Real-Time Scheduling with Task Splitting on Multiprocessors *

Shinpei Kato and Nobuyuki Yamasaki
School of Science for Open and Environmental Systems
Keio University, Yokohama, Japan
{shinpei,yamasak@ny.ics.keio.ac.jp

Abstract

This paper presents a real-time scheduling algorithm
with high schedulability and few preemptions for multipro-
cessor systems. The algorithm is based on an unorthodox
method called portioned scheduling that assigns each task
to a particular processor like partitioned scheduling but can
split a task into two processors if there is not enough ca-
pacity remaining on a processor. e describe an algorithm
for assigning tasks to processors as well as an algorithm
for scheduling the assigned tasks on per-processor. The
schedulability analysis provides a formula to calculate the
upper bound of the schedul abl e per-processor utilization for
the algorithm. We then prove that the least upper bound of
the whole system utilization is50%. In addition, we propose
heuristic procedures to improve schedulability. The simula-
tion results show that the algorithm can often successfully
schedule a task set with system utilization much higher than
50%, though the least upper bound is 50% We also show
that the algorithm achieves higher schedulability with fewer
preemptions compared to the existiting algorithms.

1. Introduction

by Baruahet al., brought an optimality of scheduling recur-
rent real-time tasks on multiprocessors. In Pfair schedyli
tasks are divided into quantum-size pieces so-cadiléd
tasks and are scheduled based on the deadline of the sub-
tasks. PF [5], PD [6] and PJ2] are known to be optimal
Pfair algorithms. LLREF [8] is another optimal scheduling
algorithm based on a filerent technique that does not rely
on the quantum-based approach but on the original notion
so-calledT-L Plane. Those sophisticated scheduling algo-
rithms necessarily generate a number of preemptions and
task migrations that incur run-time overhead due to their
optimality, though they can always achieve the theoretical
schedulable system utilization of 100%. Meanwhile simple
algorithms such as EDF with a first fit bin-packing algo-
rithm (EDF-FF) [12], EDF with a best-fit bin-packing al-
gorithm (EDF-BF) [12] and EDF-US[R2] (we omit '[1/2]’
hereinafter) [10, 4] are inferior to the sophisticated oimes
the schedulability point of view, though they cafiey low
overhead. The minimum value of the least upper bound for
those algorithms is at most 50%. Most of algorithms that
belong to so-called the global scheduling scheme or the par-
titioned schedulinging scheme are cataloged in [7].
Anderssoret al. proposed the EKG algorithm that im-

Recent advances of embedded real-time systems hav@roves schedulability with few preemptions [3]. EKG as-

raised the necessity for more powerful platforms. For in- signs each task to a particular processor like conventional
stance, humanoid robots often require high-performancepartitioned scheduling algorithms but can split a task into
and multi-functional computing with low power consump- two portions if necessary, then assigns the first portioheo t
tion. Conventional uniprocessor systems are no longercurrent processor on which the assignment is going and the
capable of responding all those requirements. Thereforesecond portion to the next processor on which the assign-
multiprocessor systems such as symmetric multiprocessorgnent will go. The two portions of a split task are scheduled
(SMP), simultaneous multithreaded (SMT) processors [18], exclusively. The least upper bound of the schedulable sys-
chip multiprocessors (CMP) [14] and chip multithreaded tem utilization for EKG depends on the value of a parameter
(CMT) processors [16] have considerable attention nowa-k which should be selected in the range of k < M where
days. However it is known to be more complicated to M is the number of processors in a system. A lekgesults
schedule recurrent real-time tasks on multiprocessors com in a higher bound but incurs more preemptions. The bound
pared to on uniprocessors. It has been proved that the optibecomes 66% in the caselot= 2 and 100% in the case of
mal scheduling algorithms for uniprocessors such as Ratek = M. Namely EKG is an optimal algorithm in the case of
Monotonic (RM) [11] and Earliest Deadline First (EDF) k= M, though more preemptions occur instead.

[11] are no longer optimal for multiprocessors [9]. This paper presents a real-time scheduling algorithm
The Pfair scheduling method [6, 5], originally proposed with high schedulability and few preemptions for multipro-
cessors. The algorithm is based on an unorthodox method
that assigns each task to a particular processor like parti-
tioned scheduling but can split a task into two processors
if there is not enough capacity remaining on a processor.

“This work is supported by the fund of Research Fellowshipshef
Japan Society for the Promotion of Science for Young Sa&nti This
work is also supported in part by the fund of Core ResearcEvotutional
Science and Technology, Japan Science and Technology Agenc

In this viewpoint, the algorithm follows the approach of Assumption:
EKG, however we design the algorithm withffdirent no- task sef" is sorted so thaf; < T, < ... < T.
tions in assigning tasks to processors and in scheduling the _all the per-processor task sets are empiy; Am = 0.
assigned tasks on per-processor. Our goal is to achieve i=1m=1andUy=1;
higher schedulability than simple algorithms such as EDF- 2. ifUAnUT) < U
FF, EDF-BF, EDF and EDF-US with fewer preemptions j 4 S’e}i"; jn’im,\;) Tis
than EKG. To distinguish from the conventional partitioned ')
. - . 5. Urem = Uy — U(Am)‘

scheduling scheme, we define a scheduling scheme that par- 6

7

8

=

L . : . C/ = UienT; andC” = C; - C/;
titions the tasks but can split some of them into two portions

if'i <N |
if necessary to improve scheduling@stioned scheduling.

Uy, = calc_ub(C/, C, Ti, Tisa);

The rest of this paper is organized as follows. The next 0. splitz; into 7/(C/, T;) and/(C/, Ti);
section defines the system model. In Section 3, we describe 10. Am=AnUT andAm = {1]'};
our algorithm and analyze its schedulability. Also we pro- 11. m=m+1;
pose heuristic techniques to improve schedulability in-Sec 12. dse
tion 4. Section 5 evaluates the advancement of our algo- 13. the algorithm fails;
rithm compared to the existing algorithms by simulation. 14. ifi<N
15. i =i+ 1andgo back to step 2.;

Finally we conclude our work in Section 6.) '
16. the algorithm successfully exits;

2. System Model Figure 1. Algorithm SIP

The system is composed bf processorsPy, Py, ..., Py
and a periodic task sét = {r1,12,...,7n} IS given to the
system. Each task; is defined by tuppleG;, T;) where
Ciisa wor_st-gase execution time _a_fﬁdi_s a period, then 3.1 Task Assignment Phase
Ui = Gi/T; indicates a processor utilization gf The total)))
utilization of the tasks in an arbitrary task setis defined Ve propose an algorithm call&equential assignment
by U(A) = 3, cx Ui, namelyU(I’) denotes the load of the in Increasing Period (SIP) for assigning the tasks to the

entire system. A task generates a sequence of jobs periodiP0c€ssors. The pseudo codesoP is indicated in Figure
cally. Thekth job of 7;, released at time y, is denoted by 1. The algorithm assumes that the tasks are sorted so that

