
Extensible Real-Time Data Dissemination on Channel-Based
Reflective Memory

Kazuya Kitsunai Hidenori Kobayashi Nobuyuki Yamasaki Yuichiro Anzai
Dept. of Information School of Science for Open Dept. of Information Dept. of Information
and Computer Science and Environmental Systems and Computer Science and Computer Science

Keio University Keio University Keio University Keio University
Yokohama, Kanagawa, Yokohama, Kanagawa, Yokohama, Kanagawa, Yokohama, Kanagawa,

223-8522, Japan 223-8522, Japan 223-8522, Japan 223-8522, Japan

Abstract

In this paper, we propose real-time communication
middleware which supports data dissemination with
proxy extension. To fulfill stringent QoS requirement
such as timing constraint, we employ push-based data
delivery approach and real-time channel. Further-
more, by making the most of connected clients, we
could permit the increased number of clients and ex-
tend the scalability. Since it is also desirable for dis-
tributed real-time system to support real-time com-
munication specifications by hardware, we used Re-
sponsive Processor as experimental platform.

1 Introduction

Recently, time criticality of data dissemination is
required for real-time network-base application such
as distributed monitoring and control system, video
transmission and video conferencing. However, such
as HTTP in World Wide Web, server-client model has
employed client pull-based data dissemination where a
client sends request packets to a server and receives re-
quest packets. Since arrival time of data in the client
side cannot be bounded, client pull model is not suit-
able for distributed real-time application.

Many researches focus on server push-based data
dissemination[1], [2] that correspond to stringent time
criticality. In RT-CRM[5], dedicated reflective mem-
ory area is reflected via channel through a network. By
combining both reflective memory model and channel
properties, it can fulfill time constraint with flexibility
where server is able to push data to any node.

However they do not focus on access locality of
servers. If so many clients access to limited numbers
of server, these servers suffer excessive overhead and
then they cannot offer any more service. Therefore,

access limitation has been low. To fulfill more client’s
requests, load balancing of convergent server is needed.

In this paper, we address load balancing of real-time
data dissemination application with stringent timing
constraints and try to support the increased number
of clients. Our proposed model is based on the idea
that there are so many clients who have the same
replica when the server suffers excessive overhead from
numbers of clients. We use these clients as tempo-
rary proxy server which can serve the same data in
server. The rest of this paper is organized as follows.
In Section 2, we indicate our target system architec-
ture overview and design of reflective memory model
for it. In Section 3, we showed the details of Respon-
sive Processor which we use to construct our exper-
imental distributed real-time system. In Section 4,
concluding remarks.

2 Design

2.1 System Overview

There’s been a shift from centralized to paral-
lel/distributed in real-time system. The development
and increasing bandwidth of data delivery enables us
to construct distributed network-based control system.
Although the availability of high-bandwidth advances,
it is much more important for communication middle-
ware to support real-time QoS guarantees in order to
construct distributed network-based control system.

In Fig.1, we showed the example of distributed
network-based system which we assumed in this pa-
per. This type of system connects the numbers of
nodes such as terminal, multimedia server for video
transmission, system surveillance and etc, sensors and
actuators. Each type of node has different communica-
tion properties. The data size of multimedia server is

Prepress
236



Terminals

multimedia serversensor nodes

actuator nodes
home servers

information server

High speed network

Figure 1: Distributed network-based control system

commonly large, but communication is bearable with
soft real-time guarantee. In contrast, the data size
of sensor and actuator nodes is small, but for hard
real-time guarantee, it is not desirable to control the
system.

The number of nodes in the system we assumed
is not limited. To apply our model on the common
Internet, the number of clients(terminal) and servers
is generally unexpected. Also, we assumed the sys-
tem topology is multihop network(i.e. a message pass
through multiple intermediate nodes). In order to ful-
fill the timing constrained in such system, utilizing the
proxy in our model is acceptable.

