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Abstract In terms of fixed-priority algorithms that are often
adopted by commodity real-time operating systems for
This paper presents a new algorithm for fixed-priority practical use, partitioned scheduling may be more attracti
scheduling of sporadic task systems on multiprocessorsthan global scheduling. Anderssenal. proved in [6] that
The algorithm is categorized to such a scheduling class thatboth fixed-priority Pfair [26] and Rate Monotonic [21] with
qualifies a few tasks to migrate across processors, whilea partitioning technique presented in [6] may cause dead-
most tasks are fixed to particular processors. We designlines to be missed, if the processor utilization is gredtant
the algorithm so that a task is qualified to migrate, only if 50%. To the best of our knowledge, all other fixed-priority
it cannot be assigned to any individual processors, in such algorithms based on global scheduling [3, 8, 2] and parti-
away that it is never returned to the same processor within tioned scheduling [13, 25, 24, 23, 22] have lower utilizatio
the same period, once it is migrated from one processor tobounds. Thus, we see little advantage of global schedul-
another processor. The scheduling policy is then conformeding over partitioned scheduling from the viewpoint of fixed-
to Deadline Monotonic. According to the simulation results  priority algorithms.
the new algorithm significantly outperforms the traditibna Recentwork [1, 7, 4, 5, 15, 16] have made another class,
fixed-priority algorithms in terms of schedulability. calledsemi-partitioned schedulirig this paper, for the pur-
pose of improving schedulability with succeeding the ad-
. vantage of partitioned scheduling as much as possible. In
1 Introduction semi-partitioned scheduling, most tasks are fixed to partic
ular processors to reduce runtime overhead, while a few
In recent years, the scheduling of real-time tasks hastasks migrate across processors to improve schedulability
been revised for multiprocessor platforms, given that mul- According to the prior work, a class of semi-partitioned
ticore technologies have proliferated in the marketplace.Scheduling €fers a significant improvement on schedula-
Real-time scheduling techniques for multiprocessors is bility, as compared to a class of partitioned scheduling,
mainly classified intoglobal schedulingand partitoned ~ Wwith less preemptions and migrations than a class of global
scheduling In global scheduling, all tasks are stored in a scheduling. However, little work have studied on fixed-
global queue, and the same number of the highest prioritypriority algorithms.
tasks as processors are selected for execution. This dehedu  This paper presents a new algorithm for semi-partitioned
ing class contains optimal algorithms, such as Pfair [10, 9] fixed-priority scheduling of sporadic task systems on iden-
and LLREF [12]. Any periodic task systems are scheduled tical multiprocessors. In terms of schedulability, the raw
successfully by those algorithms, if the processor utiite. ~ gorithm strictly dominates, and in general significantly-ou
does not exceed 100%. In partitioned scheduling, on theperforms, the traditional fixed-priority algorithms basad
other hand, tasks are first assigned to specific processorartitioned scheduling, while the scheduling policy is sim
and then executed on those processors without migrationsplified to reduce the number of preemptions and migrations
Partitioned scheduling is of advantage in that a problem of for practical use.
multiprocessor scheduling is reduced into a set of unipro-  The rest of paper is organized as follows. The next
cessor one, after tasks are partitioned. section reviews prior work on semi-partitioned schedul-
— T e by the fund of R  Fellowshinghof ing. The system model is defined in Section 3. Section
Japan I;(;I:I:(i)ertyI?ofliﬁgolgr(i)mo{ioneofugcigncei‘sc‘)?a\r(gungeSoE;tlip'l'hies 4 then presents a new algorithm base.d on semi-partitioned
work is also supported in part by the fund of Core ResearcEvolutional scheduling. Section 5 evaluates tlieetiveness of the new
Science and Technology, Japan Science and Technology $genc algorithm. This paper is concluded in Section 6.