7ix. Its deadline is equal to the release time of the next job, 11 < Ti+1- A task set composed of the tasks assigned to

i.e.dix = Mkt = fix+ Ti. The start ime and the finish time ~ PrOCesS0Pm is denoted byAr, initialized with0.

of 7, are denoted bg « and f; respectively. The algorithm first initializes the variables (line 1). The
T’he algorithm is désigned under the following assump- upper boundJ, of the schedulable utilization on the first

tion. The system is a memory-shared multiprocessor andPfOcessoiPy is always 100% (line 1). For the other pro-
each processor shares the code and data. All the tasks argESSOrs, we need to calculate it based on the formula (line
preemptive and independent. Any jobs of the task cannot®): e will éxplain the formula in Section 3.3 more in de-
be executed in parallel. Also no task joins and leaves thet@il- Then the algorithm assigns to P if U(Am U),
system at run-time. Since the subject of this paper is notthe total_ utilization ofPy, to which 7i IS assumed to be as-

to design a whole system but a scheduling algorithm, we Si9ned, is less than or equalthy, (line 3). In the case of

do not take into account costs of preemptions and task mi-YU(Am U 7i) > U, the algorlt.hm checks whgther there are
grations. In the scheduling algorithm point of view, it is '€Ma&ning processors to assign the tasks (line 4). The algo-

more important to consider how often preemptions and task It fails if there are no remaining processors (line 13).
migrations occur. In addition, the cost of switching con- Otheérwise the algorithm splits the task (line 5-11). More
texts between processors is almost equal to that of switch-SPecifically, itfirst calculates the remaining utilizatiOpem

ing contexts within a processor, because we assume that th8f Pm (Iiné 5). Then it calculate€} andCy” that are re-
processors share the code and data. We nesrsom served capaqtles fpr executiongfin everyT; on Py, and
performance deterioration of each task due to a transient”m:1 respectively (line 6). Wheg, Ci", Ti andTi., are all
degradation of the cache hit ratio caused by task migrations &cduired, it can calculate the bound for the next processor
since the tasks are scheduled based on the worst-case ex@@sed on those parameters (line 8). Note that is the
cution time in this paper. Hence we take the number of 1aSt taskin’, we need not calculate the bound f.1, be-

preemptions as a performance metric for overhead. cause there will be only;" on P, and it will never miss
the deadline. Finally it splits; into 7{ andz{” (line 9), then

. assigng’ to Py, andt!’ to P,z (line 10). Here 'split’ does
3. Algorithm Ehd2-SIP not r?mealn that a task is really éivided ?nto two tgsﬁsand

This section presents a new scheduling algorithm basedr;” are nothing but pseudo tasks to reserve a processor time
on the portioned scheduling scheme. The algorithm is com-on Py, and P,,1 for execution ofri. We call 7] portion-1
posed of the task assignment phase and the task executiotask of r; andr{” portion-2 task of 7;. Then if there are still
phase. The reminder of this section describes an algorithmtasks to be assigned, it repeats the same procedure (line 15)

for each phase. In addition, we provide the schedulability
analysis for the proposed algorithm in this section.

Awmp“ on: D Execution of the tasks that have a higher priority than T 's on Py,.1

the following algorithm is dedicated to proces$ty. Deferred execution of T "s on Py due to execution of T's on Pp-1
7, Tiv1, Tip, -, 7] ATE assigned tB,. . A X N

1. when any task is released or is completedRyn Ts | [| T [| P,

2. callschedule_on_Pp,; "

3. if 7/ is included in the released tasks L s (NN P,

4. call schedule_on_Pp.1; . O T BinlE T—‘ P

deadline miss
5. subroutine schedule_on_P,, Ti T] P,
6 if 7/ is ready and is not being executed df,_1
7:«

7. executer’; ! T» TT P,

8 else 1 t,

9. execute a task with the earliest deadlinetjut , .
10. if the chosen task |q andr’j/ is being executed Figure 3. Unfeasible schedule of Ehd2

onPy1 . .
11. callschedule_on_Py,: task a_nd a portion-2 task so as n_ot to overrun their reseryed
capacity on each processor. This operation can be realized
Figure 2. Algorithm Ehd2 by a resource reservation technique [13, 15]. EKG, on the
other hand, needs to calculate the additional times se<dall
Otherwise the algorithm successfully exists (line 16). timea andtimeb beyond the schedule of EDF for each split

The task assigment algorithm of EKG does not sort the task to suspend and resume its execution, every time any
tasks based on the periods before assigning the tasks. Meartask is released on the processors where the split task re-
while SIP assigns the tasks with holding a condition of sides. Therefore we consider thahd2 is more straight-

Ts < min(T; | 71 € Am \ 77} wheret! is a portion-2 task forward and reasonable than EKG in the computation and
on processoPy,. This property will be essential for the implementation points of view.

schedulability analysis described in Section 3.3. In Ehd2, a portion-2 task is always assigned the highest
priority. In other words, it is statically prioritized ovéhne
3.2. Task Execution Phase rest of tasks on a processor. Herigted2 is similar to the

scheduling method of the EDF-fm algorithm [1] rather than
EKG. However, unlike EDF-fm, a period of a portion-2 task
is always shorter than that of any other tasks on a processor

for scheduling the tasks which are assigned to each pros, gr45 This property will help to analyze the schedulable
cessorPy, by SIP. A scheduling policy oEhd2 is that the utilization in the next section.