2.2 Reflective Memory Model

To achieve various QoS requirement from clients,
we use real-time channel[3] where resources will be
reserved for them after the connection establishment
operation, as well as freed during connection disestab-
lishment. The route of a channel will be chosen at the
time of its establishment. Although there are many
routing and resource management algorithms, it is out
of domain that we deal with in this paper. Our goal is
to construct real-time communication middleware on
real-time channel. So we assumed that there might
be real-time channel between server nodes and client
nodes.

Our channel-based reflective memory model is
based on [5] where Reflective Memory Server (RMS)
is in both server node and client node. RMS man-

ages Reflective Memory Table(RMT), Data Push
Agent(DPA) attributes(i.e. data pushing period,
starting/stopping DPA, periodic/aperiodic/sporadic
data push, etc) and connection requests from client
nodes.

In Fig.2, we showed our modified model of it. In
our model, the writer thread(e.g. sensing data man-
agement, graphics transmitting) in server node cre-
ates Reflective Memory Data(RMD) and registers it
on RMT managed by RMS. RMT can be globally ref-
erenced by all threads in its node. In RMT, Reflective
Memory Identifier(RMID) is defined which is unique
in the system. RMID is pair of (original server node
ID, memory area ID). Because of this pair, we can
respectively manage RMD in every node of the sys-
tem. When a reader thread(e.g. terminal) in a client
node would like to receive the server’s RMD and con-
nect to it, it sends a request packet to RMS thread in
the server node. When the server’s RMS thread re-
ceives the request from it, it tries the admission test.
If passes, the RMS thread creates a DPA thread to
reflect(send) RMD to it. The DPA thread manages
sending data on real-time channel along the reader’s
QoS requirement. The reader thread can start/stop its
dedicated DPA thread to flexibly change the receiving
data it wants.

2.3 Proxy Extension

On the other hand, client node can register its re-
ceiving RMID if it allows to become a proxy node for

Prepress
237



X 1

Producer

Producer Node #X

X

X

0

1

Reflective Memory Management Table
pnid datid

Consumer

Client & Proxy Node #0

Reflective Memory Management Table
pnid datid

Sender Agent

Reflective Memory Server

Real-Time Channel

Reflective Memory

Real-Time Guarantee

X 1

RM_register_clnt

Consumer

Reflective Memory

Client Node #1

Reflective Memory Management Table
pnid datid

Reflective Memory ServerReflective Memory Server

Reflective Memory

RM_register_serv

RM_create

Figure 2: RM(X,1) is reflected to client #0

X 1

Producer

Producer Node #X

X

X

0

1

Reflective Memory Management Table
pnid datid

Consumer

Client & Proxy Node #0

Reflective Memory Management Table
pnid datid

Sender Agent

Reflective Memory Server

Real-Time Channel

Reflective Memory

Real-Time Guarantee

X 1

RM_register_clnt

Consumer

Reflective Memory

Client Node #1

Reflective Memory Management Table
pnid datid

Reflective Memory Server

Sender Agent
Real-Time Channel

Reflective Memory Server

Real-Time Guarantee

Reflective Memory

Figure 3: RM(X,1) is reflected to client #1 via proxy(client #0)

future clients. With registering RMID, another clients
whose request was rejected from the server can connect
to the client which has the same RMID in the original
server node.

Fig.2 and Fig.3 depict our proxy extension scheme
discussed above. In Fig.2, the client #0 connected to
the server #X and registers its RMID in its RMT.
Its RMID must be identical with the server’s RMID.
With registering its RMID and fulfilling client #1’s
QoS requirement, the client #0 can serve as a substi-
tute(proxy server) for the original server #X. When
proxy’s RMS receives request from another client,
proxy’s RMS tries the admission test and connect to
the requested clients as well as the original server does.

Also, it is worth noting that with unique RMID in
the system showed in the last section, client nodes can
search elective RMD without incurring server node.
In other words, it is not necessary for client nodes to
send requests to server node.

3 Experimental Environment

To evaluate our model, we implemented it
on Responsive Processor[6]. Responsive Processor
is a system-on-a-chip in which RISC processing
core(SPARClite 120.0MHz), four Responsive Link for
real-time communication, various computer peripher-
als (SDRAM I/Fs, PCI, USB, DMAC, timers, SIO,
PIO, etc.) and various control peripherals (A/DC,
D/AC, pulse counters, PWM, etc.) into single chip.

