
Real-Time Scheduling with Task Splitting on Multiprocessors ∗

Shinpei Kato and Nobuyuki Yamasaki
School of Science for Open and Environmental Systems

Keio University, Yokohama, Japan
{shinpei,yamasaki}@ny.ics.keio.ac.jp

Abstract
This paper presents a real-time scheduling algorithm

with high schedulability and few preemptions for multipro-
cessor systems. The algorithm is based on an unorthodox
method called portioned scheduling that assigns each task
to a particular processor like partitioned scheduling but can
split a task into two processors if there is not enough ca-
pacity remaining on a processor. We describe an algorithm
for assigning tasks to processors as well as an algorithm
for scheduling the assigned tasks on per-processor. The
schedulability analysis provides a formula to calculate the
upper bound of the schedulable per-processor utilization for
the algorithm. We then prove that the least upper bound of
the whole system utilization is 50%. In addition, we propose
heuristic procedures to improve schedulability. The simula-
tion results show that the algorithm can often successfully
schedule a task set with system utilization much higher than
50%, though the least upper bound is 50%. We also show
that the algorithm achieves higher schedulability with fewer
preemptions compared to the existiting algorithms.

1. Introduction
Recent advances of embedded real-time systems have

raised the necessity for more powerful platforms. For in-
stance, humanoid robots often require high-performance
and multi-functional computing with low power consump-
tion. Conventional uniprocessor systems are no longer
capable of responding all those requirements. Therefore
multiprocessor systems such as symmetric multiprocessors
(SMP), simultaneous multithreaded (SMT) processors [18],
chip multiprocessors (CMP) [14] and chip multithreaded
(CMT) processors [16] have considerable attention nowa-
days. However it is known to be more complicated to
schedule recurrent real-time tasks on multiprocessors com-
pared to on uniprocessors. It has been proved that the opti-
mal scheduling algorithms for uniprocessors such as Rate
Monotonic (RM) [11] and Earliest Deadline First (EDF)
[11] are no longer optimal for multiprocessors [9].

The Pfair scheduling method [6, 5], originally proposed

∗This work is supported by the fund of Research Fellowships ofthe
Japan Society for the Promotion of Science for Young Scientists. This
work is also supported in part by the fund of Core Research forEvolutional
Science and Technology, Japan Science and Technology Agency.

by Baruahet al., brought an optimality of scheduling recur-
rent real-time tasks on multiprocessors. In Pfair scheduling,
tasks are divided into quantum-size pieces so-calledsub-
tasks and are scheduled based on the deadline of the sub-
tasks. PF [5], PD [6] and PD2 [2] are known to be optimal
Pfair algorithms. LLREF [8] is another optimal scheduling
algorithm based on a different technique that does not rely
on the quantum-based approach but on the original notion
so-calledT-L Plane. Those sophisticated scheduling algo-
rithms necessarily generate a number of preemptions and
task migrations that incur run-time overhead due to their
optimality, though they can always achieve the theoretical
schedulable system utilization of 100%. Meanwhile simple
algorithms such as EDF with a first fit bin-packing algo-
rithm (EDF-FF) [12], EDF with a best-fit bin-packing al-
gorithm (EDF-BF) [12] and EDF-US[1/2] (we omit ’[1/2]’
hereinafter) [10, 4] are inferior to the sophisticated onesin
the schedulability point of view, though they can offer low
overhead. The minimum value of the least upper bound for
those algorithms is at most 50%. Most of algorithms that
belong to so-called the global scheduling scheme or the par-
titioned schedulinging scheme are cataloged in [7].

Anderssonet al. proposed the EKG algorithm that im-
proves schedulability with few preemptions [3]. EKG as-
signs each task to a particular processor like conventional
partitioned scheduling algorithms but can split a task into
two portions if necessary, then assigns the first portion to the
current processor on which the assignment is going and the
second portion to the next processor on which the assign-
ment will go. The two portions of a split task are scheduled
exclusively. The least upper bound of the schedulable sys-
tem utilization for EKG depends on the value of a parameter
k which should be selected in the range of 1≤ k ≤ M where
M is the number of processors in a system. A largek results
in a higher bound but incurs more preemptions. The bound
becomes 66% in the case ofk = 2 and 100% in the case of
k = M. Namely EKG is an optimal algorithm in the case of
k = M, though more preemptions occur instead.

This paper presents a real-time scheduling algorithm
with high schedulability and few preemptions for multipro-
cessors. The algorithm is based on an unorthodox method
that assigns each task to a particular processor like parti-
tioned scheduling but can split a task into two processors
if there is not enough capacity remaining on a processor.

In this viewpoint, the algorithm follows the approach of
EKG, however we design the algorithm with different no-
tions in assigning tasks to processors and in scheduling the
assigned tasks on per-processor. Our goal is to achieve
higher schedulability than simple algorithms such as EDF-
FF, EDF-BF, EDF and EDF-US with fewer preemptions
than EKG. To distinguish from the conventional partitioned
scheduling scheme, we define a scheduling scheme that par-
titions the tasks but can split some of them into two portions
if necessary to improve scheduling asportioned scheduling.

The rest of this paper is organized as follows. The next
section defines the system model. In Section 3, we describe
our algorithm and analyze its schedulability. Also we pro-
pose heuristic techniques to improve schedulability in Sec-
tion 4. Section 5 evaluates the advancement of our algo-
rithm compared to the existing algorithms by simulation.
Finally we conclude our work in Section 6.

2. System Model
The system is composed ofM processors:P1, P2, ..., PM

and a periodic task setΓ = {τ1, τ2, ..., τN} is given to the
system. Each taskτi is defined by tupple (Ci, Ti) where
Ci is a worst-case execution time andTi is a period, then
Ui = Ci/Ti indicates a processor utilization ofτi. The total
utilization of the tasks in an arbitrary task setΛ is defined
by U(Λ) =

∑

τi∈Λ
Ui, namelyU(Γ) denotes the load of the

entire system. A task generates a sequence of jobs periodi-
cally. Thekth job of τi, released at timeri,k, is denoted by
τi,k. Its deadline is equal to the release time of the next job,
i.e. di,k = ri,k+1 = ri,k + Ti. The start time and the finish time
of τi,k are denoted bysi,k and fi,k respectively.