2 Prior Work gratory tasks. EDDHP, EDDP, and RMDP may also gen-
erate many preemptions and migrations, particularly when
migratory tasks have long inter-arrival time. We address

Recent work [1, 7, 4, 5, 15, 16] have made a class ) )
those concerns in this paper.

of semi-partitioned scheduling, in which most tasks are
fixed to particular processors, while a few tasks may mi-
grate across processors, to improve schedulability owerpa 3 System M odel
titioned scheduling with a smaller number of preemptions

as well as migrations than global scheduling. The system is composed of identical processorB;,

The concept of semi-partitioned scheduling is originally p, . p. andn sporadic taskd1, T, ..., Tn. Each taskT;
introduced by EDF-fm [1]. EDF-fm assigns the highest pri- s characterized by a tuple;(d;, pi), wherec; is a worst-
ority to migratory tasks in a static manner. The fixed tasks ¢ase computation time, is a relative deadline, ang is a
are then scheduled according to EDF, when no migratory minimum inter-arrival time (period). The utilization &f is
tasks are ready for execution. Since EDF-fm is designedgenoted by = ¢;/p,. We assume such a constrained task
for soft real-time systems, the schedulability of a taskset  ogel that satisfies; < di < pi for any T,. Each taskT;
not tightly guaranteed, while the tardiness is bounded.  generates an infinite sequence of jobs, each of which has a
~ EKG[7]is designed to guarantee all tasks to meet dead-constant execution time. A job of T; released at time
lines for implicit-deadline periodic task systems. Unlike has a deadline at time+ d;. Any inter-arrival intervals of
EDF-fm, migratory tasks are executed in certain time slots, syccessive jobs dff; are separated by at legst
while fixed tasks are scheduled according to EDF. The  Each task is independent and preemptive. Any job is not
achievable processor utilization is traded with the number gjlowed to be executed in parallel. Jobs produced by the
of preemptions and migrations, by a paramétefhe con-  same task must be executed sequentially, which means that
figuration ofk = m on m processors leads EKG to be op- every job ofT; is not allowed to begin before the preceding

timal, with more preemptions and migrations. In the later jop of T; completes. The costs of scheduler invocations,
work [4, 5], EKG is extended for sporadic task systems as preemptions, and migrations are not modeled.

well as explicit-deadline systems. The extended algoisthm
are also parametric with respect to the length of the time
slots reserved for migratory tasks.

EDDHP [15] is designed in consideration of reducing
context switches. As EDF-fm, the highest priority is as-  We present a new algorithm, callddeadline Mono-
signed to migratory tasks, and other fixed tasks have thetonic with Priority Migration (DM-PM), based on the
EDF priorities, though it dfers in that the scheduling policy ~ concept of semi-partitioned scheduling. In consideratibn
guarantees all tasks to meet deadlines. It is shown by simuthe migration and preemption costs, a task is qualified to
lations that EDDHP outperforms the partitioned EDF algo- Migrate, only if it cannot be assigned to any individual pro-
rithms in schedulability, with less preemptions than EKG. €€ssors, in such a way that it is never returned to the same
EDDP [16] is an extension of EDDHP in that the priority Processor within the same period, once it is migrated from
ordering is fully dynamic. The worst-case processor wiliz  ON€ processor to another processor.
tion is then bounded by 65% for implicit-deadline systems. ~ On uniprocessor platforms, Deadline Monotonic (DM)

RMDP [17] is a fixed-priority version of EDDHP: the [20] has been known as an optimal algorithm for fixed-
highest priority is given to migratory tasks, and other fixed Priority scheduling of sporadic task systems. DM assigns
tasks have the Rate Monotonic priorities. It is shown by @ higher priority to a task with a shorter relative deadline.
simulations that RMDP improves schedulability over the This priority ordering follows Rate Monotonic (RM) [21]
traditional fixed-priority algorithms. The worst-case pro for periodic task systems with all relative deadlines equal
cessor utilization is bounded by 50% for implicit-deadline t0 periods. Given that DM dominates RM, we design the
systems. To the best of our knowledge, no other algo-2algorithm based on DM.
rithms based on semi-partitioned scheduling consider fixed
priority assignments. 4.1 Algorithm Description

