The Instruction Execution Mechanism
for Responsive Multithreaded Processor

Tstomu Itou
School of Science for
Open and Environmental Systems
Keio University
Yokohama, Kanagawa,
223-8522, Japan
itou@ny.ics.keio.ac.jp

Abstract

This paper describes the instruction execution
mechanism of Responsive Multithreaded (RMT) Pro-
cessor for distributed real-time processing. The execu-
tion order of each thread is controlled by using priority
in RMT Processor. The highest priority thread is ex-
ecuted first in RMT Processor.

Real-time applications, such as soft real-time pro-
cessing including multimedia processing, require high
computing performance. So we design the vector pro-
cessing unit. Since multiple threads are executed
in parallel by the multithreading architecture, these
threads execute vector operations in parallel. We de-
sign the vector processing unit so that multiple threads
are able to share vector registers and execute vector
operations efficiently. Moreover, we design a vector
compound execution mechanism to improve the per-
formance of vector operations.

1 Introduction

Many processes with various timing constraints are
executed in a real-time system. In order to guarantee
these timing constraints, these processes have prior-
ity given by Real-Time Operating System (RT-OS) to
control the execution order of each process. RT-OS
executes the processes in the order of priority. When
RT-0OS switches the executing process, the overhead
occurs. The hardware support is necessary to reduce
this overhead in real-time systems.

We designed Responsive Multithreaded (RMT) Pro-
cessor so that it can execute processes in real-time by
hardware. RMT Processor executes the higher priority
thread in first. We also design the vector processing

252

Nobuyuki Yamasaki
Department of Information
and Computer Science
Keio University
Yokohama, Kanagawa
223-8522, Japan
yamasaki@ics.keio.ac.jp

unit so that it can achieve the high computation per-
formance required for soft real-time processing. In this
paper, we describe the instruction execution mecha-
nism of RMT Processor.

2 Background

Responsive Multithreaded (RMT) Processor is
a system-on-a-chip that integrates a processing
unit(RMT Processing Unit (RMT PU)), Responsive
Link[1] and various I/Os. It can support the dis-
tributed real-time processing by hardware.

2.1 Simultaneous Multithreading

The architecture of RMT PU is based on Simulta-
neous Multithreading (SMT) mechanism[2, 3]. Multi-
ple threads are executed in parallel in the SMT archi-
tecture. Multiple instructions from multiple threads
are fetched and issued in a clock cycle. Instructions
are selected from different threads so that the depen-
dence of instructions can be decreased and Instruction
Level Parallelism (ILP) can be improved. Moreover,
even when a processor executes a long latency instruc-
tion, this latency can be hidden by executing another
thread.

2.2 Conflict Arbitration of Computation
Resources by Using Priority

As SMT processor executes multiple threads in par-
allel, conflicts of computation resources, such as fetch
slots, issue slots, cache access, and arithmetic logical
units, occur. RMT PU arbitrates these conflicts by

Prepress
252

using priority. Each thread specifies priority in a ded-
icated register of RMT PU. When a conflict occurs,
RMT PU selects the instruction of the highest priority
thread and executes it first[4], so that RMT Process-
ing Unit can control the execution order of each thread
without RT-OS help. Since RMT PU has SMT archi-
tecture, it can reduce the overhead of context switch-
ing.

2.3 Context Cache

RMT PU has up to eight threads as hardware con-
texts including complete register set, PC, and status
registers. If there are nine or more executing threads,
the help of software is needed to exchange a hard-
ware context. When the software exchanges a hard-
ware context, it saves the context to the memory and
restore the new context from the memory. So the over-
head of context switching occurs. This overhead is a
big problem in real-time systems. We designed a dedi-
cate on-chip cache in RMT PU to save these contexts.
This cache is connected to register files with wide bus.
As context switching is performed by using this cache,
the overhead of context switching reduces greatly.

2.4 Computing Performance of RMT
Processing Unit

Since multiple threads are executed in parallel in
the SMT architecture, the total performance can in-
crease. But the performance of each thread may
decrease for conflicts of computation resources. It
doesn’t meet the demand of computing performance
required for soft real-time processing. So we design
the instruction execution mechanism of RMT PU so
as to achieve this high computing performance.