The algorithm is designed under the following assump-
tion. The system is a memory-shared multiprocessor and
each processor shares the code and data. All the tasks are
preemptive and independent. Any jobs of the task cannot
be executed in parallel. Also no task joins and leaves the
system at run-time. Since the subject of this paper is not
to design a whole system but a scheduling algorithm, we
do not take into account costs of preemptions and task mi-
grations. In the scheduling algorithm point of view, it is
more important to consider how often preemptions and task
migrations occur. In addition, the cost of switching con-
texts between processors is almost equal to that of switch-
ing contexts within a processor, because we assume that the
processors share the code and data. We never suffer from
performance deterioration of each task due to a transient
degradation of the cache hit ratio caused by task migrations,
since the tasks are scheduled based on the worst-case exe-
cution time in this paper. Hence we take the number of
preemptions as a performance metric for overhead.

3. Algorithm Ehd2-SIP
This section presents a new scheduling algorithm based

on the portioned scheduling scheme. The algorithm is com-
posed of the task assignment phase and the task execution
phase. The reminder of this section describes an algorithm

Assumption:
task setΓ is sorted so thatT1 ≤ T2 ≤ ... ≤ TN .
all the per-processor task sets are empty:∀m,Λm = ∅.
1. i = 1, m = 1 andUub = 1;
2. if U(Λm ∪ τi) ≤ Uub

3. Λm = Λm ∪ τi;
4. else if m < M
5. Urem = Uub − U(Λm);
6. C′i = UremTi andC′′i = Ci −C′i ;
7. if i < N
8. Uub = calc ub(C′i , C′′i , Ti, Ti+1);
9. splitτi into τ′i (C

′
i ,Ti) andτ′′i (C′′i ,Ti);

10. Λm = Λm ∪ τ
′
i andΛm+1 = {τ

′′
i };

11. m = m + 1;
12. else
13. the algorithm fails;
14. if i < N
15. i = i + 1 and go back to step 2.;
16. the algorithm successfully exits;

Figure 1. Algorithm SIP

for each phase. In addition, we provide the schedulability
analysis for the proposed algorithm in this section.

3.1. Task Assignment Phase
We propose an algorithm calledSequential assignment

in Increasing Period (SIP) for assigning the tasks to the
processors. The pseudo code ofSIP is indicated in Figure
1. The algorithm assumes that the tasks are sorted so that
Ti ≤ Ti+1. A task set composed of the tasks assigned to
processorPm is denoted byΛm initialized with∅.

The algorithm first initializes the variables (line 1). The
upper boundUub of the schedulable utilization on the first
processorP1 is always 100% (line 1). For the other pro-
cessors, we need to calculate it based on the formula (line
8). We will explain the formula in Section 3.3 more in de-
tail. Then the algorithm assignsτi to Pm if U(Λm ∪ τi),
the total utilization ofPm to whichτi is assumed to be as-
signed, is less than or equal toUub (line 3). In the case of
U(Λm ∪ τi) > Uub, the algorithm checks whether there are
remaning processors to assign the tasks (line 4). The algo-
rithm fails if there are no remaining processors (line 13).
Otherwise the algorithm splits the task (line 5-11). More
specifically, it first calculates the remaining utilizationUrem

of Pm (line 5). Then it calculatesC′i andC′′i that are re-
served capacities for execution ofτi in everyTi on Pm and
Pm+1 respectively (line 6). WhenC′i , C′′i , Ti andTi+1 are all
acquired, it can calculate the bound for the next processor
based on those parameters (line 8). Note that ifτi is the
last task inΓ, we need not calculate the bound forPm+1, be-
cause there will be onlyτ′′i on Pm+1 and it will never miss
the deadline. Finally it splitsτi into τ′i andτ′′i (line 9), then
assignsτ′i to Pm andτ′′i to Pm+1 (line 10). Here ’split’ does
not mean that a task is really divided into two tasks.τ′i and
τ′′i are nothing but pseudo tasks to reserve a processor time
on Pm andPm+1 for execution ofτi. We callτ′i portion-1
task of τi andτ′′i portion-2 task of τi. Then if there are still
tasks to be assigned, it repeats the same procedure (line 15).

Assumption:
the following algorithm is dedicated to processorPm.
τ′′i , τi+1, τi+2, ..., τ

′
j are assigned toPm.

1. when any task is released or is completed onPm

2. callschedule on Pm;
3. if τ′j is included in the released tasks
4. call schedule on Pm+1;

5. subroutine schedule on Pm

6. if τ′′i is ready andτ′i is not being executed onPm−1

7. executeτ′′i ;
8. else
9. execute a task with the earliest deadline butτ′′i ;

10. if the chosen task isτ′j andτ′′j is being executed
on Pm+1

11. callschedule on Pm+1;

Figure 2. Algorithm Ehd2

Otherwise the algorithm successfully exists (line 16).
The task assigment algorithm of EKG does not sort the

tasks based on the periods before assigning the tasks. Mean-
while SIP assigns the tasks with holding a condition of
T s ≤ min{Ti | τi ∈ Λm \ τ

′′
s } whereτ′′s is a portion-2 task

on processorPm. This property will be essential for the
schedulability analysis described in Section 3.3.

3.2. Task Execution Phase

We propose an algorithm calledEarliest Deadline First
with the highest-priority deferrable portion-2 task (Ehd2)
for scheduling the tasks which are assigned to each pro-
cessorPm by SIP. A scheduling policy ofEhd2 is that the
tasks are scheduled according to the EDF policy except that
a portion-2 task always has the highest priority on a proces-
sor but it cannot be executed if its corresponding portion-1
task is being executed on a neighbor processor.

The algorithm is shown in Figure 2. Here we assume
that taskτi is split intoτ′i andτ′′i , then they are assigned to
Pm−1 andPm respectively. We also assume that taskτ j is
split into τ′j andτ′′j , then they are assigned toPm andPm+1

respectively. Namely all the tasks betweenτi andτ j are as-
signed toPm. When any task is released or is completed on
Pm, the scheduler onPm is invoked (line 2). The scheduler
on Pm executesτ′′i when it is ready andτ′i is not currently
being executed onPm−1 (line 6-7). Otherwise it executes a
task with the earliest deadline in the rest of the ready tasks
butτ′′i (line 9-10). If the task that was executed right now is
a portion-1 task and its corresponding portion-2 task is cur-
rently being executed onPm+1, the scheduler onPm calls the
scheduler onPm+1 to preempt the portion-2 task to execute
split portions exclusively (line 11-12). Since we assume a
memory-shared multiprocessor, a cost for calling a sched-
uler on another processor is negligible.

