negative value ofcreq means that the execution capacity
has been excessively assigned toTs. Therefore, we need to
adjust the value ofc′s,k for the last portion (line 21). Ifcreq

is still positive, the same procedure is repeated.

4.3 Optimization

This section considers optimization of DM-PM. Remem-
ber again that a shared taskTs can be regarded as an inde-
pendent task with an execution timec′s,k and a minimum
inter-arrival timeps, to which the highest priority is given,
on every processorPk. We realize from this characteristic
that if Ts has the shortest relative deadline on a processor
Pk, the resultant scheduling is conformed to DM, though
the execution time ofTs is transformed intoc′s,k.

Based on the idea above, we consider such an optimiza-
tion that sorts a task set in non-increasing order of relative
deadline before the tasks are assigned to processors. As a
result, all tasks that have been assigned to the processors
beforeTs always have longer relative deadlines thanTs. In
other words,Ts always has the shortest relative deadline at
this point.

Ts may not have the shortest relative deadline on a pro-
cessorPk, if other tasks are later assigned toPk. Remember
that those tasks have shorter relative deadlines thanTs, since
a task set is sorted in non-increasing order of relative dead-
line. According to DM-PM,Ts is assigned to eachPk so
thatPk is filled to capacity, except thatPk is a last processor
to whichTs is assigned. We therefore need to concern only
such a last processorPl that executesTs.

In fact, there is no need to forcefully give the highest
priority to Ts on Pl , because the next job ofTs will be re-
leased at its next release time, regardless of its completion
time, whereas it is necessary to give the highest priority to
Ts on the preceding processors, becauseTs is never exe-
cuted on the next processor before the execution capacity
is consumed. We thus modify DM-PM for optimization so
that the prioritization rule is strictly conformed to DM. Asa
result, a shared task would have a lower priority than fixed
tasks, if they are assigned to the processor later.

The worst case problem. Particularly for implicit-
deadline systems where relative deadlines are all equal to
periods, a set of tasks is successfully scheduled on each pro-
cessorPk, if the processor utilizationUk of Pk satisfies the
following well-known condition, wherenk is the number of
the tasks assigned toPk, because the scheduling policy of
the optimized DM-PM is strictly conformed to DM.

Uk ≤ nk(21/nk − 1) (7)

The worst-case processor utilization is then derived as
69% for nk → ∞. Thus to derive the worst-case perfor-
mance of DM-PM, we consider a case in which an infinite

number of tasks, all of which have very long relative dead-
lines (close to∞), meaning very small utilization (close to
0), have been already assigned to every processor. There-
fore, the available processor utilization is at most 69% for
all processors. LetTs be a shared task with individual uti-
lization (us = cs/ps) greater than 69%, andPl be a last
processor to which the utilization share ofTs is assigned.
We then assume that another taskTi is later assigned toPl .
At this point, the worst-case execution capacity that can be
assigned toTi on Pl is ds − cs = ds(1− us), due todi ≤ ds.
Hence, the worst-case utilization share ofTi on Pl is ob-
tained as follows.

ui =
ds(1− us)

di
≥ (1− us) (8)

Now, we concern a case in whichTs has a very large
value ofus (close to 100%). The worst-case utilization share
of Ti is then derived asui = 1 − us ≃ 0, regardless of the
processor utilization ofPl . In other words, even though the
processor resource ofPl is not fully utilized at all,Pl cannot
accept any other tasks.

In order to overcome such a worst case problem, we next
modify DM-PM for optimization so that the tasks with in-
dividual utilization greater than or equal to 50% are prefer-
entially assigned to processors, before a task set is sortedin
non-increasing order of relative deadline. Since no tasks
have individual utilization greater than 50%, whenTs is
shared among processors, the worst-case execution capacity
of Ti is improved toui = 1− us ≥ 50%. As a result, the op-
timized DM-PM guarantees that the processor utilization of
every processor is at least 50%, which means that the entire
multiprocessor utilization is also at least 50%. Given that
no prior fixed-priority algorithms have utilization bounds
greater than 50% [6], our result is sufficient. Remember
that this is the worst case. The simulation-based evaluation
presented in Section 5 shows that the optimized DM-PM
generally performs much better than the worst case.

