
A Task Migration Scheme
for High Performance Real-Time Cluster System

Makoto Suzuki Hidenori Kobayashi Nobuyuki Yamasaki Yuichiro Anzai
School of Science for Open School of Science for Open Dept. of Information Dept. of Information
and Environmental Systems and Environmental Systems and Computer Science and Computer Science

Keio University Keio University Keio University Keio University
Yokohama, Kanagawa, Yokohama, Kanagawa, Yokohama, Kanagawa, Yokohama, Kanagawa,

223-8522, Japan 223-8522, Japan 223-8522, Japan 223-8522, Japan

Abstract
In a real-time system, it is attractive to use clus-

ter computing system for realizing high performance
and high availability. The objectives of the real-time
clusters are maximize guarantee ratio and/or minimize
the probability of failure to complete task in time.
Because task arrivals are usually uneven among the
nodes, some nodes may get temporarily overloaded
while others are left underloaded or idle, which leads
low performance for real-time clusters. Hence, we need
a effective load sharing scheme.

In this paper, we describe task migration scheme
for real-time cluster environment. Our system uses
a single address space architecture because of high
predictability. Hence, we have adopted Position In-
dependent Code(PIC) to realize task migration. In
our scheme, we introduce “migration type”, which de-
cides how to migrate a task by timing constraints of
task, communication and whether first allocation or
not. Using this scheme, any kind of real-time/non
real-time task could be transferred without a crisis of
deadline miss.

1 Introduction

It is well known that clusters of workstations are
becoming a popular low cost alternative to super-
computers for high performance computing. In real-
time system, it is also attractive to use cluster com-
puting system for realize high performance and high
availability. The correctness of real-time applications
depends not only on the result, but also their timeli-
ness. Hence, we have to consider the predictability in
constructing real-time clusters.

In a real-time cluster system, the communi-
cation subsystem is a critical infrastructure for
predictability[1]. The arrival of a packet generate a

hardware interrupt and this in turn generate soft-
ware interrupt that performs the protocol process-
ing of packets making them ready for applications.
These system-level activities for processing network
packet preempt user-level applications and this pro-
cessing time is charged to the preempted process. Con-
sequently, the handling of incoming network packets
leads low predictability of the system. In the extreme
case, the packets can arrive at a rate fast enough where
the system will spend all of its time on receiving and
storing the packets, and the application is never sched-
uled to run, a phenomenon popularly called “ receiver-
livelock”[2].

There are two approaches to the above problem.
One is centralized approach, which use global schedul-
ing such as gang scheduling or co-scheduling. In gang
scheduling, communicating tasks are scheduled simul-
taneously. So that the time used for network packet
processing can reserved as task’s execution time in ad-
vance. The other is distributed approach, which is
reservation based. This approach uses local sched-
uler and require all communicating task to reserve
real-time channel[3] in advance. When a task require
a channel establishment, all the network related re-
sources, such as network bandwidth, receiver node’s
buffer and CPU utilization for processing packet, are
reserved.

While centralized approach is attractive to sup-
port parallel job scheduling and provide predictability,
there are some shortcomings that is cost for paying a
synchronization overhead and higher chance of frag-
mentation(of time slot), which leads low system uti-
lization. So that we adopt a distributed approach to
construct a real-time cluster.

From the performance point of view, real-time clus-
ter system is different from that in general-purpose
cluster system. The latter tries to achieve high
throughput and to minimize average task response

Prepress
228



time, whereas the former is intended to maximize
guarantee ratio and/or minimize the probability of
failure to complete task in time. Because task arrivals
are usually uneven among the nodes, some nodes may
get temporarily overloaded while others are left under-
loaded or idle[4]. These case leads low performance for
real-time clusters. For example, upon arrival of aperi-
odic task which has some deadline to complete, if the
node is busy, the task probably be rejected because
the time for searching other node to execute incoming
task may be over the task’s deadline. Thus, we need
a effective load sharing scheme.

In this paper, we focused on task migration scheme
in real-time cluster environment designed to support
high performance distributed real-time applications.

The rest of this paper is organized as follows. The
hardware used for real-time cluster system and as-
sumption task model are described in Section 2. The
proposed scheme of task migration is described in Sec-
tion 3. This paper Conclude with Section 4.

1.1 System Model

1.2 Responsive Processor

We have used Responsive Processor[5] as a process-
ing node in real-time cluster. Responsive Processor
is integrates many functions into an ASIC chip, such
as a RISC processing core(SPARC), Responsive Links
that realize real-time communication, many periph-
eral functions including SDRAMI/Fs, PWM genera-
tors, A/D converters, D/A converters, etc. for paral-
lel/distributed real-time processing.