Ehd2 only needs to execute a portion-2 task in priority to
other tasks unless its portion-1 task is executed on a neigh-
bor processor in addition to the behavior of EDF. Besides all
the preemptions can be handled by the EDF scheduler. All
we have to do is to track the executed times of a portion-1

deadline miss

t1 t2

s

s

i

j

k

'

"

Pm-1

Pm

Pm

Pm

Pm

Execution of the tasks that have a higher priority than 's on Pm-1

Deferred execution of "s on Pm due to execution of 's on Pm-1

Figure 3. Unfeasible schedule of Ehd2

task and a portion-2 task so as not to overrun their reserved
capacity on each processor. This operation can be realized
by a resource reservation technique [13, 15]. EKG, on the
other hand, needs to calculate the additional times so-called
timea andtimeb beyond the schedule of EDF for each split
task to suspend and resume its execution, every time any
task is released on the processors where the split task re-
sides. Therefore we consider thatEhd2 is more straight-
forward and reasonable than EKG in the computation and
implementation points of view.

In Ehd2, a portion-2 task is always assigned the highest
priority. In other words, it is statically prioritized overthe
rest of tasks on a processor. HenceEhd2 is similar to the
scheduling method of the EDF-fm algorithm [1] rather than
EKG. However, unlike EDF-fm, a period of a portion-2 task
is always shorter than that of any other tasks on a processor
in Ehd2. This property will help to analyze the schedulable
utilization in the next section.

3.3. Schedulability Analysis

This section analyzes the schedulable utilization for
Ehd2-SIP. Since all the tasks but a portion-2 task are sched-
uled according to the EDF policy on each processor in
Ehd2, we need to understand how the portion-2 task be-
haves. Hereinafter we assume that taskτs is split into τ′s
andτ′′s , then they are assigned toPm−1 andPm respectively.
Now we focus on only the schedulable utilization onPm.

We show an example of the unfeasible schedule ofEhd2
on Pm in Figure 3. Note that the portion-2 task ofτ′s, i.e.
τ′′s , is always assigned the highest priority onPm unless its
portion-1 task, i.e.τ′s, is being executed onPm−1. Now let
us assume that any jobτ j,c missed its deadline as shown in
the figure. Lett1 be the last time at which the processor
is idle or a job whose deadline is later than the deadline
of τ j,c is executed. Lett2 be the time at whichτ j,c missed
its deadline, that is, the deadline ofτ j,c. In order to have
τ j,c miss its deadline, the following condition needs to be
satisfied whereS (t1, t2) is the total amount of the time at
which τ′′s is not executed within [t1, t2], namely the total
slack amount with respect toτ′′s within [t1, t2].

S (t1, t2) <
∑

τi∈Λm\τ
′′
s

⌊

t2 − t1
Ti

⌋

Ci

Pm

a b c d

C"s C"s C"s C"s C"s

f
Tmin

Ts

e

C's

(a) Case 1:Tmin ≥ FTs +C′′s −C′s

Pm

a b c

C"s C"s C"s C"s C"s

e
Tmin

Ts

d

C's

(b) Case 2:Tmin ≤ FTs +C′′s −C′s

Figure 4. Worst-case phasing for Ehd2

Since⌊x⌋ ≤ x for any x, the following condition must be
satisfied in order thatτ j,c may miss its deadline.

S (t1, t2) <
∑

τi∈Λm\τ
′′
s

(t2 − t1)Ui

In other words, any jobτ j,c is guaranteed to meet its dead-
line if the following condition is satisfied for any (t1, t2).

∑

τi∈Λm\τ
′′
s

Ui ≤
S (t1, t2)
t2 − t1

Now we seek to obtain the minimum value ofR(t1, t2) =
S (t1,t2)
t2−t1

. Note that we havet2 − t1 ≥ min{Ti | τi ∈ Λm \ τ
′′
s },

since t1 should be before or at the release time ofτ j,c.
It is obvious thatτ′′s consumes the most processor time
within [t1, t2] when its first job within [t1, t2] is deferred
for the longest time and its last job within [t1, t2] is exe-
cuted immediately with no preemptions. This phasing re-
sults in minimizingR(t1, t2). Taking this worst-case phas-
ing into account, we need to consider two cases to obtain
the minimum value ofR(t1, t2). The first one is the case of
Tmin ≥ FT s + C′′s − C′s and the second one is the case of
Tmin ≤ FT s +C′′s −C′s. Hereinafter we defineTmin andF as
follows for simplicity of description.

Tmin = min{Ti | τi ∈ Λm \ τ
′′
s }, F =

⌊

Tmin + C′s
T s

⌋

The two cases are shown in Figure 4. We obtain the mini-
mum value ofR(t1, t2) for each case.

Lemma 1. The minimum value of R(t1, t2) in the case of
Tmin ≥ FT s + C′′s − C′s is described by Equation (1) where
G represents G = F + 1 for limitation of space.

min{R(t1, t2)} = min

{

1−
GC′′s
Tmin
,

G(T s − C′′s) − C′s
GT s + C′′s −C′s

}

(1)

Proof. At first we assumet1 = a andt2 = b in Figure 4(a).
ThenR(t1, t2) is described as follows.

R(t1, t2) = R(a, b) =
S (a, b)
b − a

=
Tmin −GC′′s

Tmin
= 1−

GC′′s
Tmin

If t2 is b < t2 ≤ c, R(t1, t2) can be written as follows where
0 < α ≤ c − b.

R(t1, t2) = R(a, b + α) =
S (a, b) + α
b − a + α

Since x
y <

x+z
y+z is always true for anyx > 0, y > 0 andz > 0,

we haveR(a, b) < R(a, b + α). Next we assumet1 = a and
t2 = d. ThenR(t1, t2) is described as follows.

R(t1, t2) = R(a, d) =
S (a, d)
d − a

=
G(T s −C′′s) −C′s
GT s +C′′s −C′s

If t2 is b ≤ t2 < d, R(t1, t2) can be written as follows where
0 < β ≤ d − c.