4.4 Preemptions Bound

The number of preemptions within a time interval of
lengthL is bounded as follows. LetN(L) be the worst-case
number of preemptions withinL for DM. Since preemptions
may occur every time jobs arrive in DM,N(L) is given by
Equation (9), whereτ is a set of all tasks.

N(L) =
∑

Ti∈τ

⌈

L
pi

⌉

(9)

Let N∗(L) then be the worst-case number of preemptions
within L for DM-PM. It is clear that there are at mostm− 1
shared tasks. Each shared task is migrated from one pro-
cessor to another processor once in a period. Every time a

shared task is migrated from one processor to another pro-
cessor, two preemptions occurs: one occurs on the source
processor and the other occurs on the destination processor.
Hence,N∗(L) is given by Equation (9), whereτ′ is a set of
tasks that are shared among multiple processors.

N∗(L) = N(L) + 2(m− 1)

⌈

L
min{ps | Ts ∈ τ′}

⌉

(10)

5 Evaluation

In this section, we show the results of simulations con-
ducted to evaluate the effectiveness of DM-PM, as com-
pared to the prior algorithms: RMDP [17], FBB-FDD
[14], and Partitioned DM (P-DM). RMDP is an algo-
rithm based on semi-partitioned scheduling, though the ap-
proach and the scheduling policy are different from DM-
PM. FBB-FDD and P-DM are algorithms based on par-
titioned scheduling. FBB-FDD sorts a task set in non-
decreasing order of relative deadline, and assigns tasks to
processors based on a first-fit heuristic [13]. P-DM assigns
tasks based on first-fit heuristic for simplicity without sort-
ing a task set. The tasks are then scheduled according to
DM. Note that FBB-FDD uses a polynomial-time accep-
tance test in a partitioning phase, while P-DM uses a re-
sponse time analysis presented in Section 4.2.

To the best of our knowledge, FBB-FDD is the best per-
former among the fixed-priority algorithms based on par-
titioned scheduling. We are then not aware of any fixed-
priority algorithms, except for RMDP, that are based on
semi-partitioned scheduling. We thus consider that those
algorithms are worthwhile to compare with DM-PM.

5.1 Simulation Setup

A series of simulations has a set of parameters:usys, m,
umin, andumax. usys denotes system utilization.m is the
number of processors.umin andumax are the minimum uti-
lization and the maximum utilization of every individual
task respectively.

For every set of parameters, we generate 1,000,000 task
sets. A task set is said to be successfully scheduled, if all
tasks in the task set are successfully assigned to processors.
The effectiveness of an algorithm is then estimated bysuc-
cess ratio, which is defined as follows.

the number of successfully-scheduled task sets
the number of submitted task sets

The system utilizationusys is set every 5% within the
range of [0.5, 1.0]. Due to limitation of space, we have three
sets ofmsuch thatm= 4, m= 8, andm= 16. Each task set
T is then generated so that the total utilization

∑

Ti∈T
u be-

comes equal tousys×m. The utilization of every individual

task is uniformly distributed within the range of [umin, umax].
Due to limitation of space, we have five sets of [umin, umax]
such that [0.1, 1.0], [0.25, 0.75], [0.4, 0.6], [0.5, 1.0], and
[0.1, 0.5]. The first three setups generate task sets in which
the average utilization is about 0.5, but the minimum and
the maximum are different. The last two setups, mean-
while, generate such task sets that contain heavy tasks and
light tasks respectively. The minimum inter-arrival time of
each task is also uniformly distributed within the range of
[100, 10, 000]. For every taskTi , onceui and pi are deter-
mined, we compute the execution time ofTi by ci = ui × pi .

Since RMDP is designed for implicit-deadline systems,
for fairness we presume that all tasks have relative dead-
lines equal to periods. However, DM-PM is also effective to
explicit-deadline systems where relative deadlines are dif-
ferent from periods.