In the previous algorithms mentioned above, tasks may
migrate across processors, even though there are no needs As the traditional partitioning approaches [13, 25, 18, 6,
of migrations. It would be better to migrate tasks, only if 14], DM-PM assigns each task to a particular processor,
they are required, because migration costs are not free. Thaccording to kinds of bin-packing heuristics, upon which
scheduling policy for migratory tasks is also problematic. the schedulable condition for DM is satisfied. In fact, any
For instance, EKG generates two sets of preemptions ancheuristics are available for DM-PM. If there are no such
migrations in every interval of job arrivals, to schedule mi  processors, DM-PM tries to share the task among more than

4 New Algorithm
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Figure 2 illustrates an example of scheduling a shared
taskT; whose share is assigned to three procesBorgs,
andPs. Letcy, ¢,, andc ; be the execution capacity as-

) ) signed toT; on Py, P,, andPs respectively. Sincé®; is a
one processor, whereas a task set is decided to be unfeasgrocessor with the lowest index, every job dFids released
ble in the partitioning approaches. In the scheduling phase on p,. SinceT; has the highest priority, it is immediately
the shared task is qualified to migrate across the processorgyecuted within the time interval of length,. Whenc/, is

. . s 1,
among which the task is shared. . consumedT; is migrated to the next procesg®y, and then

Figure 1 demonstrates an example of sharing a taskexecuted by the highest priority with,. T; is finally mi-
of the m processors has spare capacity enough to accepp,, and then executed in the same manner.
full share of a taskr;. According to DM-PM,T; is for in- According to the scheduling policy of DM-PM, the ex-
stance shar(_ad among the th.re‘(‘e pr_Of?EBQ'BZ' andPgl. In ecution of a shared task is repeated exactly at its inter-
terms of utilization shareT; is “split” into three portions. 4 iy time on every processor, because it is executedey th
The share is always assigned to processors with lower in-yignest priority within a time interval of a constant length
dexes. The execution f:apacny is then given to each Sh"_ﬂ%n each processor. A shared tdsican be thus regarded as
so that the corresponding processors are filled to c_apacnyan independent task with an execution tiigand a min-

In ptherwords, the processors have no spare papamty 0 I€mum inter-arrival timep;, to which the highest priority is
ceive other tasks, once a shared task is assigned to themy en on every process®k. As a result, all tasks are still
However, only the last processor to which the shared taSkscheduIed strictly in order of fixed-priority

is assigned may still have spare capacity, since the execu-

tion requirement of the last portion of the task is not nec- cutes two shared tasks. Let us assume that anotheTfask

essarily allgneql with the remaining capamty of the Igst- Pro . chared among three processBssTs, andTs, under the
cessor. Thus, in the example, no tasks will be assigned toassum tion that a former tadk has been already assigned
P, and P,, while some tasks may be later assignedP$o P y 9

In the scheduling phas@&; migrates acrosBy, P, andPs. toag{ eegro;sezﬁgvl%: iFr),Z'F?nuizggbu.:Z?ésvcgtrfgfg ttg ;?e:ak a
We will describe how to compute the execution capacity for bactly yet, 9 . '

. . tie between two shared tasksandT; assigned to the same
each share in Section 4.2. : ) . .
. processoP3;. DM-PM is designed so that ties are broken in
Here, we need to guarantee that multiple processors ) )
. ) favor of the one assigned later to the processor. Thus, in the
never execute a shared task simultaneously. To this end . o
T . . exampleT; has a higher priority tham; on Ps.
DM-PM simplifies the scheduling policy as follows. _ ) )
_ _ o Figure 4 depicts an example of scheduling two shared
* A shared task is scheduled by the highest priority tasksT; andT;, based on the tie-breaking rule above, that
within the execution capacity on each processor. are assigned to processors as shown in Figure 3. Johs of
andT; are generally executed by the highest priority. How-
ever, the second job df; is blocked by the second job of
T;, when it is migrated tdP; from P>, becausel; has a
higher priority. The third job ofT; is also preempted and
blocked by the third job of ;. Here, we see the reason why
o Partitioned tasks are then scheduled according to DM. ties are broken between two shared tasks in favor of the one

Figure 1. Example of sharing a task.