1.3 Task Model

For the Responsive Processor we developed a real-
time operating system, which support periodic task
and aperiodic task [6]. Periodic tasks are scheduled
based on EDF algorithm, and aperiodic tasks submit-
ted acceptance test based on “remaining” which is al-
locatable time to the task at the instant.

We assume three types of task, that is periodic
task which has hard real-time constraint, sporadic task
which has soft or firm real-time constraint and aperi-
odic task which has soft or non real-time constraint.
All resources which is required by real-time task is
known in advance. We consider parallel job as a num-
ber of communicating tasks.

1.4 Single Address Space Architecture

Because multi address space system architecture
needs cache flush whenever context switch is occur,

this cache flush result in low predictability of the sys-
tem. To avoid this problem, we adopted single address
space architecture in our operating system. Moreover,
memory protection is realized by TLB’s function.

To realize task migration in single address space
architecture, we have used Position Independent
Code(PIC), which faculty is a part of Executable and
Linking Format(ELF). PIC is a executable code which
can be loaded at any address in preparation for exe-
cution. Usually, all absolute symbol values must be
located in a table, the global offset table(GOT), and
accessed via GOT. Similarly, all function symbols are
stored in a procedure linkage table(PLT), and run-
time resolver is called before execution. We made such
run-time resolver in our real-time operating system to
support dynamic linked library.

2 Task Migration Mechanism

2.1 Load Sharing Algorithm

When system detect extreme uneven load balance
and/or it is not possible to schedule incoming task lo-
cally, the system migrate tasks from a heavily loaded
node to a lightly loaded node. This load sharing al-
gorithm is implemented based on the following four
interrelated policies.

Information Policy
This dictate how information should be exchanged

among cluster nodes. Based on collected information
from other nodes, each node decides a node to which
task should be transferred. Because of predictabil-
ity, we have adopted periodic information exchange,
which can reserved as real-time channel in advance.
The contents of exchanged information are CPU uti-
lization, memory utilization and network utilization.
This information policy is implemented as exchanger
in Figure 1.

Transfer Policy
This decides when tasks are to be migrated. Our

transfer policy determines whether a task can be guar-
anteed locally, and when the load of a node is more
than the system average load. If incoming task cannot
be scheduled locally, admission controller send “task
transfer request” to cluster manager which is a entity
of transferring task. When exchanger detect the un-
even load balance, task transfer request is issued by
one.

Location Policy
This decides the choice of a suitable node for a task

Prepress
229



kernelscheduler

Exchanger Admission
Controller

Clustre
Manager

Real-Time
Channel
Manager

User
Application

User
Application

Other 
Computing 

Nodes

kernel space

Task Transfer Request

Task Transfer Request

Network Utilization

CPU Utilization

NODE i

Transferring 
User Task

Figure 1: Structure of the Cluster Management

transfer, based on collected information by informa-
tion policy. In our scheme, location policy manages
a list, which hold other node’s information in “capa-
ble node” order. Once transfer policy decides a task
transfer, location policy find a suitable receiver node
through polling in order of the list.

Selection Policy
This decides which task are to be transferred from

the current node. We have introduced “migration
cost”, which is the degree of difficulty to migrate a
task, based on memory size, CPU utilization, strict-
ness of deadline and communications. When transfer
policy of a node decides to transfer a task because
the task cannot be guaranteed locally, selection policy
basically decides not guaranteed task to transfer.

2.2 Reservation Mechanism

Once task transfer is decided using above load shar-
ing algorithm, next three phases are proceeded. First
phase is a reservation phase(admission control), in
which all the needed resources such as CPU band-
width, network bandwidth and memories for trans-
ferring task and execution of task, are reserved. If
required resources are not reserved, this task trans-
fer request is rejected. We designed it to guarantee
execution of task migration and next task’s instance
in a period(Figure 2). Second, all the state of task
and address space are transferred to destination node,
which is transfer phase. Third, the state must be re-
constructed correctly in establishment phase.