5.2 Simulation Results

Figure 8 shows the results of simulations with
[umin, umax] = [0.1, 1.0]. Here, DM-PM(opt) represents the
optimized DM-PM. DM-PM substantially outperforms the
prior algorithms. Particularly, the optimized DM-PM is able
to schedule all task sets successfully, even though system
utilization is around 0.9, while the prior algorithms some-
times return failure when it exceeds 0.6 to 0.7. It has been
reported in [19] that the average case of achievable pro-
cessor utilization for DM, as well as RM, is about 88%
on uniprocessors. Thus, DM-PM reflects the schedulabil-
ity of DM on multiprocessors. Even though a task set is
not sorted, DM-PM is able to schedule all task sets when
system utilization is smaller than 0.7 to 0.8.

The performance of DM-PM is better as the number of
processor is greater, because tasks are more likely to be suc-
cessfully shared among processors, if there are more pro-
cessors, when they cannot be assigned to any individual
processors. Since RMDP is also able to share tasks among
processors, it outperforms FBB-FDD and P-DM that are
based on classical partitioned scheduling. However, RMDP
is still far inferior to DM-PM. Thus, we recognize the effec-
tiveness of the approach considered in DM-PM. Note that
P-DM outperforms FBB-FDD, because P-DM uses an ac-
ceptance test based on the presented response time analysis,
while FBB-FDD does a polynomial-time test.

Figure 9 shows the results of simulations with
[umin, umax] = [0.25, 0.75]. The relative order of perfor-
mance in the simulated algorithms is mostly equal to the
previous case of [umin, umax] = [0.1, 1.0]. However, the suc-
cess ratio is entirely degraded, particularly for P-DM and
FBB-FDD: they may return failure despite system utiliza-
tion less than 0.6. Since the utilization of every individual
task is never smaller than 0.25, partitioning is more likely
to fail. For instance, even though two processors have spare

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(a) m= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(b) m= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(c) m= 16

Figure 8. Results of simulations ([umin, umax] = [0.1, 1.0]).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(a) m= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(b) m= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(c) m= 16

Figure 9. Results of simulations ([umin, umax] = [0.25, 0.75]).

capacity of utilization 0.2 respectively, i.e. the total spare
capacity is utilization 0.4, a task with utilization 0.25 can be
assigned to neither of them. However, in the previous case
of umin, umax = [0.1, 1.0], the utilization of every individual
task is at least 0.1. Thus, the spare capacity of processors
can be used more efficiently. Meanwhile, the success ratio
for DM-PM and RMDP is not degraded as much as that for
FBB-FDD and DM, because those algorithms are based on
semi-partitioned scheduling.

Figure 10 shows the results of simulations with
[umin, umax] = [0.4, 0.6]. Since the utilization of every in-
dividual task is about 0.5, two tasks are likely to fill one
processor to capacity. If every processor is mostly filled to
capacity, there is not much advantage to share tasks. As a
result, the performance of RMDP is not much better than
DM. Since DM-PM splits a shared task across processors
more efficiently than RMDP, it outperforms RMDP, but the
amount of schedulability improvement is not as much as
the previous two cases. From this result, we recognize that
DM-PM prefers the case in which the utilization of every
individual task is widely distributed.

Figure 11 shows the results of simulations with
[umin, umax] = [0.5, 1.0]. The tasks are all heavy with uti-
lization greater than 0.5. Note that no individual processors

execute more than one task, because processor utilization
cannot be greater than 1.0. As a result, the preciseness of
approximations for a polynomial-time test of FBB-FDD is
improved, and thus it offers competitive performance to P-
DM that uses the presented response time analysis. As for
the performance of DM-PM and RMDP, it is very similar to
the first case of [umin, umax] = [0.1, 1.0].