Now, we move on the case in which one processor exe-

e Every job of the shared task is released on the proces
sor with the lowest index, and it is sequentially mi-
grated to the next processor when the execution capac
ity is consumed on one processor.
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Figure 3. Example of assigning two shared
tasks to one processor. ' inter-arrival time of 7; '

Figure 4. Example of scheduling two shared

assigned later to the processor. The executiofi 6§ not tasks on one processor.

affected very much, even if it is blocked By, sincePs is

a last processor foF; to execute. MeanwhileR; is a first

processor foiTj to execute, and thus the following execu- ing time) thatT; receives fronilj within a time interval of

tion would be #ected very much, if it is blocked ofs. lengthd;. Since we assume that all tasks meet deadlines, a
Implementation of DM-PM is fairly simplified as com-  job of T; is blocked byT; for at mostl; j(d;). Given the re-

pared to the previous algorithms based on semi-partitionedease at the critical instany, it is clear that the total amount

scheduling, because all we have to renew implementationof time consumed by a task within any interval, [1) is

of DM is to set a timer, when a job of a shared tasks maximized, when the following two conditions hold.

released on or is migrated to a proced3pat timet, so that ) o ) o )

the scheduler will be invoked at tinter ¢/, to preempt the 1. Th_e tas_k is released periodically at its minimum inter-

job of T; for migration. If Py is a last processor foF; to arrival time.

execute, we do not have to set a timer. On the other hand

many high-resolution timers are required for implementa-

tion of the previous algorithms [7, 4, 15, 16, 17].

' 2. Every job of the task consumes exaatjytime units
without being preempted right after its release.

The formula ofl; j(d;), the maximum interference th&
4.2 Execution Capacity of Shared Tasks receives fronT; within d;, is derived as follows. According
to [11], the maximum interference that a task receives from

We now describe how to compute the execution capacity @hother task depends on the relation among execution time,
of a shared task on each processor. The amount of executioReriod, and deadline. Hereinafter, let= |di/p;] denote
capacity must guarantee that timing constraints of allgask the maximum number of jobs df; that complete within a
are not violated, while processor resource is given to thetime mtgrval oflgngtrdi. . .
shared task as much as possible to improve schedulability. Ve first consider the case df > Fp; + ¢;, in which the
To this end, we make use of response time analysis. deadline ofT; occurs whileT is not executed, as shown in

It has been known [21] that the response time of tasks isFigure 5. In this case; j(d;) is obtained by Equation (1).
never greater than the case in which all tasks are released L Q) = Fo 46 = (F 4 1o 1
at the same time, so-calledtical instant, in fixed-priority 1j(d) = Fej+ ¢ = (F + 1)c; 1)
scheduling. As we mentioned before, DM-PM guarantees We next consider the case df < Fp; + ¢;, in which

that all tasks are scheduled strictly in order of prioribe t the deadline off; occurs whileT| is executed, as shown in

worst-case response time is also obtained at the critieal in Figure 6. In this case; j(dt) is obtained by Equation (2).
stant. Henceforth, we assume that all the tasks are released ’

at the critical instanty. li.j(ck) = di — F(p;j - ¢}) 2)
Consider two task$; andT;j, regardless of whether they
are fixed tasks or shared tasKs.is assigned a lower prior- For the sake of simplicity of description, the notation

ity thanT;. Letl; j(d;) be the maximum interference (block- of I; j(d;) unifies Equation (1) and Equation (2) afterwards.
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for each T € P