tasks are scheduled according to the EDF policy except that
a portlop-z task always has thg hlghest prlorlty'on aproces-g o Schedulability Analysis
sor but it cannot be executed if its corresponding portion-1
task is being executed on a neighbor processor. This section analyzes the schedulable utilization for
The algorithm is shown in Figure 2. Here we assume Ehd2-SIP. Since all the tasks but a portion-2 task are sched-
that taskr; is split intor/ andz!’, then they are assigned to uled according to the EDF policy on each processor in
Pm-1 and P, respectively. We also assume that taghs Ehd2, we need to understand how the portion-2 task be-
split into 7, and7”, then they are assigned Ry, andPp.1 haves. Hereinafter we assume that taghs split into 77
respectively. Namely all the tasks betweemndr; are as- andr(, then they are assigned By, andPp, respectively.
signed toP,,. When any task is released or is completed on Now we focus on only the schedulable utilization@g.
Pm, the scheduler oRy, is invoked (line 2). The scheduler We show an example of the unfeasible schedulehaf2
on P, executes)’ when it is ready and/ is not currently ~ 0n P in Figure 3. Note that the portion-2 task ef; i.e.
being executed oR,_1 (line 6-7). Otherwise it executes a 7« is always assigned the highest priority Bp unless its
task with the earliest deadline in the rest of the ready tasksportion-1 task, i.exg, is being executed oRy,-1. Now let
butz/ (line 9-10). If the task that was executed right now is Us assume that any jatc missed its deadline as shown in
a portion-1 task and its corresponding portion-2 task is cur the figure. Lett; be the last time at which the processor
rently being executed o, 1, the scheduler oRy, calls the is idle or a job whose deadline is later than the deadline
scheduler orPy,.1 to preempt the portion-2 task to execute Of 7j¢ is executed. Let; be the time at whichrjc missed
split portions exclusively (line 11-12). Since we assume a its deadline, that is, the deadline of.. In order to have
memory-shared multiprocessor, a cost for calling a sched-7jc miss its deadline, the following condition needs to be
uler on another processor is negligible. satisfied whereS(ty, to) is the total amount of the time at
Ehd2 only needs to execute a portion-2 task in priority to Which 7 is not executed withint{, t;], namely the total
other tasks unless its portion-1 task is executed on a neigh-slack amount with respect tg within [t;, to].
bor processor in addition to the behavior of EDF. Besides all
the preemptions can be handled by the EDF scheduler. All S(ty, t) < Z VZ - tlJ C
we have to do is to track the executed times of a portion-1

We propose an algorithm calldghrliest Deadline First
with the highest-priority deferrable portion-2 task (Ehd2)

i
Ti€EAM\TY

T
o
P, T‘—’ C’ C"

C" C" C"

a b ¢ d e f
(a) Case 1Tyin > FTs+C¢ - Cg

T,
>
C'y

P, || C" C" C" C" C"

a bc d e
(b) Case 2Tmin < FTs+Cg — C5

Figure 4. Worst-case phasing for Ehd2

Since|x] < x for any x, the following condition must be

satisfied in order that; . may miss its deadline.

S(ty, 1) < Z (to = t1)U;

Ti€EAM\TY

In other words, any jolr;¢ is guaranteed to meet its dead-

line if the following condition is satisfied for anyy(t,).

S(ty, t
Z U; < (t1, 1)
-1

Ti€EAM\TY

Now we seek to obtain the minimum valueR(t;, to) =

S2) . Note that we have, — t; > min(T; | 7 € Am\ 74},

since t; should be before or at the release timemf.

If t2isb < t; < ¢, R(t, t2) can be written as follows where
O<a<c-h
S(a,b) + @

Rt t7) = R@b+a) = =22

Since§ < IZ is always true for anx > 0,y > 0 andz > 0,
we haveR(va, b) < R(a,b + @). Next we assumg = aand
t, = d. ThenR(ty, t2) is described as follows.

S(a.d) _ G(Ts-C{) - Cq

S S S

If toisb < t; < d, R(ty, t2) can be written as follows where
O<p<d-c

S(a.d)

R(ti,t2) = R(a,d-p) = d-a-p

Sincey < % is always true for anyx > 0,y > 0 andz > 0,
we haveR(a,d) < R(a,d -). Alsoift,isd < t; < g
R(t1, t2) can be written af(a, d + y) where O< y < e—d.
Then we haver(a, d) < R(a,d + y) by the same reason of
R(a,b) < R(a, b+). Atlastiftrise < t, < f, R(ty, tp) is
minimized whert, = f, since we hav&(a, f) < R(a, f -)
by the same reason 8a, d) < R(a, d -). For anyC; > 0
andC? > 0, the following condition is obviously satisfied.

S(a, d) - Ts—CY¢
d-a Ts

MeanwhileR(a, f) can be written as follows.

R(a.d) =

It is obvious thatry consumes the most processor time
within [t1, t;] when its first job within fi,t,] is deferred

for the longest time and its last job withiy [to] is exe- L
cuted immediately with no preemptions. This phasing re- Hence we hav&(a, d) < R(a,), which impliesR(a, d) <
sults in minimizingR(t:, t,). Taking this worst-case phas- (@ 9) foranyd < g. So the minimum value dR(ts, to) is
ing into account, we need to consider two cases to obtain€ither ofR(a, b) orR(a, d). Let us assum&(a, b) < R(a, d).

the minimum value oR(t,, t,). The first one is the case of ' nen the following condition must be satisfied.

S(ad)+(e-d) S(ad)+(Ts-C{)

ReN=G_a+(-d @-a+T

Tmin = FTs+ C{ — C; and the second one is the case of Trin — GCY G(Ts—C!)-CL
Trin < FTs+ CY — CL. Hereinafter we defin&i, andF as T GT-+Cr —C.
follows for simplicity of description. ' ST s s
W Implicity Pt Tnin(G + 1)C/ < GC!(GTs+Cl —C))
i . Tin + C. G(GTs+C! -C. G
Trin=min{T; | i € Am\ 75}, F = {%J Tmin < (SG n i S) = o 1(d -a)

The two cases are shown in Figure 4. We obtain the mini-

mum value ofR(ty, t;) for each case.

Lemma 1. The minimum value of R(ty,t) in the case of
Tmin = FTs+ C{ — C. isdescribed by Equation (1) where
G represents G = F + 1 for limitation of space.

min{R(ty, t)} = min{l GG GTs-C) - C/S} (1)

Tmin ’ GTS + C,S, - C/S

Proof. At first we assumé; = a andt, = b in Figure 4(a).

ThenR(t, t,) is described as follows.

S@b) _ Tmn-GCy _, GCY
b —a Tmin Tm’n

R(t1,t2) = R(a,b) =

Here the above inequation is not always true. It is easy to
prove it if we consider the case @, ~ 0 andC;] =~ 0.

In this case, we can approximade- a ~ d ~ ¢. Since

1> & > L isalways true, we havg-(d-a) ~ e~

b < g;(d-a) < (d-a) =~ c. Because o, ~ 0 and

C7 =~ 0, Tnin can take any length withinb[c]. Hence it
depends on the length &f,, whether the above inequation
is true or false. Consequently the minimum valu&(, t,)

is described by Equation (1). O

Lemma 2. The minimum value of R(t,t2) in the case of
Trin < FTs+ C{ — C is described by Equation (2).

F(Ts—-CY)-C;

min{R(tl,tZ)}: ET.+CV -C’
s s~ Vs

(2)

n
C’s

| < -
€ >

tl s tz
Figure 5. Absolute worst-case phasing

Proof. By the same token as Lemma 1, we assume a
then findt, that minimizesR(t;, t2). According to the dis-
cussion in Lemma 1, we can easily obt&a, b) > R(a, c).
We can also easily obtaR(a, ¢) < R(a, €) < R(a, d). There-
fore R(ty, tp) is minimized whert; = aandt, = c.