R(t1, t2) = R(a, d − β) =
S (a, d)

d − a − β

Since x
y <

x
y−z is always true for anyx > 0, y > 0 andz > 0,

we haveR(a, d) < R(a, d − β). Also if t2 is d < t2 ≤ e,
R(t1, t2) can be written asR(a, d + γ) where 0< γ ≤ e − d.
Then we haveR(a, d) < R(a, d + γ) by the same reason of
R(a, b) < R(a, b + α). At last if t2 is e < t2 ≤ f , R(t1, t2) is
minimized whent2 = f , since we haveR(a, f) < R(a, f − δ)
by the same reason ofR(a, d) < R(a, d − γ). For anyC′s > 0
andC′′s > 0, the following condition is obviously satisfied.

R(a, d) =
S (a, d)
d − a

<
T s −C′′s

T s

MeanwhileR(a, f) can be written as follows.

R(a, f) =
S (a, d) + (e − d)
(d − a) + (f − d)

=
S (a, d) + (T s −C′′s)

(d − a) + T s

Hence we haveR(a, d) < R(a, f), which impliesR(a, d) <
R(a, g) for anyd < g. So the minimum value ofR(t1, t2) is
either ofR(a, b) or R(a, d). Let us assumeR(a, b) < R(a, d).
Then the following condition must be satisfied.

Tmin −GC′′s
Tmin

<
G(T s −C′′s) −C′s
GT s +C′′s − C′s

Tmin(G + 1)C′′s < GC′′s (GT s +C′′s −C′s)

Tmin <
G(GT s +C′′s − C′s)

G + 1
=

G
G + 1

(d − a)

Here the above inequation is not always true. It is easy to
prove it if we consider the case ofC′s ≃ 0 andC′′s ≃ 0.
In this case, we can approximated − a ≃ d ≃ c. Since
1 > G

G+1 >
F

F+1 is always true, we haveF
F+1(d−a) ≃ F

F+1c ≃
b < G

G+1(d − a) < (d − a) ≃ c. Because ofC′s ≃ 0 and
C′′s ≃ 0, Tmin can take any length within [b, c]. Hence it
depends on the length ofTmin whether the above inequation
is true or false. Consequently the minimum value ofR(t1, t2)
is described by Equation (1). �

Lemma 2. The minimum value of R(t1, t2) in the case of
Tmin ≤ FT s +C′′s − C′s is described by Equation (2).

min{R(t1, t2)} =
F(T s −C′′s) −C′s
FT s +C′′s − C′s

(2)

Pm C"s C"s

Ts

Ts

C's

t1 t2

Figure 5. Absolute worst-case phasing

Proof. By the same token as Lemma 1, we assumet1 = a
then findt2 that minimizesR(t1, t2). According to the dis-
cussion in Lemma 1, we can easily obtainR(a, b) > R(a, c).
We can also easily obtainR(a, c) < R(a, e) < R(a, d). There-
foreR(t1, t2) is minimized whent1 = a andt2 = c.

R(t1, t2) = R(a, c) =
S (a, c)
c − a

=
F(T s − C′′s) − C′s
FT s + C′′s −C′s

Hence the minimum value ofR(t1, t2) is described by Equa-
tion (2). �

Theorem 1. The upper bound of the schedulable utilization
on processor Pm for Ehd2 is described by Equation (3). We
replace X and Y as follows for limitation of space.

Uub =
C′′s
T s
+















X if Tmin ≥ FT s + C′′s −C′s

Y otherwise
(3)

X = min

{

Tmin −GC′′s
Tmin

,
G(T s −C′′s) −C′s
GT s +C′′s − C′s

}

Y =
F(T s −C′′s) −C′s
FT s +C′′s −C′s

Proof. It is trivial from Lemma 1 and Lemma 2. �

The calc ub function in Figure 1 corresponds to Equa-
tion (3) that is a function ofC′s, C′′s , T s and Tmin. Since
calc ub is called when taskτs is split, C′s, C′′s andT s are
already known. Also the tasks are sorted so thatTi ≤ Ti+1.
Thereby we can considerTmin asT s+1. If the tasks are not
sorted in increasing order of the period, we need to find
which task will have the shortest period in the tasks assigned
to Pm. This procedure is not easy since we do not know how
many tasks will be assigned toPm before the upper bound
is computed. That is why we assign the tasks in increasing
order of the period.

Theorem 2. The least upper bound of the schedulable sys-
tem utilization for Ehd2-SIP is 50%.

Proof. For the case of Lemma 1, it is obvious thatR(a, b) is
monotonically increasing inTmin andF. Since we have the
condition ofTmin ≥ FT s + C′′s − C′s in this case,R(a, b) is
minimized whenTmin = FT s + C′′s − C′s andF = 1. Mean-
while R(a, d) can be rewritten as follows.

R(a, d) =
G(T s − C′′s) − C′s
GT s + C′′s −C′s

= 1−
(G + 1)C′′s

GT s +C′′s − C′s

= 1−
2C′′s + FC′′s

(C′′s −C′s + T s) + FT s

Assumption:
the algorithm is applied only wheni < N.
let τ′′k be a portion-2 task inΛm if there is.
1. s = i;
2. for each τ j ∈ Λm \ {τ

′′
k , τi}

3. Urem2 = Urem − Us + U j;
4. if Urem2 ≥ 0
5. C′j = Urem2T j andC′′j = C j −C′j;
6. x = calc ub(C′j, C′′j , T j, Tmin);
7. if Uub < x
8. Uub = x, Urem = Urem2 ands = j;
9. Λm = Λm ∪ τi \ τs;

10. C′s = UremT s andC′′s = Cs −C′s;
11. splitτs into τ′s(C

′
s, T s) andτ′′s (C′′s , T s);

12. Λm = Λm ∪ τ
′
s andΛm+1 = {τ

′′
s };

Figure 6. Procedure smb

SinceC′′s ≤ T s is always true,R(a, d) is monotonically in-
creasing inF and it is minimized whenF = 1. Taking
Tmin = FT s +C′′s −C′s ≥ T s into account, we can derive the
following relations.

R(a, b) ≥
Tmin − 2C′′s

Tmin
= 1−

2C′′s
Tmin

≥ 1−
2C′′s
T s

R(a, d) ≥ 1−
3C′′s

2T s +C′′s − C′s
= 1−

2C′′s +C′′s
T s + (T s +C′′s − C′s)

C′′s ≤ T s + C′′s − C′s is always true fromC′s ≤ T s. Also x
y >

x+z
y+w is always true for anyw > z > 0, soR(a, b) < R(a, d) is
derived in the case of minimization. Namely the minimiza-
tion of Uub occurs for Figure 5. That is, the minimum value
of Uub can be described as followingUlub.