5 if Ti is a shared tasthen
Figure 5. Case 1: d, > Fp; +c; 6 X = (di — ¢)/[di/psl;
7. else
Dj pj Dj : 8. X := (di — Rix)/ldi/psl;
: 9 end if
m m m m time 10. if X< C;k then
‘to d; 11. Cex = max(Q x);
12. end if
Figure 6. Case 2: d < Fp; +¢j 13. end for
14. if cg, # Othen
) ) 15. Pr =P U (T}
The Wprst-case response tirRg of e.ach taskT; on Py is 16. Creq = Creq — Cyi¢
then given by Equation (3), whgt?@ is a set of tasks that 17. if Creq = O then
have been assigned B, and#4; is a set of tasks that have 18. =TI\ {P):
priorities higher than or equal fD. 19. returnrSUCCES S
20. dseif < Othen
Ri= ) @ +c ©) 2 oy
TiePnH 22 returms UCCES S
We then consider the total amount of time that a shared 23. else
task competes with another task. Jetbe a shared task, 24. IT:= T\ {Py:
and Py be a processor to which the sharelqfis assigned. 25. en_d if
As we mention in Section 4.1, a shared tdskcan be re- 2(75 engr:‘((j)rlf

garded as an independent task with an execution &fpe
and a minimum inter-arrival tim@s, to which the highest
priority is given, on every processBg. The maximum total
amountWs(d) of time thatTs competes with a task; on
Py within a time interval of lengthd; is therefore obtained
by Equation (4).

28. returnFAILURE

Figure 7. Pseudo code of splitting Ts.

dl, not satisfy the schedulable condition, its utilization rshia
Wa(di) = {E} Csk (4)  going to be split across processors.

Figure 7 shows the pseudo code of splitfingIT is a set
In order to guarantee all tasks to meet deadlines, the fol-q¢ processors processors that have spare capacity to accept
lowing condition must hold for every task on every pro-  tasks. ¢ is a temporal variable that indicates the remain-
cessoiPy to which a shared tasks is assigned. ing execution requirement &, which must be assigned to
some processors. For each processor, the algorithm com-
Rikc+ Wai(d) < d (5) putes the value o€, until the total of those;, reaches

It is clear that the value of,, is maximized forR x + tcﬁé:'??r.value %f ea(cj:ht’&k E’t?]afid orE)Equatmp (E;)a<lt\lbot|ce
Wsk(di) = di. Finally, c’Sk is given by Equation (6), where ¢ IT1i IS a shared task that has been assign e
G = [di/ps]. ore T, the temporal execution capacn_y is not denoted by
(di — ¢, )/Tdi/pi1 but by @ — ci)/Idi/pi1 (line 6), because a
job of T; released at timé always completes at tinte+ ¢
Tie Pk} (6) given thatT; is assigned the highest priority. Otherwise, it
is denoted byd; — R x)/Idi/ps] (line 8). The value ot'&k
In the end, we describe how to assign tasks to proces-must be non-negative (line 11). ¢f, is successfully ob-
sors. As most partitioning algorithms [13, 25, 18, 14] do, tained, the share df; is assigned t® (line 15). Nowceq
each task is assigned to the first processor upon which as reduced t@.eq—C;, (line 16). A non-positive value afreq
schedulable condition is satisfied. The schedulable condi-means that the utilization share ©f has been entirely as-
tion of T; for Py here is defined bR x < d;. If T; does signed to some processors. Thus, it declares success. Here,

di — Rk
G

;o
Cox = mln{



a negative value of.eq means that the execution capacity number of tasks, all of which have very long relative dead-
has been excessively assignedto Therefore, we need to  lines (close tax), meaning very small utilization (close to

adjust the value ot for the last portion (line 21). I€.q 0), have been already assigned to every processor. There-
is still positive, the same procedure is repeated. fore, the available processor utilization is at most 69% for

all processors. Lets be a shared task with individual uti-
4.3 Optimization lization (Us = cs/ps) greater than 69%, ank, be a last

processor to which the utilization share Bf is assigned.
We then assume that another tasks later assigned t8,.

At this point, the worst-case execution capacity that can be
assigned td; on Py is ds — ¢s = dg(1 — ug), due tod; < ds.
Hence, the worst-case utilization shareTgfon P, is ob-
tained as follows.

This section considers optimization of DM-PM. Remem-
ber again that a shared task can be regarded as an inde-
pendent task with an execution tingg, and a minimum
inter-arrival timeps, to which the highest priority is given,
on every processd?. We realize from this characteristic
that if Ts has the shortest relative deadline on a processor ds(1 - us)

Py, the resultant scheduling is conformed to DM, though Ui = 4 > (1-uy (8)
the execution time of ¢ is transformed intco:'&k.