Figure 12 shows the results of simulations with
[umin, umax] = [0.1, 0.5]. In contrast to the previous case of
[umin, umax] = [0.5, 1.0], the tasks are all light with utiliza-
tion smaller than 0.5. As a result, the approximations for a
polynomial-time test of FBB-FDD are likely imprecise, and
thus it is far inferior to P-DM. It is also true that the number
of tasks is greater than the previous cases, because there are
only light tasks. It has been known by the formula [21] that
the schedulability of fixed-priority algorithms is generally
decreased as the number of tasks is increased. Hence, the
success ratio of each algorithm is entirely declined.

6 Conclusion

A new algorithm was presented for semi-partitioned
fixed-priority scheduling of sporadic task systems on iden-
tical multiprocessors. We designed the algorithm so that

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(a) m= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(b) m= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(c) m= 16

Figure 10. Results of simulations ([umin, umax] = [0.4, 0.6]).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(a) m= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(b) m= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(c) m= 16

Figure 11. Results of simulations ([umin, umax] = [0.5, 1.0]).

a task is qualified to migrate across processors, only if it
cannot be assigned to any individual processors, in such a
manner that it is never migrated back to the same proces-
sor within the same period, once it is migrated from one
processor to another processor. The scheduling policy was
then simplified to reduce the number of preemptions and
migrations as much as possible for practical use.

We also optimized the algorithm to improve schedulabil-
ity. Any implicit-deadline systems are successfully sched-
uled by the optimized algorithm, if system utilization does
not exceed 50%. We are not aware of any fixed-priority
algorithms that have utilization bounds greater than 50%.
Thus, our result seems sufficient.

The simulation results showed that the new algorithm
significantly outperforms the traditional fixed-priority algo-
rithms regardless of the number of processors and the uti-
lization of tasks. Especially for the case in which the uti-
lization of every individual task is widely distributed, the
new algorithm was able to schedule all task sets success-
fully, even though system utilization is close to 90%. The
parameters used in simulations are limited, but we can es-
timate that the new algorithm is also effective to different
environments.

In the future work, we will consider arbitrary-deadline

systems where relative deadlines may be longer than pe-
riods, while we consider constrained-deadline systems
where relative deadlines are shorter than or equal to pe-
riods. We are also interested in applying the presented
semi-partitioned scheduling approach to dynamic-priority
scheduling. The implementation problems of the algorithm
in practical operating systems are left open.

References

[1] J. Anderson, V. Bud, and U.C. Devi. An EDF-based Schedul-
ing Algorithm for Multiprocessor Soft Real-Time Systems.
In Proceedings of the Euromicro Conference on Real-Time
Systems, pages 199–208, 2005.

[2] B. Andersson. Global Static-Priority Preemptive Multipro-
cessor Scheduling with Utilization Bound 38%. InProceed-
ings of the International Conference on Principles of Dis-
tributed Systems, pages 73–88, 2008.

[3] B. Andersson, S. Baruah, and J. Jonsson. Static-priority
Scheduling on Multiprocessors. InProceedings of the IEEE
Real-Time Systems Symposium, pages 193–202, 2001.

[4] B. Andersson and K. Bletsas. Sporadic Multiprocessor
Scheduling with Few Preemptions. InProceedings of the Eu-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(a) m= 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(b) m= 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

S
u
c
c
e
s
s
 r

a
ti
o

System utilization

DM-PM(opt)
DM-PM
RMDP
P-DM

FBB-FDD

(c) m= 16

Figure 12. Results of simulations ([umin, umax] = [0.1, 0.5]).

romicro Conference on Real-Time Systems, pages 243–252,
2008.

[5] B. Andersson, K. Bletsas, and S. Baruah. Scheduling
Arbitrary-Deadline Sporadic Task Systems Multiprocessors.
In Proceedings of the IEEE Real-Time Systems Symposium,
pages 385–394, 2008.

[6] B. Andersson and J. Jonsson. The Utilization Bounds of Par-
titioned and Pfair Static-Priority Scheduling on Multiproces-
sors are 50%. InProceedings of the Euromicro Conference
on Real-Time Systems, pages 33–40, 2003.

[7] B. Andersson and E. Tovar. Multiprocessor Scheduling with
Few Preemptions. InProceedings of the IEEE International
Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 322–334, 2006.