S(a.c) _ F(Ts-CJ)-Cq
c-a FTs+C¢{-C,

Hence the minimum value &(t,, to) is described by Equa-
tion (2). O

R(ti,t2) = R(a,c) =

Theorem 1. Theupper bound of the schedulabl e utilization
on processor P, for Ehd2 is described by Equation (3). We
replace X and Y as follows for limitation of space.

cr X if Tyin> FTs+CY -C.
Up = =+ R)
Ts Y otherwise
X = min Tmin — GC{ G(Ts—C{) - Cq
Tmin GTS + CISI - CIS
y - FOs-cy-c
FTs+Cy -Cy
Proof. Itis trivial from Lemma 1 and Lemma 2. O

The calc_ub function in Figure 1 corresponds to Equa-
tion (3) that is a function o}, C}, Ts and Tmin. Since
calc_ub is called when tasks is split, C;, CJ andTs are
already known. Also the tasks are sorted so that Ti,1.
Thereby we can considdi,, asTs.1. If the tasks are not

Assumption:

the algorithm is applied only whean< N.

let 7/ be a portion-2 task iy, if there is.
1. s=i;

2. foreachtje An\ {1}, 7i}
3 Uremz = Urem — Us + Uj;
4 if Ueemp =0
5. C} = Urene T} andC}' =Cj - C};
6 x = calc.ub(Cs, Y, Tj, Tin);
7 if Uuw < X
8. Uuwb = X Urem = Uremp @ands = j;
9. Am=AnUTti\Tg
10. C. = UrenTsandC? = Cs—Cl;
11. splitrs into 74(C%, Ts) and7? (CZ, Ts);
12. Am=AnUtiandAm = {7}

Figure 6. Procedure smb

SinceC? < Tsis always trueR(a, d) is monotonically in-
creasing inF and it is minimized wher = 1. Taking
Tmin = FTs+ C{ — C, > Ts into account, we can derive the
following relations.

R@hb) > Trin = 2G5 _ 1- 2Cs >1-— 2Cs
Tmin Tmin Ts
3C” 2C +C7
Rad) > 1-—————=1- S S
2Ts+ Cy - Cy Ts+(Ts+Cy —-CY)

Cy < Ts+ CY — C¢ is always true fronC; < Ts. Also § >
ﬁ.is alyvays true for any >z > _O, soR(a, b) < R(a, _d). is.
derived in the case of minimization. Namely the minimiza-
tion of Uy, occurs for Figure 5. That is, the minimum value
of Uy, can be described as followirg.
CN
Uw= — +1-
lub Ts

2cy

=1- =
Ts

Ts

sorted in increasing order of the period, we need to find Because ofC; = C{ andC; + C; = Cs < Ts, C{ is in

which task will have the shortest period in the tasks assigne the range of 0< C! < T¢/2. Hence the absolute mini-

to Pn. This procedure is not easy since we do not know how mum value ofU,y, is 50%. As for the case of Lemma 2,
many tasks will be assigned &, before the upper bound Equation (2) is monotonically increasing ihby the same

is computed. That is why we assign the tasks in increasingreason as the aboW{a, d), so it is minimized wherr = 1.

order of the period. This is completely the same phasing as the one in Figure
5. Namely the minimum value df, i.e. the least upper
bound, is also 50% in this case. Since the least upper bound
of the schedulable per-processor utilization is 50%, ttiat o
the schedulable whole system utilization is also 50%0

Theorem 2. Theleast upper bound of the schedulable sys-
tem utilization for Ehd2-SIP is50%

Proof. Forthe case of Lemma 1, it is obvious tifa, b) is
monotonically increasing ifinin andF. Since we have the
condition of Tin > FTs + C{ — C; in this caseR(a, b) is
minimized whenT i, = FTs+ C/ — C, andF = 1. Mean-
while R(a, d) can be rewritten as follows.

G(Ts-CJ) -G

4. Technique for Improving Schedulability

According to the previous section, the least upper bound
for Ehd2-SIP is only 50%. However, as we mentioned,

R(ad) = this bound is obtained only in the special case and Equa-

GTs+Cy - Cs tion (3) is often higher than 50%. Also it can be moreover
_ g (G+C improved if we diiciently choose a task to split in the task
GTs+C¢ -Cy assignment phase because the bound is a function of the pe-
2CY + FCY riod and the execution time of a split task. The necessity

(Cu—CL+Ts) +FTs condition for the schedulability analysis for processar

Assumption: ing line 10-12 in Figure 6 with the procedure. Note that,

the algorithm is applied only whean< N. in the latter case, indeixin Figure 7 should be considered
let 7/ be a portion-2 task iy, if there is. to bes. The procedure is straightforward. It splits a task
1. ifUgp+Uem> 10 only if Uy +Urem > 1.0, that is, only if the schedulability is

2. Cl = UremTsandC/’ = C; - C/; improved compared to the nonsplitting approach (line 1-4).
3. splitz; into 7{(C{, T;) and"(C/", Ti); Otherwise it assigns the task that was supposed to be split
4. Am =AUt andAm = {7{'}; by SIP to the next processor (line 5-7).

5. ese

6. Ama={rsh 5. Simulation

7. Uy = 1.0;

Beyond the theoretical schedulability analysis, this sec-
Figure 7. Procedure shi tion evaluates the actual schedulabilityEfd2-SIP com-
pared to the existing algorithms such as EDF-FF, EDF-BF,
isTs < min{T; | 7 € Ap \ 7). SinceSIP always holds EDF, EDF-US and EKG with randomly-generated task sets
maxT; | 7j € Am1} < min{T; | 7 € Ap} that results in by simulation. We measure the success tafibw each al-
satisfying the above inequation, we can choose any task ingorithm as a performance metric of the schedulability. Also
Pm-1 to split intoPp-; andPy,. we measure the number of preemptions for each algorithm
Based on this foundation, we propose a technique called@s @ performance metric of the scheduling overhead.
splitting a task that maximizes the bound (smb) to in-
crease the bound of the schedulable utilization. Fimé 5.1. Experimental Setup