Based on the idea above, we consider such an optimiza- Now, we concern a case in which has a very large
tion that sorts a task set in non-increasing order of redativ Value ofus (close to 100%). The worst-case utilization share
deadline before the tasks are assigned to processors. As @f Ti is then derived asj = 1 - us ~ 0, regardless of the
result, all tasks that have been assigned to the processorBrocessor utilization ofy. In other words, even though the

beforeTs always have longer relative deadlines tfianIn processor resource Bf is not fully utilized at all,P, cannot
other words[Ts always has the shortest relative deadline at @ccept any other tasks.
this point. In order to overcome such a worst case problem, we next

cessoPy, if other tasks are later assignedRg Remember  dividual utilization greater than or equal to 50% are prefer
that those tasks have shorter relative deadlinesTgmince  €ntially assigned to processors, before a task set is siorted

a task set is sorted in non-increasing order of relative dead Non-increasing order of relative deadline. Since no tasks

thatPy is filled to capacity, except th& is a last processor shargd among processors, the worst-case execution gapacit
to whichTs is assigned. We therefore need to concern only Of Ti is improved tau; = 1 - us > 50%. As a result, the op-

such a last processey that executeds. timized DM-PM guarantees that the processor utilization of
In fact, there is no need to forcefully give the highest €Very processor is at least 50%, which means that the entire
priority to Ts on Py, because the next job dt will be re- multiprocessor utilization is also at least 50%. Given that

leased at its next release time, regardless of its completio N0 Prior fixed-priority algorithms have utilization bounds
time, whereas it is necessary to give the highest priority to 9réater than 50% [6], our result isfigient. Remember
T, on the preceding processors, becalisés never exe- that this is t_he worst case. The S|mulat|0n-b_as_ed evaluatio
cuted on the next processor before the execution capacityPresented in Section 5 shows that the optimized DM-PM
is consumed. We thus modify DM-PM for optimization so 9enerally performs much better than the worst case.

that the prioritization rule is strictly conformed to DM. As

result, a shared task would have a lower priority than fixed 4.4 Preemptions Bound

tasks, if they are assigned to the processor later.

The worst case problem. Particularly for implicit- The number of preemptions within a time interval of
deadline systems where relative deadlines are all equal tdengthL is bounded as follows. Lé{(L) be the worst-case
periods, a set of tasks is successfully scheduled on each pronumber of preemptions withinfor DM. Since preemptions
cessorPy, if the processor utilizatiotly of Py satisfies the ~ may occur every time jobs arrive in DNN(L) is given by
following well-known condition, wherey is the number of ~ Equation (9), where is a set of all tasks.
the tasks assigned #, because the scheduling policy of
the optimized DM-PM is strictly conformed to DM. N(L) = Z { L

, 9)
1 TiET !
Uk < (2™ - 1) ()
Let N*(L) then be the worst-case number of preemptions
The worst-case processor utilization is then derived aswithin L for DM-PM. It is clear that there are at mast— 1
69% forny — oo. Thus to derive the worst-case perfor- shared tasks. Each shared task is migrated from one pro-

mance of DM-PM, we consider a case in which an infinite cessor to another processor once in a period. Every time a



shared task is migrated from one processor to another protask is uniformly distributed within the range @ffin, Unax-
cessor, two preemptions occurs:; one occurs on the sourc®ue to limitation of space, we have five sets afif;, Umay
processor and the other occurs on the destination processosuch that [0L,1.0], [0.25,0.75], [0.4,0.6], [0.5,1.0], and
Hence,N*(L) is given by Equation (9), wher# is a set of [0.1,0.5]. The first three setups generate task sets in which

tasks that are shared among multiple processors. the average utilization is abouts) but the minimum and
the maximum are dierent. The last two setups, mean-
N*(L) = N(L) + 2(m— 1){ _ L : } (10) v_vhiIe, generate su_ch task sets_that contain he:_:\vy tgsks and
min{ps | Ts € 7’} light tasks respectively. The minimum inter-arrival timie o

each task is also uniformly distributed within the range of
5 Evaluation [100, 10, 000]. For every tasK;, onceu; and p; are deter-
mined, we compute the execution timelohby ¢ = u; X p;.