Responsive Processor is designed for paral-
lel/distributed control in real-time. Therefore it has
real-time communication architecture called Respon-
sive Link, in which a line for data communication(data
link) is separated from a line for event communica-
tion(event link). A link is point-to-point and full-
duplex. Generally, if packet size is large, it offers
better bandwidth, on the other hand, if packet size is
small, it guarantees the latency. The data link realizes
soft real-time communication. Therefore its packet

Prepress
238



size is fixed length and large(64B). To the contrary,
the event link is for hard real-time communication,
packet size of which is fixed length and small(16B).
The Responsive Link also performs overtaking lower
priority packet when a packet collision occurs. The
priority of a packet is added on packet header section,
in which source/destination address is appended to.
The priority attachment and replacement on a packet
are conducted by software. The routing table of the
event/data link can be separately set up, so that the
event/data link can be routed independently.

Furthermore, we developed parallel/distributed
real-time operating system called RT-Frontier on it.
To utilize the Responsive Link properties, it supports
three communication paradigm which is individually
called event message, state message and signal. Event
message is transmitted on the data link and notified
to receiver thread when message arrives. State mes-
sage is, meanwhile, uses the data link as well as event
message and is not notified to receiver thread. In our
model, we uses state message for memory reflection,
event message for communication with remote reflec-
tive memory server. At the last message type is signal
which is carried on the event link and has almost the
same features of UNIX signal. To manipulate(starts,
stops for example) Data Push Agent thread in our
model, we use signal.

4 Experiment and Result

In this section, we evaluate data arrival jitter of
our communication model. For this evaluation, we
assumed the case that client requests as Reflection pe-
riod:50msec, Memory-to-Memory Delay:51msec, Data
size:256 byte, Distance between server and client:1
hop. Figure 4 shows data arrival time

5 Concluding Remarks

In this paper, we proposed data dissemination mid-
dleware on channel-based reflective memory model
with proxy extension. With this properties, we can al-
leviate the access concentricity from clients with strin-
gent QoS requirement.

Acknowledgements

This study was performed through Special Coordi-
nation Funds of the Ministry of Education, Culture,
Sports, Science and Technology of the Japanese Gov-
ernment.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20

D
el

ay
 [m

s]

Number

Period = 70ms
Period = 50ms
Period = 50ms

Figure 4: The result of arrival delay

References

[1] Swarup Acharya, Michael Franklin, and Stanley
Zdonik. Balancing Push and Pull for Data Broad-
cast. In Proceedings of the ACM SIGMOD Con-
ference, pp. 183–194, May 1997.

[2] Manish Bhide, Pavan Deolasee, Amol Katkar,
Ankur Panchbudhe, Krithi Ramamritham, and
Prashant J. Shenoy. Adaptive Push-Pull: Dissem-
inating Dynamic Web Data. IEEE Transactions
on Computers, Vol. 51, No. 6, pp. 652–668, June
2002.

[3] Domenico Ferrari and Dinesh C. Verma. A Scheme
for Real-Time Channel Establishment in Wide-
Area Networks. IEEE Journal on Selected Areas in
Communications, Vol. 8, No. 3, pp. 368–379, 1990.

[4] Michael Franklin and Stan Zdonik. Data In Your
Face: Push Technology in Perspective. In Proceed-
ings of the ACM SIGMOD International Confer-
ence on Management of Data, pp. 516–519, June
1998.

[5] Chia Shen and Ichiro Mizunuma. RT-CRM: Real-
Time Channel-Based Reflective Memory. IEEE
Transactions on Computers, Vol. 49, No. 11, pp.
1202–1214, November 2000.

[6] Nobuyuki Yamasaki. Design and Implementation
of Responsive Processor for Parallel/Distributed
Control and Its Development Environments. Jour-
nal of Robotics and Mechatronics, Vol. 13, No. 2,
pp. 125–133, 2001.

Prepress
239