Ulub =
C′′s
T s
+ 1−

2C′′s
T s
= 1−

C′′s
T s

Because ofC′s = C′′s andC′s + C′′s = Cs ≤ T s, C′′s is in
the range of 0≤ C′′s ≤ T s/2. Hence the absolute mini-
mum value ofUlub is 50%. As for the case of Lemma 2,
Equation (2) is monotonically increasing inF by the same
reason as the aboveR(a, d), so it is minimized whenF = 1.
This is completely the same phasing as the one in Figure
5. Namely the minimum value ofUub, i.e. the least upper
bound, is also 50% in this case. Since the least upper bound
of the schedulable per-processor utilization is 50%, that of
the schedulable whole system utilization is also 50%.�

4. Technique for Improving Schedulability
According to the previous section, the least upper bound

for Ehd2-SIP is only 50%. However, as we mentioned,
this bound is obtained only in the special case and Equa-
tion (3) is often higher than 50%. Also it can be moreover
improved if we efficiently choose a task to split in the task
assignment phase because the bound is a function of the pe-
riod and the execution time of a split task. The necessity
condition for the schedulability analysis for processorPm

Assumption:
the algorithm is applied only wheni < N.
let τ′′k be a portion-2 task inΛm if there is.
1. if Uub + Urem > 1.0
2. C′i = UremT s andC′′i = Ci −C′i ;
3. splitτi into τ′i (C

′
i , Ti) andτ′′i (C′′i , Ti);

4. Λm = Λm ∪ τ
′
i andΛm+1 = {τ

′′
i };

5. else
6. Λm+1 = {τs};
7. Uub = 1.0;

Figure 7. Procedure sbi

is T s ≤ min{Ti | τi ∈ Λm \ τ
′′
s }. SinceSIP always holds

max{T j | τ j ∈ Λm−1} ≤ min{Ti | τi ∈ Λm} that results in
satisfying the above inequation, we can choose any task in
Pm−1 to split intoPm−1 andPm.

Based on this foundation, we propose a technique called
splitting a task that maximizes the bound (smb) to in-
crease the bound of the schedulable utilization. Thesmb
procedure can be combined withSIP by replacing line 9-10
in Figure 1 with the procedure in Figure 6. This procedure
seeks a task that can increase the bound if it is split instead
of τi (line 1-8). Lets be an index of a task that will be split
and it is initialized withi (line 1). Then it tests each taskτ j

if it meetsUrem2 = Urem − Us + U j ≥ 0 whereUrem2 is the
remaining utilization ofPm on which the entire portion of
τs is presumed to be assigned instead ofτ j (line 3-4). If this
condition is not satisfied, there is no room for any portion of
τ j to be assigned onPm. For only the tasks that passed this
test, it finds the task that results the highest bound for the
next processor (line 5-8). Here we need to removeτs from
Λm and, instead, addτi toΛm (line 9). This replacement is
valid only wheni , s. Then it updates the values ofUub,
Urem ands. Finally it splitsτs (line 11).

There is another approach to improve the schedulability
of Ehd2-SIP. As we already discussed, the bound of the
schedulable processor utilization forEhd2 could be 50%
in the worst case, whereas that of EDF is always 100%.
Therefore the splitting method ofEhd2-SIP may degrade
schedulability compared to the nonsplitting method such
as EDF-FF and EDF-BF. For instance, consider task set
Γ = {τ1(2, 5), τ2(2, 5), τ3(6, 10), τ4(4, 11)} with two pro-
cessorsP1 and P2. Being asU1 + U2 = 0.8 < 1 and
U1 + U2 + U3 = 1.4 > 1, SIP splitsτ3 into P1 and P2.
Then we haveC′s = 2, C′′s = 4, T s = 10, Tmin = 11 and
F = 1 in Equation (3). Because ofTmin > FT s + C′′s − C′s,
we acquireUub ≃ 0.733. HereSIP cannot assign all the
tasks successfully asU ′′3 + U4 ≃ 0.763> Uub. Meanwhile
we can successfully assign them if we do not splitτ3 and
instead assign it toP2 asU3 + U4 ≃ 0.963< 1, since there
will be no portion-2 task onP2 and the bound will be 100%.

Taking this situation into account, we propose a tech-
nique calledsplitting a task only if the bound is increased
(sbi). The procedure is shown in Figure 7. It can be com-
bined withSIP by replacing line 9-10 in Figure 1 with the
procedure or it can be also combined withsmb by replac-

ing line 10-12 in Figure 6 with the procedure. Note that,
in the latter case, indexi in Figure 7 should be considered
to be s. The procedure is straightforward. It splits a task
only if Uub+Urem > 1.0, that is, only if the schedulability is
improved compared to the nonsplitting approach (line 1-4).
Otherwise it assigns the task that was supposed to be split
by SIP to the next processor (line 5-7).

5. Simulation
Beyond the theoretical schedulability analysis, this sec-

tion evaluates the actual schedulability ofEhd2-SIP com-
pared to the existing algorithms such as EDF-FF, EDF-BF,
EDF, EDF-US and EKG with randomly-generated task sets
by simulation. We measure the success ratio1 for each al-
gorithm as a performance metric of the schedulability. Also
we measure the number of preemptions for each algorithm
as a performance metric of the scheduling overhead.

5.1. Experimental Setup

The simulations are characterized by the parameters of
Umin, Umax, Utotal andM. Umin andUmax are the minimum
and maximum values of the per-task utilization in the given
task set.Utotal is the total utilization of the tasks.M is the
number of processors. The system utilization is defined by
Usys = Utotal/M. For each combination of (Umin,Umax,M),
the simulation goes through fromUsys = 30% to Usys =

100% with 1000 task sets. Although various combinations
of the parameters can be considered, we only attempt the
following settings due to the limitation of space. Taking the
scale of the current processor for embedded systems into ac-
count, we evaluate the cases ofM = 2, M = 4 andM = 8.
For the range of the per-task utilization, we refer to the im-
plementation of the humanoid robot that we have been de-
veloping [17]. The simple activities are realized with only
light tasks. Meanwhile, when the quality of the activities
needs to be enhanced, it requires heavy tasks. So we prepare
two sets of (Umin,Umax), (0.01, 0.1) and (0.01, 1.0), to simu-
late the task sets with only light tasks and the ones with both
light and heavy tasks. Each task setΓ is generated as fol-
lows. A new task is appended toΓ as long asU(Γ) ≤ Utotal.
For each taskτi, its utilizationUi is computed based on a
uniform distribution in the range of [Umin,Umax]. Only the
utilization of the task generated at the last is adjusted so that
U(Γ) gets equal toUtotal. Ti is determined in the range of
[100, 3000] randomly. Then its execution timeCi = UiTi is
calculated. The range of the periods is set as above, since
the feedback interval of the tasks in the humanoid is usu-
ally about 1ms ∼ 30ms. Each simulation runs during time
interval [0,max{lcm({Ti | τi ∈ Γ}), 232}).