[8] T.P. Baker. An Analysis of Fixed-Priority Schedulability on
a Multiprocessor.Real-Time Systems, 32:49–71, 2006.

[9] S. Baruah, N. Cohen, C.G. Plaxton, and D. Varvel. Propor-
tionate Progress: A Notion of Fairness in Resource Alloca-
tion. Algorithmica, 15:600–625, 1996.

[10] S. Baruah, J. Gehrke, and C.G. Plaxton. Fast Scheduling
of Periodic Tasks on Multiple Resources. InProceedings
of the International Parallel Processing Symposium, pages
280–288, 1995.

[11] G.C. Buttazzo. HARD REAL-TIME COMPUTING SYS-
TEMS: Predictable Scheduling Algorithms and Applications.
Kluwer Academic Publishers, 1997.

[12] H. Cho, B. Ravindran, and E.D. Jensen. An Optimal Real-
Time Scheduling Algorithm for Multiprocessors. InPro-
ceedings of the IEEE Real-Time Systems Symposium, pages
101–110, 2006.

[13] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling Prob-
lem. Operations Research, 26:127–140, 1978.

[14] N. Fisher, S. Baruah, and T. Baker. The Partitioned Mul-
tiprocessor Scheduling of Sporadic Task Systems according
to Static Priorities. InProceedings of the Euromicro Confer-
ence on Real-Time Systems, pages 118–127, 2006.

[15] S. Kato and N. Yamasaki. Real-Time Scheduling with Task
Splitting on Multiprocessors. InProceedings of the IEEE In-
ternational Conference on Embedded and Real-Time Com-
puting Systems and Applications, pages 441–450, 2007.

[16] S. Kato and N. Yamasaki. Portioned EDF-based Schedul-
ing on Multiprocessors. InProceedings of the ACM Interna-
tional Conference on Embedded Software, 2008.

[17] S. Kato and N. Yamasaki. Portioned Static-Priority Schedul-
ing on Multiprocessors. InProceedings of the IEEE In-
ternational Parallel and Distributed Processing Symposium,
2008.

[18] S. Lauzac, R. Melhem, and D. Mosses. An Efficient RMS
Admission Control and Its Application to Multiprocessor
Scheduling. InProceedings of the IEEE International Par-
allel Processing Symposium, pages 511–518, 1998.

[19] J.P. Lehoczky, L. Sha, and Y. Ding. The Rate Monotonic
Scheduling Algorithm: Exact Charaterization and Average
Case Behavior. InProceedings of the IEEE Real-Time Sys-
tems Symposium, pages 166–171, 1989.

[20] J. Leung and J. Whitehead. On the Complexity of Fixed-
Priority Scheduling of Periodic Real-Time Tasks.Perfor-
mance Evaluation, Elsevier Science, 22:237–250, 1982.

[21] C. L. Liu and J. W. Layland. Scheduling Algorithms for Mul-
tiprogramming in a Hard Real-Time Environment.Journal
of the ACM, 20:46–61, 1973.

[22] J.M. Lopez, J.L. Diaz, and D.F. Garcia. Minimum and Maxi-
mum Utilization Bounds for Multiprocessor Rate-Monotonic
Scheduling.IEEE Transactions on Parallel and Distributed
Systems, 28:39–68, 2004.

[23] J.M. Lopez, M. Garcia, J.L. Diaz, and D.F. Garcia. Utliza-
tion Bounds for Multiprocessor Rate-Monotonic Scheduling.
Real-Time Systems, 24:5–28, 2003.

[24] D. Oh and T. Baker. Utlization Bounds for N-Processor
Rate Monotonic Scheduling with Static Processor Assign-
ment.Real-Time Systems, 15:183–192, 1998.

[25] Y. Oh and S. Son. Allocating Fixed-Priority Periodic Tasks
on Multiprocessor Systems.Real-Time Systems, 9:207–239,
1995.

[26] S. Ramamurthy and M. Moir. Static-Priority Periodic
Scheduling on Multiprocessors. InProceedings of the IEEE
Real-Time Systems Symposium, pages 69–78, 2000.