In the reservation phase, network utilization is re-
served at first. If migrating task has m address size
and maximum network bandwidth is N , needed net-
work utilization is m/(N × δ). When all available
bandwidth is reserved, δ is minimized. α and γ are
considered as a part of task’s execution time for reser-

Node A time

Node B

α

β

δ

γ

Period P

C

θ

τ

Task T
nth instance

Task T
(n+1)th instance

φ

Latancy

Figure 2: Sequence of the Task Migration

vation. In δ and φ, there are some blocking time
which is used for DMA transfer from Dual Port Mem-
ory(DPM) to SDRAM. If such blocking time is ε and
which occurs n times, needed processor utilization for
safety task migration is

UA =
C + α

P
+

∑

i

Ci + (ε × n)
Pi .

In the same way as UA, UB which is needed processor
utilization for node B could be obtained.

2.3 Migration Type

In real-time environment, we have to consider how
to transfer task without a crisis of deadline miss of
transferred task. From this perspective, we introduce
“migration type”, which describe how to migrate a
task. Migration type of a task is determined by the
case whether a task transfer is required because the
task cannot guaranteed locally or because the load of
the local node is much higher than system average. In
addition to the case, migration type is determined by
the type of task.(e.g. hard real-time, soft real-time,
non real-time, periodic, aperiodic)

We have defined four migration type:

1. fully reservation(FR),

2. copy and sync(CS),

3. loosely reservation(LR) and

4. no reservation(NR) type.

Fully reservation type reserve the system resources
most strictly like the explanation in 2.2. This type
is used for hard real-time periodic task. If a task’s
instance could be executed independently of other in-
stance, the task could be migrated by copy and sync
type. This type is separate address spaces transfer
form transition of execution. Therefore, the resource
which reserved for task migration is much less than
fully reservation.

Prepress
230



Table 1: The Relationships between Migration Type and Other Factors
Independence of

Task Type Timing Constraints First Allocation each Task Instance Migration Type
Y Y/N LR

Hard Y CS
Periodic N N FR

Task Y Y/N LR
Firm Y CS

N N FR or LR
Sporadic

Task Firm Y/N - LR
Aperiodic Soft Y/N - LR or NR

Task Non Y/N - NR

Loosely reservation type relaxed time constraints
of migrating task. Fully reservation guaranteed exe-
cution of next instance in a period. However, loosely
reservation doesn’t guarantee it. This type is used for
soft-real time task or first allocation.

No reservation doesn’t reserve recourses at all. All
of the migration process is executed in slack time. So
that, there are no guarantee for timing constraint of
migrating task. This type is used for non real-time
tasks.

We show the relationship between migration type
and task’s properties such as timing constraints in Ta-
ble1.

3 Conclusion

A method for migrating tasks which have timing
constraints in real-time cluster system has been de-
signed and implemented. Our system uses a single
address space architecture because of high predictabil-
ity, so that we have used Position Independent Code
to realize task migration. Our task migration scheme
features the migration type, which decides how to mi-
grate a task by timing constraints of task, communi-
cation and whether first allocation or not. Using this
scheme, any kind of real-time/non real-time task could
be transferred without a crisis of deadline miss.

Acknowledgements

This study was performed through Special Coordi-
nation Funds of the Ministry of Education, Culture,
Sports, Science and Technology of the Japanese Gov-
ernment.

References

[1] M. Apete, S. Chakravarthi, J. Padmanabhan, and
A. Skjellum, “A Synchronized Real-Time Linux
Based Myrinet Cluster for Deterministic High Per-
formance Computing and MPI/RT,” in Interna-
tional Workshop on Parallel and Distributed Real-
Time System(WPDRTS 2001), pp. 92–100, April
2001.

[2] S. Ghosh and R. Rajkumar, “Resource Manage-
ment of the OS Network Subsystem,” in Pro-
ceedings Fifth IEEE International Symposium on
Object-Oriented Real-Time Distributed Comput-
ing, pp. 271–279, 2002.

[3] D. Ferrari and D. C. Verma, “A Scheme for Real-
Time Channel Establishment in Wide-Area Net-
works,” IEEE Journal on Selected Areas in Com-
munications, vol. 8, no. 3, pp. 368–379, 1990.

[4] K. G. Shin and C.-J. Hou, “Design and Evaluation
of Effective Load Sharing in Distributed Real-Time
Systems,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 5, pp. 704–719, July 1994.

[5] N. Yamasaki, “Design and Implementation of Re-
sponsive Processor for Parallel/Distributed Con-
trol and Its Development Environments,” Jour-
nal of Robotics and Mechatronics, vol. 13, no. 2,
pp. 125–133, 2001.

[6] H. Kobayashi, “Design and Imprementaion of a
Distributed Real-Time Operating System based on
the Imprecise Computation Model,” Master’s the-
sis, Keio University, 2002.

Prepress
231