procedure can be combined withP by replacing line 9-10 The simulations are characterized by the parameters of
in Figure 1 with the procedure in Figure 6. This procedure Unins Urraxs Utoral @dM. Uprin andU ey are the minimum
seeks_a task that can incre_:ase the bound if it is_split ins@eadand maximum values of the per-task utilization in the given
of 7i (line 1-8). Letsbe an index of a task that will be split 551 set. U,y is the total utilization of the tasksM is the
and itis initialized withi (line 1). Then it tests each task nymber of processors. The system utilization is defined by
if it meetsUremp = Urem — Us + U} > 0 whereU,enp is the Uss = Usora /M. For each combination oflyin, Upax M),
remaining utilization ofPy, on which the entire portion of e simulation goes through frotdss = 30% toUgs =
7sis presumed to be assigned instead dfine 3-4). Ifthis 10004 with 1000 task sets. Although various combinations
condition is not satisfied, there is no room for any portion of ¢ {he parameters can be considered, we only attempt the
7j to be assigned oRm. For only the tasks that passed this fo|1owing settings due to the limitation of space. Taking th
test, it finds the task that results the highest bound for thegc5ie of the current processor for embedded systems into ac-
next processor (line 5-8). Here we need to remoy#om — coynt, we evaluate the casesMf= 2, M = 4 andM = 8.
Am and, instead, add to Am (line 9). This replacementis o the range of the per-task utilization, we refer to the im-
valid only wheni # s. Then it updates the values Ow, plementation of the humanoid robot that we have been de-
Urem ands. Finally it splitss (line 11). veloping [17]. The simple activities are realized with only
There is another approach to improve the schedulability |ight tasks. Meanwhile, when the quality of the activities
of Ehd2-SIP. As we already discussed, the bound of the needs to be enhanced, it requires heavy tasks. So we prepare
schedulable processor utilization fehd2 could be 50% two sets of Upmin, Umax), (0.01, 0.1) and (001, 1.0), to simu-
in the worst case, whereas that of EDF is always 100%. |ate the task sets with only light tasks and the ones with both
Therefore the splitting method d&hd2-SIP may degrade |ight and heavy tasks. Each task §eis generated as fol-
schedulability compared to the nonsplitting method such |gws. A new task is appendedToas long asJ(I') < Uieta-
as EDF-FF and EDF-BF. For instance, consider task setror each task, its utilizationU; is computed based on a
I' = {71(2,5),72(2,5), 73(6, 10), 74(4, 11)} with two pro- yniform distribution in the range olmin,Uma]. Only the
cessorsP; and P,. Being asU; + Uz = 0.8 < 1 and ytilization of the task generated at the last is adjustetiab t
Ui + Uz + Uz = 1.4 > 1, SIP splitsts into P, and P,. U(I) gets equal tdJy. T is determined in the range of
Then we haveC; = 2,C{ = 4, Ts = 10, Tmn = 11 and [100, 3000] randomly. Then its execution tirBe= U;T; is
F = 1in Equation (3). Because @fin > FTs+ C¢ - Cg, calculated. The range of the periods is set as above, since
we acquireUyp ~ 0.733. HereSIP cannot assign all the the feedback interval of the tasks in the humanoid is usu-
tasks successfully ds7 + Us ~ 0.763> Uy,. Meanwhile gjly about Ins ~ 30ms. Each simulation runs during time
we can successfully assign them if we do not spiiind interval [0, maXlcm({T; | 7; € T'}), 22)).
instead assign it t®, asUs + Us =~ 0.963 < 1, since there The definition of the successfully scheduled task set de-
will be no portion-2 task o, and the bound will be 100%. pends on each scheduling algorithm. The three algorithms,
Taking this situation into account, we propose a tech- Ehd2-SIP, EDF-FF and EDF-BF, are designed so that no
nique calledsplitting a task only if the bound is increased tasks will miss the deadline once they are successfully as-

(shi). The procedure is shown in Figure 7. It can be com- signed to the processors. Hence we define that a task set
bined withSIP by replacing line 9-10 in Figure 1 with the

. . : _ 1 - " # of successfully scheduled task sets
procedure or it can be also combined witinb by replac The success ratio is defined By——5 ~r—~pqreaer—re

is said to be successfully scheduled if all the tasks can beresult of this case is that EDF-BF was very competitive to

assigned to the processors. The upper bound of the perEhd2-SIP andEhd2-SIP-ss. It rather outperformeé&hd2-

processor utilization foEhd2-SIP is calculated by (3). That SIP at the system utilization higher than 90%. This fact

for EDF-FF and EDF-BF is always 100%. Meanwhile task implies that the proposed task splitting approach does not

setI” cannot be guaranteed to be schedulable (i) by EDFalways improve schedulability. Meanwhihd2-SIP-ss,

unlessU(I’) < M(1 — Upax) + Umax [10] and (ii) by EDF- the improved version oEhd2-SIP with the procedures of

US unlesdU(I') < (M + 1)/2 [4]. Especially in the pres- smb andsbi, consistently outperformed EDF-BF. This re-

ence of heavy tasks, the schedulability of EDF degradessult proved the ffectiveness ofmb andsbi.

dramatically, which is called Dhall'sfiect [9]. However The case witiM = 4 made a dterence in performance

it is known that the task set can be often scheduled withoutbetweerEhd2-SIP and EDF-BF. WhileEhd2-SIP kept the

missing any deadlines by those algorithms eveu(if) ex- success ratio 100% tdgs = 80%, EDF-BF dropped the

ceeds the above bounds. Therefore, in those algorithms, wesuccess ratio below 100% bkys = 73%. It is remark-

define that a task set is said to be successfully scheduled ifible thatEhd2-SIP performed competitively to EKGER)

all the tasks are scheduled without missing any deadline. with fewer preemptions (we will show the number of pre-
We also evaluate thefectiveness of the procedures pro- emptions afterwards in the next section). Combining the

posed in Section 4. The version®fid2-SIP with smb and procedures oémb andsbi, Ehd2-SIP-ss consistently out-

shi is described aEhd2-SIP-ss in this experiment. As for performed EKG(k2). Also EDF and EDF-US were appar-

EKG, we implemented it witlk = 2,k = 4 andk = 8 as the ently inferior to EDF-FF unlike the case wit = 2.

number of the processors increases in the simulations. Note Finally in the case wittM = 8, we can observe thefiir-

that EKG is an optimal algorithm whén= M. The tiesare ence in performance among the algorithms clearly. As in the

broken arbitrarily for all the algorithms. case withM = 4, Ehd2-SIP, Ehd2-SIP-ss and EKG(k=2)
were competitive, thougBhd2-SIP-ss was slightly better
5.2. Success Ratio than the other two algorithms. The maximum schedulable

Figure 8 shows the success ratio for each algorithm. We SyStém utilization oEhd2-SIP-ss was 80%, whereas that
first discuss the cases With/gin, Uma) = (0.010.1). In ©Of Ehd2-SIP and EKG(k-2) was 77%. AlsoEhd2-SIP-

the cases withM = 2 andM = 4. there was little dfer- ss outperformed the others at any system utilization after
ence in performance among the algorithnghd2-SiP-ss the success ratio dropped below 100%. EK&tkkept the

and EKG slightly outperformed the other algorithms. The SUCCESS ratio 100% dys = 90%, however its number of
success ratio of EKG@M) dropped below 100% before preer_nptlons was much Iarg_er than the other algorithms as
Ugs = 100% in spite of its optimality. This problem hap- we will show in the next section. The performance_ of EDF-
pened because the execution time of a task cannot be spliF @nd EDF-FF was almost same as the case Mith 4.