The definition of the successfully scheduled task set de-
pends on each scheduling algorithm. The three algorithms,
Ehd2-SIP, EDF-FF and EDF-BF, are designed so that no
tasks will miss the deadline once they are successfully as-
signed to the processors. Hence we define that a task set

1The success ratio is defined by# of successfully scheduled task sets
of scheduled task sets

is said to be successfully scheduled if all the tasks can be
assigned to the processors. The upper bound of the per-
processor utilization forEhd2-SIP is calculated by (3). That
for EDF-FF and EDF-BF is always 100%. Meanwhile task
setΓ cannot be guaranteed to be schedulable (i) by EDF
unlessU(Γ) ≤ M(1 − Umax) + Umax [10] and (ii) by EDF-
US unlessU(Γ) ≤ (M + 1)/2 [4]. Especially in the pres-
ence of heavy tasks, the schedulability of EDF degrades
dramatically, which is called Dhall’s effect [9]. However
it is known that the task set can be often scheduled without
missing any deadlines by those algorithms even ifU(Γ) ex-
ceeds the above bounds. Therefore, in those algorithms, we
define that a task set is said to be successfully scheduled if
all the tasks are scheduled without missing any deadline.

We also evaluate the effectiveness of the procedures pro-
posed in Section 4. The version ofEhd2-SIP with smb and
sbi is described asEhd2-SIP-ss in this experiment. As for
EKG, we implemented it withk = 2, k = 4 andk = 8 as the
number of the processors increases in the simulations. Note
that EKG is an optimal algorithm whenk = M. The ties are
broken arbitrarily for all the algorithms.

5.2. Success Ratio
Figure 8 shows the success ratio for each algorithm. We

first discuss the cases with (Umin,Umax) = (0.01, 0.1). In
the cases withM = 2 andM = 4, there was little differ-
ence in performance among the algorithms.Ehd2-SIP-ss
and EKG slightly outperformed the other algorithms. The
success ratio of EKG(k=M) dropped below 100% before
Usys = 100% in spite of its optimality. This problem hap-
pened because the execution time of a task cannot be split
less than the minimum time unit 1 in the simulations. Hence
each processor inevitably remains a little room unless the
remaining processor utilization before splitting taskτi is an
integer multiple of 1/Ti. As a result, a few tasks may fail to
be assigned ifUsys is very close to 100%. All the following
simulations had the same phenomenon for EKG(k=M).

In the case withM = 8, EKG(k=4) outperformed the
other algorithms but EKG(k=8). Its maximum schedulable
system utilization was 87%, whereas the success ratio of the
other algorithms dropped below 100% atUsys = 85%. Af-
ter the success ratio dropped below 100%, EKG(k=4) still
performed well compared to the other algorithms. Nonethe-
less the difference in performance among the algorithms
was still a little. Apart from EKG(k=4) and EKG(k=8),
Ehd2-SIP-ss and EKG(k=2) relatively performed well.

We next discuss the cases with (Umin,Umax) =

(0.01, 1.0). The results of these cases were quite differ-
ent from the previous cases. In contrast to the cases with
only light tasks, the cases with both light and heavy tasks
clearly showed the difference in performance among the
algorithms. In the case withM = 2, Ehd2-SIP, Ehd2-
SIP-ss and EDF-BF were apparently superior to EDF-FF,
EDF, and EDF-US. While the maximum schedulable sys-
tem utilization ofEhd2-SIP, Ehd2-SIP-ss and EDF-BF al-
gorithms was around 77%∼ 80%, that of EDF-FF, EDF,
and EDF-US was around only 53%∼ 57%. An interesting

result of this case is that EDF-BF was very competitive to
Ehd2-SIP andEhd2-SIP-ss. It rather outperformedEhd2-
SIP at the system utilization higher than 90%. This fact
implies that the proposed task splitting approach does not
always improve schedulability. MeanwhileEhd2-SIP-ss,
the improved version ofEhd2-SIP with the procedures of
smb andsbi, consistently outperformed EDF-BF. This re-
sult proved the effectiveness ofsmb andsbi.

The case withM = 4 made a difference in performance
betweenEhd2-SIP and EDF-BF. WhileEhd2-SIP kept the
success ratio 100% toUsys = 80%, EDF-BF dropped the
success ratio below 100% atUsys = 73%. It is remark-
able thatEhd2-SIP performed competitively to EKG(k=2)
with fewer preemptions (we will show the number of pre-
emptions afterwards in the next section). Combining the
procedures ofsmb andsbi, Ehd2-SIP-ss consistently out-
performed EKG(k=2). Also EDF and EDF-US were appar-
ently inferior to EDF-FF unlike the case withM = 2.

Finally in the case withM = 8, we can observe the differ-
ence in performance among the algorithms clearly. As in the
case withM = 4, Ehd2-SIP, Ehd2-SIP-ss and EKG(k=2)
were competitive, thoughEhd2-SIP-ss was slightly better
than the other two algorithms. The maximum schedulable
system utilization ofEhd2-SIP-ss was 80%, whereas that
of Ehd2-SIP and EKG(k=2) was 77%. AlsoEhd2-SIP-
ss outperformed the others at any system utilization after
the success ratio dropped below 100%. EKG(k=4) kept the
success ratio 100% toUsys = 90%, however its number of
preemptions was much larger than the other algorithms as
we will show in the next section. The performance of EDF-
BF and EDF-FF was almost same as the case withM = 4.
In contrast, the performance of EDF and EDF-US further
degraded. Their maximum schedulable system utilization
was around only 45%∼ 50%.