3 Design and Implementation
3.1 Design Plan

The data level parallelism (DLP) can be used by
soft real-time processing. Same operations are re-
peated with a lot of data in soft real-time processing.
There are two methods to achieve the high computing
performance by repeating the same operations.

e SIMD Operation

e Vector Operation

On one hand, the SIMD operation is performed
with the short latency, but data parallelism is small.
On the other hand, the vector operation is performed
with the long latency, but data parallelism is large.

253

Here, the long latency of the instruction is hidden
by the multithreading architecture in RMT PU. So
the latency of a vector operation can also be hidden.
Instruction fetch slots and issue slots are shared by
multiple threads in RMT PU. We consider that the
large data parallelism of the vector operation is ef-
fective to reduce conflicts of the fetch slots and issue
slots. Therefore we decide the vector operation for the
instruction execution mechanism of RMT PU.

The block diagram of RMT Processor is shown in
Figure 1.

221 Thread Control
Unit

‘| Instruction
Unit
Instruction -
Cache
Unit

Context
= Cache
Reservation||:: a0k
Station

Register
Unit

Common Data Bus Arbitor g

Figure 1: The block diagram of RMT Processor.

The thread control unit has a status register of each
thread including executable, stopping, and priority. It
controls the context cache to save or restore threads.
The context cache consists of on-chip memory for sav-
ing the contexts. The instruction unit selects the is-
sued instruction according to priority of each thread,
and issues the instructions to reservation stations. Pri-
ority of each thread is also used in cache systems, reser-
vation stations, operation units, and reorder buffers
to arbitrate conflicts. We designed vector processing
units such as VINT (vector integer unit) and VFP
(vector floating-point unit).

3.2 Vector Processing Units

The block diagram of the vector processing unit is
shown in Figure 2.

The vector control unit performs effective address
calculation for accessing to vector registers, reserves
and releases vector registers, and executes vector com-
pound operations, which are described later. In or-
der to execute vector operations of multiple threads
in parallel, a vector processing unit has two operation
pipelines (vector execution units). Each integer oper-

Prepress
253

from Reservation Station
|

Vector Register
Controller

Vector Control
Unit Vector

Compound

Register Status Buffer

Table

! !

Vector Execution Vector Vector Execution
Unit 0 Register Unit

]]

| -

Execution
Controller
Execution Vector Register
Unit
I

to Common Data Bus

Unit 1

Execution
Controller
Execution
Unit
L) I
]

to /from Memory Unit ~ to Common Data Bus

le—1
1

Figure 2: The block diagram of a vector processing
unit.

ation pipeline has eight operation units so that the in-
teger operation pipeline executes eight vector elements
in parallel to increase throughput of vector operations.
Each floating point operation pipeline has four opera-
tion units so that the floating point operation pipeline
executes four vector elements in parallel.

3.3 Reserving and Releasing Vector Reg-
isters

Since RMT PU can execute multiple threads in par-
allel, these threads may execute vector operations at
a time. If each thread has own vector registers, the
hardware amount will become large. So we design vec-
tor registers that can be shared by multiple threads.
When each thread executes vector operations, it re-
serves vector registers first and executes vector oper-
ations subsequently. If the thread finishes vector op-
erations and doesn’t use vector registers any more, it
releases the vector registers. Thereby, another thread
can reserve vector registers and execute vector opera-
tions at the same time. From the point of the trade-
off with the amount of transistor, 512 words are im-
plemented to the vector integer unit and the vector
floating-point unit respectively.

The configuration of vector registers, such as ele-
ment length and register size is different depending on
applications. In order to share vector registers effi-
ciently, it is necessary to allocate vector registers with
the suitable size. So each thread specifies the required
size of vector registers when it reserves vector regis-
ters. If unused vector registers are enough, the vector
control unit allocates the specified size of vector regis-
ters to the thread. If vector registers are not enough,
the reserving operation is failed. The configuration of

254

the vector register which contains the allocated area,
vector length, register size is saved in a register status
table.

When the vector control unit receives a vector oper-
ation, it calculates effective address of the vector reg-
ister with the configuration information in this table.
The vector execution pipeline uses this address to ac-
cess the vector registers.

If variable size can be specified at reserving vec-
tor registers, hardware logic will become complex and
the amount of transistor will increase. Additionally,
fragmentation will occur if reserving and releasing are
repeated. So we limit the configuration specified in
the reserving operation. The configuration that can
be selected is shown in Figure 3.

i%hsmm F Ilslength

@) Register Configuration ol 128 Entry

i%imengm ‘16\‘ Ilﬁlength R

(b) Register Configuration of 256 Entry

32length

64length

32length

Imlenglh _"~__
‘16\\ ‘N

(c) Register Configuration of 512 Entry

A

Figure 3: The configuration of vector resisters.