less than the minimum time unit 1 in the simulations. Hence /N contrast, the performance of EDF and EDF-US further
each processor inevitably remains a little room unless thedegraded. Their maximum schedulable system utilization

remaining processor utilization before spliting taghs an ~ Was around only 45% 50%.

integer multiple of 1T;. As a result, a few tasks may fail to We observe that we cannot acquire the advancement
be assigned ils,s is very close to 100%. Al the following ~ ©f theé proposed algorithm very much for task sets with
simulations had the same phenomenon for EK&(. only light tasks. Meanwhile we can observe thEeetive-

In the case withiV = 8, EKG(k=4) outperformed the ~ N€SS of the proposed algorithm in the presence of heavy

other algorithms but EKG&®8). Its maximum schedulable ta_lsks. Ehd2-SIF_>_and Ehd2-SIP-ss consistently achieved
system utilization was 87%, whereas the success ratio of thd19h schedulability regardless of the number of processors
other algorithms dropped below 100%lag,s = 85%. Af- whereas the other algorlthms deteriorated schedulabidity
ter the success ratio dropped below 100%, EK@(kstill the numper of processors mcrgased. EKG also performed
performed well compared to the other algorithms. Nonethe- Well but it may sifer from run-time overhead caused by a
less the dference in performance among the algorithms number of preemptions as we will show in the next section.
was still a little. Apart from EKG(k4) and EKG(8),)
Ehd2-SIP-ss and EKG(k=2) relatively performed well. 5.3. Number of Preemptions

We next discuss the cases wittUgfn, Umax) = Figure 9 shows the relative number of preemptions for
(0.04,1.0). The results of these cases were quitéedi each algorithm to the number of preemptions Erd2-
ent from the previous cases. In contrast to the cases withSIP. We measured and calculated the average numbers of
only light tasks, the cases with both light and heavy tasks preemptions for each algorithm only if the success ratios of
clearly showed the dfierence in performance among the boththe measured algorithm aBtd2-SIP were 100%. We
algorithms. In the case wittM = 2, Ehd2-SIP, Ehd2- first discuss the case withJfnn, Umax) = (0.01 0.1). While
SIP-ss and EDF-BF were apparently superior to EDF-FF, the system utilization was less than 50%, which means that
EDF, and EDF-US. While the maximum schedulable sys- only the first processor was used in those algorithms, they
tem utilization ofEhd2-SIP, Ehd2-SIP-ss and EDF-BF al- had the same number of preemptions. Once the system
gorithms was around 77% 80%, that of EDF-FF, EDF, utilization exceeded 50%, they scheduled the taskKerdi
and EDF-US was around only 53%57%. An interesting ently and, as a result, made dfdrence in the numbers of

M=2, Upn=0.01, Uy, =0.1

1
0.8
i)
T
X o6l
o
n
@
o
E
2 04T Ehgasip
Ehd2-SIP-ss ---x---
EDF-FF ---%---
0.2 | EDF-BF &
EDF --m-
EDF-US ---o--
EKG(k=2) - -
O 1 Il Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9 1
System Utilization
M=4, Up=0.01, Upq,=0.1
i)
T
14
o
n
@
o
7 Ehd2-SIP —+—
a 4l R
04 Ehd2-SIP-ss ---%---
EDF-FF -
EDF-BF &
0.2 | EDF —-m--
EDF-US ---o--- |
EKG(k=2) - - |
EKG(k=4) -4 |
O 1 Il Il Il Il ey
0.4 0.5 0.6 0.7 0.8 0.9 1
System Utilization
M=8, Upin=0.01, Up0=0.1
T
1 caaaea
.
0.8 Y 1
i IS
2 i '
€ o6 O |
o A
I o
[L
8 Ehd2-SIP —+— 5
@ 04} Ehd2-SIP-ss ---x--- | i
02 4
0 I I !
0.4 0.6 0.7 0.8 1

System Utilization

Success Ratio

Success Ratio

Success Ratio

M=2, Upi=0.01, Uy, =1.0
T
1 G o -] o0 -ee o0 -
5; é * -x\. - \X\
OgK. W-g B\ %
0.8 |- o o‘** 'R X B
Noxoom ',
SRR
0.6 | TN x4
<N o)
N ;\- \
o R |
0.4 RN T
Ehd2-SIP —— QW \X
Ehd2-SIP-ss ---%--- N el
EDF-FF ---%-- AR
0.2 | EDF-BF & !
EDF --m-
EDF-US ---o--
EKG(k=2) - -
0 1 Il Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9 1
System Utilization
M=4, U;;=0.01, Uy, =1.0
T T
1 i
0.8 u
0.6) i
L Ehd2.SIP —— N k |
04T End2-sip-ss —x— hN '\‘ Y
EDF-FF ---%-- o m
EDF-BF =) o kY
02| EDF --m- . i
EDF-US ---&-- N
EKG(k=2) @
EKG(k=4) -
0 1 Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9 1
System Utilization
M=8, Upyin=0.01, Up0,=1.0
T T
1 A A A4 aa
2 .
0.8 i
2
06 Koo]
Ehd2-SIP —+—) LA ",L
0.4 | Ehd2-SIP-ss ---x--- N y Y |
EDF-FF ----- Q. M yh P
EDF-BF & NN Y Lo
EDF - -m- T U U U
02 EDF-US ---&-- . LY AR
EKG(k=2) ----e-- N A "3 Loy
EKG(k=4) - oy N
EKG(k=8) -a--- o A
0 1 Il Il Il > -
0.4 0.5 0.6 0.7 0.8 0.9 1

System Utilization

Figure 8. Success ratio as function of system utilization

preemptions. EKG&2) caused 2 ~ 1.4 times as many
preemptions ag&hd2-SIP at Ugs > 50%, though it could

that Ehd2-SIP achieved fewer preemptions than EDF-FF
and EDF-BF atUgys > 90% in the case wittMl = 2, it

optimally schedule the tasks in this case. Meanwhile EDF- achieved slightly fewer preemptions than those algorithms

FF and EDF-FF had fewer preemptions tHam2-SIP at
Ugs < 90%. They had about.® times as many preemp-

atUgs > 45% in this case. Also it slightly outperformed
Ehd2-SIP-ss. EKG(k=2) caused # ~ 1.5 times as many

tions asEhd2-SIP at Ugs = 65%. However they caused preemptions aEhd2-SIP. EKG(k=4) also caused.% ~ 1.9

more preemptions thaehd2-SIP atUgs > 90%. EDF and

times as many preemptions Bed2-SIP. We realized that

EDF-US had fewer preemptions than the other algorithmsthe number of preemptions for EKG transiently increased
while Ugs was small. However the number of preemptions when any processor is just full of the tasks. For exam-
for EDF increased adgs increased. It finally caused about ple, atUgs = 50% (24) andUgs = 75% (34), namely

50% more preemptions thaBhd2-SIP at Ugs = 95%.
Ehd2-SIP-ss also had more preemptions th&hd2-SIP.
This fact implies thabmb incurred more preemptions, be-
causeshi never increases preemptions.