We observe that we cannot acquire the advancement
of the proposed algorithm very much for task sets with
only light tasks. Meanwhile we can observe the effective-
ness of the proposed algorithm in the presence of heavy
tasks. Ehd2-SIP and Ehd2-SIP-ss consistently achieved
high schedulability regardless of the number of processors,
whereas the other algorithms deteriorated schedulabilityas
the number of processors increased. EKG also performed
well but it may suffer from run-time overhead caused by a
number of preemptions as we will show in the next section.

5.3. Number of Preemptions
Figure 9 shows the relative number of preemptions for

each algorithm to the number of preemptions forEhd2-
SIP. We measured and calculated the average numbers of
preemptions for each algorithm only if the success ratios of
both the measured algorithm andEhd2-SIP were 100%. We
first discuss the case with (Umin,Umax) = (0.01, 0.1). While
the system utilization was less than 50%, which means that
only the first processor was used in those algorithms, they
had the same number of preemptions. Once the system
utilization exceeded 50%, they scheduled the tasks differ-
ently and, as a result, made a difference in the numbers of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 R
at

io

System Utilization

M=2, Umin=0.01, Umax=0.1

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)
 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 R
at

io

System Utilization

M=2, Umin=0.01, Umax=1.0

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 R
at

io

System Utilization

M=4, Umin=0.01, Umax=0.1

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)
EKG(k=4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 R
at

io

System Utilization

M=4, Umin=0.01, Umax=1.0

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)
EKG(k=4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 R
at

io

System Utilization

M=8, Umin=0.01, Umax=0.1

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)
EKG(k=4)
EKG(k=8)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
uc

ce
ss

 R
at

io

System Utilization

M=8, Umin=0.01, Umax=1.0

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)
EKG(k=4)
EKG(k=8)

Figure 8. Success ratio as function of system utilization

preemptions. EKG(k=2) caused 1.2 ∼ 1.4 times as many
preemptions asEhd2-SIP at Usys > 50%, though it could
optimally schedule the tasks in this case. Meanwhile EDF-
FF and EDF-FF had fewer preemptions thanEhd2-SIP at
Usys < 90%. They had about 0.8 times as many preemp-
tions asEhd2-SIP at Usys = 65%. However they caused
more preemptions thanEhd2-SIP at Usys > 90%. EDF and
EDF-US had fewer preemptions than the other algorithms
while Usys was small. However the number of preemptions
for EDF increased asUsys increased. It finally caused about
50% more preemptions thanEhd2-SIP at Usys = 95%.
Ehd2-SIP-ss also had more preemptions thanEhd2-SIP.
This fact implies thatsmb incurred more preemptions, be-
causesbi never increases preemptions.

In the case withM = 4, Ehd2-SIP, Ehd2-SIP-ss, EDF-
FF and EDF-BF were competitive. By the same reason

that Ehd2-SIP achieved fewer preemptions than EDF-FF
and EDF-BF atUsys > 90% in the case withM = 2, it
achieved slightly fewer preemptions than those algorithms
at Usys > 45% in this case. Also it slightly outperformed
Ehd2-SIP-ss. EKG(k=2) caused 1.4 ∼ 1.5 times as many
preemptions asEhd2-SIP. EKG(k=4) also caused 1.5 ∼ 1.9
times as many preemptions asEhd2-SIP. We realized that
the number of preemptions for EKG transiently increased
when any processor is just full of the tasks. For exam-
ple, atUsys = 50% (2/4) andUsys = 75% (3/4), namely
when the second processor and the third processor are full
of the tasks respectively, both EKG(k=2) and EKG(k=4)
transiently caused more preemptions. Like the case with
M = 2, EDF and EDF-US caused more preemptions as the
system utilization increased. It finally caused about three
times as many preemptions asEhd2-SIP. We can observe

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
N

um
be

r
of

 P
re

em
pt

io
ns

System Utilization

M=2, Umin=0.01, Umax=0.1

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
N

um
be

r
of

 P
re

em
pt

io
ns

System Utilization

M=2, Umin=0.01, Umax=1.0

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)

 0.5

 1

 1.5

 2

 2.5

 3

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
N

um
be

r
of

 P
re

em
pt

io
ns

System Utilization

M=4, Umin=0.01, Umax=0.1

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)
EKG(k=4)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
N

um
be

r
of

 P
re

em
pt

io
ns

System Utilization

M=4, Umin=0.01, Umax=1.0

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)
EKG(k=4)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
N

um
be

r
of

 P
re

em
pt

io
ns

System Utilization

M=8, Umin=0.01, Umax=0.1

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)
EKG(k=4)
EKG(k=8)

 0

 1

 2

 3

 4

 5

 6

 7

 0.4 0.5 0.6 0.7 0.8 0.9 1

R
el

at
iv

e
N

um
be

r
of

 P
re

em
pt

io
ns

System Utilization

M=8, Umin=0.01, Umax=1.0

Ehd2-SIP
Ehd2-SIP-ss

EDF-FF
EDF-BF

EDF
EDF-US

EKG(k=2)
EKG(k=4)
EKG(k=8)

Figure 9. Number of preemptions as function of system utiliz ation

almost the same results in the case withM = 8 as the case
with M = 4. In this case, however, EDF finally incurred
about five times and half as many preemptions asEhd2-
SIP. EKG(k=8) transiently caused twice as many preemp-
tions asEhd2-SIP in the worst case, atUsys = 50% (4/8),
Usys = 62.5% (5/8) andUsys = 75% (6/8). Ehd2-SIP,
Ehd2-SIP-ss, EDF-FF and EDF-BF, were still competitive.

Next we discuss the cases with (Umin,Umax) =

(0.01, 1.0). The results were quite different from the cases
with (Umin,Umax) = (0.01, 0.1). It is remarkable that EDF-
FF and EDF-BF highly outperformed the other algorithms.
Especially in the case withM = 2, EDF-FF and EDF-BF
occured only 0.3 times as many preemptions asEhd2-SIP
at the system utilization slightly higher than 50%. This fact
implies that the proposed task splitting approach incurred
more preemptions in the presence of heavy tasks. If there

are only light tasks, the execution time of each task is rela-
tively short, thereby the schedule times of a portion-1 task
and portion-2 task tend not to be overlapped. If there are
heavy tasks, on the other hand, the execution time of each
task can be long, thereby the schedule times of the split
portions tend to be overlapped as the second invocation in
Figure 3. This overlapping obviously incurs more preemp-
tions. That is whyEhd2-SIP caused much more preemp-
tions than EDF-FF and EDF-BF compared to the cases with
(Umin,Umax) = (0.01, 0.1). It is also remarkable thatEhd2-
SIP-ss had slightly fewer preemptions thanEhd2-SIP de-
spite of its higher schedulability. This superiority is given
by sbi that can reduce unnecessary task splits inEhd2-SIP.
Namelysbi has an effectiveness of improving schedulabil-
ity as well as reducing preemptions.