We prepare two new instructions to execute reserv-
ing and releasing operation. VRES (Vector REServe)
instruction executes reserving vector registers. It spec-
ifies the configuration of vector registers. VREL (Vec-
tor RELease) instruction executes releasing vector reg-
isters.

3.4 Vector Compound Operation

The same operations, such as multiply-and-add op-
eration, are repeated in many soft real-time process-
ing. We design the vector compound operation mech-
anism which executes a series of vector operations per-
formed repeatedly. A programmer defines a series of
vector operations as a vector compound operation.

Prepress
254

These series of vector operations are executed as one
instruction. When the vector control unit receives a
vector compound operation, it executes a series of vec-
tor operations defined by a programmer continuously.

4 FEvaluation

We evaluate the vector processing mechanism by us-
ing the program that executes an IDCT of 8 x 8 array.
The configuration of vector registers is 128 registers
with 8 vector length.

O IDCT Thread B Thread 1
B Thread 4 O Thread 5

O Thread 2
@ Thread 6

O Thread 3
O Thread 7

500

450

400 H

350 1l

300 1l

250 1l

Execution Time

200 1l

150 1l

100 l

50 1l

Low Priority Middle Priority High Priority ~ Low Priority Middle Priority High Priority
)

Figure 4: The execution time with using priority.

RMT PU can control execution order of each thread
by using priority. Figure 4 shows execution time in
which each thread was controlled by priority. In this
figure, the IDCT thread executed IDCT program with
vector operations. The other threads executed inte-
ger sort program as CPU load. The Threadl was the
highest priority thread and the Thread7 was the low-
est priority thread. Low priority shows that the IDCT
thread had the lowest priority among all threads. High
priority shows that the IDCT thread had highest prior-
ity. The ”compound” shows that the IDCT program
used vector compound operations. We defined eight
multiply-and-accumulate operations as one compound
operation.

The execution time of the IDCT thread which used
compound operations decreases compared with not us-
ing compound operations. As a compound operation
can perform many operations with one instruction,
the utilization of the vector processing unit increased.
When the IDCT thread has highest priority, the ex-
ecution time of the other threads decrease too. As
the number of vector instructions decreased by com-
pound operations, conflicts of the fetch and issue slots
decreased.

255

5 Conclusion

In this paper, we describe the design and imple-
mentation of the instruction execution mechanism for
Responsive Multithreaded Processor. We design the
vector operation mechanism to achieve high comput-
ing performance required by soft real-time processing.

Vector registers are shared by multiple threads, so
that it executes vector operations of multiple threads
efficiently without increasing amount of transistors.
Additionally a vector compound operation mechanism
performs multiple vector operations with one instruc-
tion, so that the utilization of the vector process-
ing unit increases and the computing performance in-
creases.

Acknowledgements

This study was performed through Special Coordi-
nation Funds of the Ministry of Education, Culture,
Sports, Science and Technology of the Japanese Gov-
ernment.

References

[1] Nobuyuki Yamasaki. Design and implementation
of responsive processor for parallel/distributed
control and its development environment. Jour-
nal of Robotics and Mechatronics, 13(2):125-133,
2001.

Susan J. Eggers, Joel S. Emer, Levy Henry M,
Jack K. Lo, Rebecca L. Stamm, and Thllsen
Dean M. Simultaneous multithreading : A plat-
form for next-generation processors. IEEE Micro,
17(5):12-19, 1997.

Dean M. Tullsen, Susan J. Eggers, Joel S. Emer,
Levy Henry M, Jack K. Lo, and Rebecca L.
Stamm. Exploiting choice: Instruction fetch and
issue on an implementable simultaneous multi-
threading processor. In Proceedings of the 23rd An-
nual International Symposium on Computer Archi-
tecture, 1996.

Masato Utiyama, Tsutomu Itou, Junichi Sato,
Nobuyuki Yamasaki, and Yuichiro Anzai. A new
processor architecture for real-time systems. In
IFAC Conference on New Technologies for Com-
puter Control 2001, 2001.

Prepress
255