In the case wittM = 4, Ehd2-SIP, Ehd2-SIP-ss, EDF-

when the second processor and the third processor are full
of the tasks respectively, both EKG{R) and EKG(k=4)

transiently caused more preemptions. Like the case with
M = 2, EDF and EDF-US caused more preemptions as the
system utilization increased. It finally caused about three

FF and EDF-BF were competitive. By the same reasontimes as many preemptions Bad2-SIP. We can observe

15

14 |

13

11

0.9

Relative Number of Preemptions

0.8

0.7

15

Relative Number of Preemptions

55

4.5

Relative Number of Preemptions

almost the same results in the case wWith= 8 as the case
In this case, however, EDF finally incurred

with M = 4.

12

25 |

M=2, Upn=0.01, Uy, =0.1

Ehd2-SIP —+— " .
Ehd2-SIP-ss ---%--- e
EDF-FF ---%-- ‘/lf,o' . 1
EDF-BF & e
L EDF —-m-- P |
EDF-US ---o- LA NP
EKG(k—_&)"J,siZ,”’.‘".'. L
‘J /l 4
: M
! . H--X
r ! - T O B
VIV = x =
it ® g% |
! /7 i
*"'Q_D(/EE g0 EVQ,Q"%
- '} Koy X KK i
'
L ¥, i
l-.it',j
Il Il Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9
System Utilization
M=4, Up=0.01, Upq,=0.1
T T T
Ehd2-SIP —+— g
Ehd2-SIP-ss ---x--- -
EDF-FF ---%--- .-
EDF-BF & o i
EDF --®- y 2
EDF-US ---o--- -
EKG(k=2) - - s
EKG(k=4) & o |
= 2
l" .‘A,,.A,A
,'A)/'i:A"A—V—A-—A-V—A—A"A"A” e fiah
B "". ’,«.‘Or-—.——ir—.-r".""'. T
Pead ® %o 0o 00 ®
Il Il Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9
System Utilization
M=8, Uin=0.01, U5, =0.1
Ehd2-SIP —+—
- Ehd2-SIP-ss ---%--- ¥ i
EDF-FF ---%--- -
L EDF-BF @ - i
EDF --m- g
L EDF-US ---o--- o« i
EKG(k=2) ------ -
| EKG(k=4) —-&-— W i
EKG(k=8) & g™
- r./ 7
-
L o J
-
=
r g
- i
A]
g e e 0 el |
$.2 ,m,.m;;@;gzgﬂ»—~$‘$~%r%r"@**”@-@m@aa-»m
0.4 0.5 0.6 0.7 0.8 0.9

System Utilization

Figure 9. Number of preemptions as function of system utiliz

about five times and half as many preemption€Ead2-
SIP. EKG(k=8) transiently caused twice as many preemp-

tions asEhd2-SIP in the worst case, dlls;s = 50% (48),
62.5% (58) andUgs = 75% (§8). Ehd2-SIP,
Ehd2-SIP-ss, EDF-FF and EDF-BF, were still competitive.

Us,ys =

Next we discuss the cases withJfin, Umax)

(0.01,1.0). The results were quite filerent from the cases
with (Upmin, Umax) = (0.01,0.1). It is remarkable that EDF-

Relative Number of Preemptions Relative Number of Preemptions

Relative Number of Preemptions

FF and EDF-BF highly outperformed the other algorithms.

Especially in the case witM = 2, EDF-FF and EDF-BF

occured only B times as many preemptions Bsd2-SIP

at the system utilization slightly higher than 50%. Thistfac

M=2, Upn=0.01, Uy =L.0

1.6
oo ® ENd2-SIP ——
o Ehd2-SIP-ss ---x---
14 | P EDF-FF % -
e EDF-BF &
o .o EDF -
12+ EDF-US - -0~ -
; EKG(k=2) o -
1 ---?WW s i
08 f | i
‘1 l,l
- i
06 | 1'\.}']]
g--8-a
0.4 i =B g ®E B
&QD
02 Il Il Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9 1
System Utilization
M=4, Upyin=0.01, Upya=1.0
35 T T
Ehd2-SIP —+—
Ehd2-SIP-ss ---x---
3r a8 EDF-FF - -
EDF-BF =]
a~ EDF --m-
25 L EDF-US o~ -
g EKG(k=2) - -
A EKG(k=4) &
2 b At i
.A'l
o
15F B
1 ol e 90 i
[S S SR NN S AV
0.5 f
FRARQeg o g @egg e-8-8
0 Il Il Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9 1
System Utilization
M=8, Uppyn=0.01, Uy, =1.0
7
EhdZ-SiP —_—
Ehd2-SIP-ss ---%---
6 aa EDF-FF %
. EDF-BF @
a EDF --m--
5+ Ao EDF-US o~ -
< EKG(k=2) -
s EKG(k=4) -
b A EKG(k=8) 4~ -
."
she
PR AA/..A'A,.,A.A——-'&A—-.A,A
ca- 50T
255 i
199 %990 -09¢ 98 09 -9 ¢ i
R R R e R T T T e TR i
e BB R R B R BB
0 Il Il Il Il Il
0.4 0.5 0.6 0.7 0.8 0.9 1
System Utilization
ation

are only light tasks, the execution time of each task is rela-
tively short, thereby the schedule times of a portion-1 task
and portion-2 task tend not to be overlapped. If there are
heavy tasks, on the other hand, the execution time of each
task can be long, thereby the schedule times of the split
portions tend to be overlapped as the second invocation in
Figure 3. This overlapping obviously incurs more preemp-
tions. That is whyEhd2-SIP caused much more preemp-
tions than EDF-FF and EDF-BF compared to the cases with
(Unin, Umax) = (0.01,0.1). It is also remarkable th&hd?2-
SIP-ss had slightly fewer preemptions th&hd2-SIP de-
spite of its higher schedulability. This superiority is giv

by sbi that can reduce unnecessary task splitshd2-SIP.
Namelysbi has an #ectiveness of improving schedulabil-

implies that the proposed task splitting approach incurred ity as well as reducing preemptions.