In the cases withM = 4 andM = 8, EDF-FF and EDF-

BF still consistently incurred only half as many preemp-
tions asEhd2-SIP. Ehd2-SIP, Ehd2-SIP-ss and EKG(k=2)
were competitive. An important result is thatEhd2-SIP-
ss achieved slightly fewer preemptions than EKG(k=2) all
through the simulations, though it achieved higher schedu-
lability as we showed in the previous section. As for EKG
with largeK, EKG(k=4) incurred about three times as many
preemptions asEhd2-SIP and EKG(k=8) incurred about six
times as many preemptions asEhd2-SIP respectively in the
worst case. EDF and EDF-US were competitive to each
other and they caused at most about twice as many preemp-
tions asEhd2-SIP in the case withM = 8.

6. Conclusion
We proposed theEhd2-SIP algorithm for scheduling

recurrent real-time tasks on multiprocessors with high
schedulability and few preemptions. The schedulabil-
ity analysis provided the formula to calculate the upper
bound of the schedulable per-processor utilization, and then
proved that the least upper bound of the schedulable whole
system utilization is 50%. We also proposed thesmb and
sbi procedures to improve schedulability.

The simulation results showed thatEhd2-SIP with smb
and sbi, denoted byEhd2-SIP-ss, consistently achieves
higher schedulability than the existing algorithms but EKG
with largek. In addition to the superiority in schedulabil-
ity, Ehd2-SIP-ss relatively achieves fewer preemptions es-
pecially in the presence of only light tasks. Throughout
the simulations, we found the trade-off between schedu-
lability and preemptions. EKG with largek can achieve
higher schedulability thanEhd2-SIP-ss, though it causes
more preemptions. EDF-FF and EDF-BF can reduce pre-
emptions compared toEhd2-SIP-ss, though they are infe-
rior to Ehd2-SIP-ss in schedulability. In consequence, we
consider thatEhd2-SIP-ss can be a good choice for system
designers, since it performs well in both aspects.

We give an insight of our future work here. In order
to prove the total superiority of the proposed algorithm in
real environments, we are implementing the algorithm on
our original operating system. Then we will evaluate the
schedulability of our algorithm with whole run-time over-
head. Also, in a theoretical aspect, we are considering to
improve the algorithm so as to reduce unnecessary preemp-
tions including migrations between processors.

References

[1] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based
Scheduling Algorithm for Multiprocessor Soft Real-Time
Systems. InProc. of the Euromicro Conf. on Real-Time Sys-
tems, pages 199–208, 2005.

[2] J. H. Anderson and A. Srinivasan. Early-Release Fair
Scheduling. InProc. of the Euromicro Conf. on Real-Time
Systems, pages 35–43, 2000.

[3] B. Andersson and E. Tovar. Multiprocessor Scheduling with
Few Preemptions. InProc. of the IEEE Int’l Conf. on Em-

bedded and Real-Time Computing Systems and Applications,
pages 322–334, 2006.

[4] T. P. Baker. An Analysis of EDF Schedulability on a
Multiprocessor. IEEE TRANS. ON PARALLEL AND DIS-
TRIBUTED SYSTEMS, 16:760–768, 2005.

[5] S. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel. Propor-
tionate Progress: A Notion of Fairness in Resource Alloca-
tion. Algorithmica, 15:600–625, 1996.

[6] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast Scheduling of
Periodic Tasks on Multiple Resources. InProc. of the Int’l
Parallel Processing Symp., pages 280–288, 1995.

[7] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. H.
Anderson, and S. Baruah. A Categorization of Real-
Time Multiprocessor Scheduling Problems and Algorithms.
In Handbook of SCHEDULING Algorithms, Models and
Performance Analysis, pages 30.1–30.19. CHAPMAN &
HALL /CRC, 2004.

[8] H. Cho, B. Ravindran, and E. D. Jensen. An Optimal Real-
Time Scheduling Algorithm for Multiprocessors. InProc. of
the IEEE Real-Time Systems Symp., pages 101–110, 2006.

[9] S. K. Dhall and C. L. Liu. On a Real-Time Scheduling Prob-
lem. Operations Research, 26:127–140, 1978.

[10] J. Goosens, S. Funk, and S. Baruah. Priority-Driven Schedul-
ing of Periodic Task Systems on Multiprocessors.Real-Time
Systems, 25:187–205, 2003.

[11] C. L. Liu and J. W. Layland. Scheduling Algorithms for Mul-
tiprogramming in a Hard Real-Time Environment.Journal
of the ACM, 20:46–61, 1973.

[12] J. M. Lopez, J. L. Diaz, and D. F. Garcia. Utlization Bounds
for EDF Scheduling on Real-Time Multiprocessor Systems.
Real-Time Systems, 28:39–68, 2004.

[13] C.W. Mercer, S. Savage, and H. Tokuda. Processor Capacity
Reserves: Operating System Support for Multimedia Appli-
cation. InProceedings of IEEE International Conference on
Multimedia Computing and Systems, pages 90–99, 1994.

[14] K. Olukotun, B. A. Nayfe, L. Hammond, K. Wilson, and
K. Chang. The Case for a Single-Chip Multiprocessor. In
Proc. of the Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 2–11,
1996.

[15] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A Re-
source Allocation Model for QoS Management. InProceed-
ings of IEEE Real-Time Systems Symposium, pages 298–307,
1997.

[16] L. Spracklen and S. G. Abraham. Chip Multithreading: Op-
portunities and Challenges. InProc. of the IEEE Int’l Symp.
on High-Performance Computer Architecture, pages 248–
252, 2005.

[17] T. Taira, N. Kamata, and N. Yamasaki. Design and Imple-
mentation of Reconfigurable Modular Robot Architecture. In
Proc. of the IEEE/RSJ Int’l Conf. on Intelligent Robots and
Systems, pages 3566–3571, 2005.

[18] D. M. Tullsen, S. J. Eggers, H. M. Levy, J. L. Lo, and R. L.
Stamm. Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor. In
Proc. of the Annual Int’l Symp. on Computer Architecture,
pages 191–202, 1996.