In this section, we show the results of simulations con- ~ Since RMDP is designed for implicit-deadline systems,
ducted to evaluate theffectiveness of DM-PM, as com- for fairness we presume that all tasks have relative dead-
pared to the prior algorithms: RMDP [17], FBB-FDD lines equalto periods. However, DM-PM is aldtegtive to
[14], and Partitioned DM (P-DM). RMDP is an algo- explicit-deadline systems where relative deadlines dre di
rithm based on semi-partitioned scheduling, though the ap-ferent from periods.
proach and the scheduling policy ardfdient from DM-

PM. FBB-FDD and P-DM are algorithms based on par- 52 Simulation Results

titioned scheduling. FBB-FDD sorts a task set in non-

decreasing order of relative deadline, and assigns tasks to Figure 8 shows the results of simulations with
processors based on a first-fit heuristic [13]. P-DM assigns[umm’ Umad = [0.1,1.0]. Here, DM-PM(opt) represents the
tasks based on first-fit heuristic for simplicity without sor optimized DM-PM. DM-PM substantially outperforms the
ing a task set. The tasks are then SChEdl_JIEd_ according t(y).)rioralgorithms. Particularly, the optimized DM-PM is abl
DM. Note t.hat FBB_’FDD uses a polynomlal-tlme acCep- 5 schedule all task sets successfully, even though system
tance te_st ina part_momng phas_e, Wh'l,e P-DM uses a re- jjization is around 0.9, while the prior algorithms some-
sponse time analysis presented in Section 4.2. times return failure when it exceeds 0.6 to 0.7. It has been

To the best of our knowledge, FBB-FDD is the best per- o5 teq in [19] that the average case of achievable pro-
former among the fixed-priority algorithms based on par- ..qsor utilization for DM, as well as RM, is about 88%
titioned scheduling. We are then not aware of any fixed- 5, uniprocessors. Thus, DM-PM reflects the schedulabil-
priority algorithms, except for RMDP, that are based on ity of DM on multiprocessors. Even though a task set is

semi-partitioned scheduling. We thus consider that thosenot sorted. DM-PM is able to schedule all task sets when
algorithms are worthwhile to compare with DM-PM. system utilization is smaller than 0.7 to 0.8.

The performance of DM-PM is better as the number of

5.1 Simulation Setup processor is greater, because tasks are more likely to be suc
. ) ) cessfully shared among processors, if there are more pro-
A series of simulations has a set of parameteggs m, cessors, when they cannot be assigned to any individual
Unin, 8Nd Umax. Usys denotes system utilizationm is the  5rocessors. Since RMDP is also able to share tasks among
number of processorsinin andumax are the minimum uti- processors, it outperforms FBB-FDD and P-DM that are
lization and .the maximum utilization of every individual pased on classical partitioned scheduling. However, RMDP
task respectively. is still far inferior to DM-PM. Thus, we recognize théec-

For every set of parameters, we generate 1,000,000 taskeness of the approach considered in DM-PM. Note that
sets. A task set is said to be successfully scheduled, if allp_p\ outperforms FBB-FDD, because P-DM uses an ac-
tasks in the task set are successfully assigned to Prosessor ceptance test based on the presented response time analysis

The dfectiveness of an algorithm is then estimatedsbyg- while FBB-FDD does a polynomial-time test.
cess ratigwhich is defined as follows. Figure 9 shows the results of simulations with
the number of successfully-scheduled task sets [Umin, Uma] = [0.25,0.75]. The relative order of perfor-

mance in the simulated algorithms is mostly equal to the
previous case Ofunin, Umax = [0.1, 1.0]. However, the suc-
The system utilizatiorusys is set every 5% within the  cess ratio is entirely degraded, particularly for P-DM and
range of [05, 1.0]. Due to limitation of space, we have three FBB-FDD: they may return failure despite system utiliza-
sets ofmsuch thatn = 4, m = 8, andm = 16. Each task set  tion less than 0.6. Since the utilization of every indivilua
7 is then generated so that the total utilizat)gn.;- u be- task is never smaller than 0.25, partitioning is more likely
comes equal tasysx m. The utilization of every individual  to fail. For instance, even though two processors have spare

the number of submitted task sets



capacity of utilization 0.2 respectively, i.e. the totabep
capacity is utilization 0.4, a task with utilization 0.25dae