more preemptions in the presence of heavy tasks. If there

In the cases wittM = 4 andM = 8, EDF-FF and EDF-

BF still consistently incurred only half as many preemp- bedded and Real-Time Computing Systems and Applications,

tions asEhd2-SIP. Ehd2-SIP, Ehd2-SIP-ss and EKG(k=2) pages 322-334, 2006.
were competitive. An important result is thBhd2-SIP- [4] T. P. Baker. An Analysis of EDF Schedulability on a
ss achieved slightly fewer preemptions than EK&R all Multiprocessor. IEEE TRANS. ON PARALLEL AND DIS

through the simulations, though it achieved higher schedu- TRIBUTED SYSTEMS, 16:760-768, 2005.

lability as we showed in the previous section. As for EKG [5] s. Baruah, N. Cohen, C. G. Plaxton, and D. Varvel. Propor-
with largeK, EKG(k=4) incurred about three times as many tionate Progress: A Notion of Fairness in Resource Alloca-
preemptions aBhd2-SIP and EKG(k=8) incurred about six tion. Algorithmica, 15:600-625, 1996.

times as many preemptions@sd2-SIP respectively inthe (6] s. Baruah, J. Gehrke, and C. G. Plaxton. Fast Schedufing o
worst case. EDF and EDF-US were competitive to each Periodic Tasks on Multiple Resources. Pnoc. of the Int’|
other and they caused at most about twice as many preemp- Parallel Processing Symp., pages 280-288, 1995.

tions asEhd2-SIP in the case witiM = 8. [7] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. H.
Anderson, and S. Baruah. A Categorization of Real-
6. Conclusion Time Multiprocessor Scheduling Prok_)lems and Algorithms.
In Handbook of SCHEDULING Algorithms, Models and
We proposed the&ehd2-SIP algorithm for scheduling Performance Analysis, pages 30.1-30.19. CHAPMAN &
recurrent real-time tasks on multiprocessors with high HALL /CRC, 2004.
schedulability and few preemptions. The schedulabil- [8] H. Cho, B. Ravindran, and E. D. Jensen. An Optimal Real-
ity analysis provided the formula to calculate the upper Time Scheduling Algorithm for Multiprocessors. Rroc. of
bound of the schedulable per-processor utilization, aad th the | EEE Real-Time Systems Symp., pages 101-110, 2006.
proved that the least upper bound of the schedulable whole [9] S.K.Dhalland C. L. Liu. On a Real-Time Scheduling Prob-
system utilization is 50%. We also proposed $neb and lem. Operations Research, 26:127—140, 1978.

Sb'_ﬁzoce.durleito Imprtl)tve T]Ched(l;ljlgllllgg SIP with b [10] J. Goosens, S. Funk, and S. Baruah. Priority-DrivereSoh
€ simulation results showe) with sm ing of Periodic Task Systems on Multiprocessdreal-Time

and sbhi, denoted byEhd2-SIP-ss, consistently achieves Systems, 25:187—-205, 2003.

higher schedulability than the existing algorithms but EKG [11] C.L. Liuand J. W. Layland. Scheduling Algorithms for Mu

W'th largek. In addltl_on to the. superiority in schedulabll- tiprogramming in a Hard Real-Time Environmeniournal
ity, Ehd2-SIP-ss relatively achieves fewer preemptions es- of the ACM. 20:46—61. 1973.

pecially in the presence of only light tasks. Throughout
the simulations, we found the trad&detween schedu-
lability and preemptions. EKG with largle can achieve
higher schedulability thaiEhd2-SIP-ss, though it causes

[12] J. M. Lopez, J. L. Diaz, and D. F. Garcia. Utlization Badsn
for EDF Scheduling on Real-Time Multiprocessor Systems.
Real-Time Systems, 28:39-68, 2004.

:) : _[13] C.W. Mercer, S. Savage, and H. Tokuda. Processor Cgpaci
more preemptions. EDF-FF and EDF-BF can reduce pre Reserves: Operating System Support for Multimedia Appli-

emptions compared @hd2-SIP-ss, though they are infe- cation. InProceedings of IEEE International Conference on

rior to Ehd2-SIP-ss in schedulability. In consequence, we Multimedia Computing and Systems, pages 90-99, 1994

consider thaEhd2-SIP-ss can be a good choice for system ' ' '

designers, since it performs well in both aspects. [14] K. Olukotun, B. A. Nayfe, L'.Hammo.nd’ K'.W'lson’ and
We give an insight of our future work here. In order E' Chafngr'] 'Il'hel %asi for ishngle_cgllpsljﬂumpr?ceﬁ,sor' n

: roc. of the Int’ onf. on Architectur ort for Pro-

to prove the total superiority of the proposed algorithm in gramming Languages and Operating a/stemzppages 2-11

real environments, we are implementing the algorithm on 1996.

our origina}lioperating syst.em. T_hen we will e\{aluate the [15] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A Re-

schedulability of our algorithm with whole run-time over- source Allocation Model for QoS Management.Aroceed-

head. Also, in a _theoretical aspect, we are considering to ings of |EEE Real-Time Systems Symposium, pages 298-307,

improve the algorithm so as to reduce unnecessary preemp- 1997.

tions including migrations between processors. [16] L. Spracklen and S. G. Abraham. Chip Multithreading:-Op
portunities and Challenges. Rroc. of the IEEE Int’'| Symp.

References on High-Performance Computer Architecture, pages 248—
252, 2005.

[1] J. H. Anderson, V. Bud, and U. C. Devi. An EDF-based [17] T. Taira, N. Kamata, and N. Yamasaki. Design and Imple-
Scheduling Algorithm for Multiprocessor Soft Real-Time mentation of Reconfigurable Modular Robot Architecture. In
Systems. IrProc. of the Euromicro Conf. on Real-Time Sys- Proc. of the IEEE/RSJ Int'| Conf. on Intelligent Robots and
tems, pages 199-208, 2005. Systems, pages 3566-3571, 2005.

[2] J. H. Anderson and A. Srinivasan. Early-Release Fair [18] D- M. Tullsen, S. J. Eggers, H. M. Levy, J. L. Lo, and R. L.
Scheduling. IrProc. of the Euromicro Conf. on Real-Time Stamm. Exploiting Choice: Instruction Fetch and Issue on an
Systems, pages 3543, 2000. Implementable Simultaneous Multithreading Processor. In

. . . Proc. of the Annual Int'l Symp. on Computer Architecture,

[3] B. Andersson and E. Tovar. Multiprocessor Schedulinthwi pages 191-202, 1996.

Few Preemptions. IRroc. of the IEEE Int'l Conf. on Em-