Figure 9. Results of simulations ([Umin, Unax]

- [0.25,0.75)).
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Figure 8. Results of simulations ([Unmin, Unmax = [0.1, 1.0]).
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execute more than one task, because processor utilization
cannot be greater than 1.0. As a result, the preciseness of

assigned to neither of them. However, in the previous caseapproximations for a polynomial-time test of FBB-FDD is
of Umin, Umax = [0.1, 1.0], the utilization of every individual ~ improved, and thus itféers competitive performance to P-
task is at least 0.1. Thus, the spare capacity of processor®M that uses the presented response time analysis. As for
can be used mordiciently. Meanwhile, the success ratio the performance of DM-PM and RMDP, it is very similar to
for DM-PM and RMDP is not degraded as much as that for the first case oftmin, Uma] = [0.1, 1.0].
FBB-FDD and DM, because those algorithms are based on Figure 12 shows the results of simulations with
semi-partitioned scheduling. [Umin, Umax] = [0.1,0.5]. In contrast to the previous case of

Figure 10 shows the results of simulations with [Umin,Umay] = [0.5,1.0], the tasks are all light with utiliza-
[Umins Umaxd = [0.4,0.6]. Since the utilization of every in-  tion smaller than 0.5. As a result, the approximations for a
dividual task is about 0.5, two tasks are likely to fill one polynomial-time test of FBB-FDD are likely imprecise, and
processor to capacity. If every processor is mostly filled to thus it is far inferior to P-DM. It is also true that the number
capacity, there is not much advantage to share tasks. As ®f tasks is greater than the previous cases, because tieere ar
result, the performance of RMDP is not much better than only light tasks. It has been known by the formula [21] that
DM. Since DM-PM splits a shared task across processorsthe schedulability of fixed-priority algorithms is gendyal
more dficiently than RMDP, it outperforms RMDP, but the decreased as the number of tasks is increased. Hence, the
amount of schedulability improvement is not as much as success ratio of each algorithm is entirely declined.
the previous two cases. From this result, we recognize that
DM-PM prefers the case in which the utilization of every 6 Conclusion
individual task is widely distributed.

Figure 11 shows the results of simulations with
[Umin, Umax] = [0.5,1.0]. The tasks are all heavy with uti-
lization greater than 0.5. Note that no individual processo

A new algorithm was presented for semi-partitioned
fixed-priority scheduling of sporadic task systems on iden-
tical multiprocessors. We designed the algorithm so that
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Figure 10. Results of simulations ([Umin, Unay = [0.4, 0.6]).
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Figure 11. Results of simulations ([Umin, Umax = [0.5, 1.0]).

a task is qualified to migrate across processors, only if it systems where relative deadlines may be longer than pe-
cannot be assigned to any individual processors, in such aiods, while we consider constrained-deadline systems
manner that it is never migrated back to the same proceswhere relative deadlines are shorter than or equal to pe-

sor within the same period, once it is migrated from one riods.

We are also interested in applying the presented

processor to another processor. The scheduling policy wasemi-partitioned scheduling approach to dynamic-psiorit
then simplified to reduce the number of preemptions and scheduling. The implementation problems of the algorithm

migrations as much as possible for practical use.

We also optimized the algorithm to improve schedulabil-

ity. Any implicit-deadline systems are successfully sched
uled by the optimized algorithm, if system utilization does

not exceed 50%. We are not aware of any fixed-priority
algorithms that have utilization bounds greater than 50%

Thus, our result seemsfigient.

The simulation results showed that the new algorithm

significantly outperforms the traditional fixed-prioritiga-

in practical operating systems are left open.
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