
RT-Frontier: A Real-Time Operating System
for Practical Imprecise Computation

Hidenori Kobayashi Nobuyuki Yamasaki

School of Science for Open and Environmental Systems
Graduate School of Keio University

Yokohama, 223-8522, Japan
E-mail: {kobahide,yamasaki}@ny.ics.keio.ac.jp

Abstract

Imprecise computation is known as an effective tech-
nique for dynamically resolving trade-offs between the
amount of resources and the quality of the result. How-
ever, its implementation and operating system support
methods have not been exploited enough from a practi-
cal point of view. This paper presents a new approach
taken in the RT-Frontier operating system to support im-
precise computation. Applications that allow impre-
cise computation are first transformed to tasks composed
of three parts based on an extended imprecise computa-
tion model. All tasks are then uniformly scheduled accord-
ing to a novel scheduling algorithm called Slack Stealer
for Optional Parts (SS-OP). The SS-OP algorithm is de-
signed to handle imprecise computations with small over-
head, which is at a comparable level of that of the Earliest
Deadline First (EDF) algorithm. The results of experi-
ments show that the presented approach is cost-effective
enough to be considered as a practical basis for embed-
ded real-time systems.

1. Introduction

The real-time computing community has long relied on
resource reservation approaches based on the worst case
scenarios. However, the worst case execution time (WCET)
of an activity is now harder to estimate than ever, due to the
use of complex hardware, multiprogramming, and commer-
cial off-the-shelf components. Additionally, the amount of
resources required within real-time systems tend to change
from time to time, because their behaviors are by nature
subject to its environment. These situations imply that it is
almost impossible or impracticable to determine what the
real worst case is.

The imprecise computation model presented in [13] is
one of the techniques used to cope with such uncertainty.

The crucial point is that the computation is split into two
parts: a mandatory part which affects the correctness of the
result and an optional part which only affects the quality of
the result. By restricting the execution of the optional part
to only after the completion of the mandatory part, an ap-
plication based on the imprecise computation model is able
to provide a sane output with lower quality, by terminating
the optional part whenever resources are scarce. Also, there
is an advantage that the inevitable reservation can be made
tighter, since the worst case scenario just for the manda-
tory part is often easier to determine than the one including
the optional part.

The application domain of the imprecise computation
model is diverse, some of which are multimedia process-
ing [7, 10, 5], planning and artificial intelligence [21, 8, 16],
and database systems [9, 1]. Despite a large number of ap-
plication candidates, the imprecise computation model has
not been widely accepted in industrial practice, partly due to
its strong assumptions, described in the following sections,
and partly due to the lack of cost-effective support meth-
ods that can be easily implemented in an embedded operat-
ing system.

This paper describes a novel approach that the RT-
Frontier operating system takes to implement and support
practical imprecise computation. The RT-Frontier op-
erating system is developed from scratch for medium
embedded real-time systems. These embedded systems re-
quire a mechanism to add flexibility and to resolve overload
more keenly than the other systems, since no manual ad-
justment can be made at run-time.

Our goal is to support imprecise computation at low cost
as a means to cope with transient overloads. Embedded sys-
tems often demand imprecise computation to be carried out
at low cost rather than in an optimal manner for the fol-
lowing three reasons. First of all, these systems are usu-
ally constructed to be underloaded in the most of the ex-
pected conditions, in which all the optional parts can be
completed. Secondly, cheap processors with limited pro-

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

cessing power used in embedded systems cannot afford to
execute optimization processes that are unnecessary while
the system is underloaded. Thirdly, dynamic optimization
processes during overload can increase the total workload
even more, since they are mostly computation intensive. It
must be noted that, nevertheless, the imprecise computation
technique is still required when any timing fault can lead to
a catastrophic situation.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 describes the system model,
which includes the extended imprecise computation that
forms the basis of the following arguments. Section 4 ad-
dresses the problem of scheduling imprecise computation.
Section 5 presents the experimental results and Section 6
concludes the paper.

2. Related Work

Most of the previous research on the imprecise compu-
tation model focused on scheduling algorithms that aim at
minimizing the error in computations. The error of impre-
cise computation is usually given by a function, called an
error function, which characterizes the relationship between
the amount of resources and the error.

The off-line scheduling of imprecise computation has
been studied quite extensively and several optimal algo-
rithms have been presented in [18, 15, 2]. It is also proved
that the problem becomes NP-Hard when tasks have 0/1
constraints [14] or the error function is concave [2].

As for the on-line scheduling of imprecise computation,
it is known that there exists no algorithm that always finds
a feasible schedule with the minimum total error whenever
a feasible schedule exists [17]. Nonetheless, two strategies
were developed. The mandatory first strategy statically as-
signs higher priorities to all mandatory parts than optional
parts [6, 3], while the other strategy performs some form of
slack stealing to allocate processor time for executing op-
tional parts [17].

One of the common assumptions made throughout the
above is that the optional parts have a constant upper bound
on their execution time. However, the behavior of a real-
time application is often subject to input data, and the time
needed to produce a precise result is unlikely to be con-
stant. For example, the execution time of an obstacle track-
ing application may depend on the number of obstacles
identified at each instant. Another questionable assumption
is that error functions are always given. Generally, deter-
mining an error function requires significant amount of em-
pirical work. Moreover, a real-world error function is not
promised to be expressed in a simple mathematical form.

The server mechanisms [19] developed for allocating ex-
ecution time to aperiodic tasks in the presence of hard pe-
riodic tasks do not make the assumptions mentioned above,

User
Application

Microkernel
Server Threads

User
Application User Level

Supervisor
Level

Kernel Space

Figure 1. Structure of RT-Frontier

but they cannot be used directly to serve optional parts,
because the optional parts already have deadlines whereas
aperiodic tasks do not.

A little work focuses on the implementation platform
and on run-time support. Concord [13] and ICE [11] pro-
vide support based on the client server model, which can be
augmented by a checkpointing scheme [4]. Although check-
pointing provides fault tolerance, it also increases the run-
time overhead. Spring thread package [12] provides a plat-
form for implementing imprecise computation, in which
each part of the imprecise computation is mapped to a
thread. While it provides great flexibility, spawning a thread
can be expensive in terms of run-time overhead and mem-
ory consumption. Thus, a simpler approach may suit bet-
ter as long as the mandatory and optional parts do not need
to execute in parallel.

3. System Model of RT-Frontier

The overall structure of the RT-Frontier operating system
is illustrated in Figure 1. The majority of the operating sys-
tem services are provided by server threads. These threads
are implemented inside the kernel space and run in supervi-
sor mode. The microkernel of RT-Frontier implements the
scheduler and is responsible for three things: handling hard-
ware interrupts and exceptions, emitting signals to corre-
sponding threads, and scheduling threads.

There are two ways an application can be implemented.
One is to implement it as a user level task. The user level
tasks receive services from the server threads via port-based
communication or by entering supervisor mode via system
calls. The other way is to implement it as one of the server
threads, that is, make the application as a part of the op-
erating system. The first way has an advantage in that the
application program can be dynamically loaded and tested
without having the kernel reloaded to the target board ev-
ery time, which makes the cross development easier and
faster. On the other hand, the second way allows an appli-
cation with very fine timing constraints to be implemented.
For example, software that controls the body of a robot may

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

Mandatory
Part

Wind-up
Part

Terminated

Discarded

CompletedOptional
Part

Figure 2. Imprecise computation with wind-up
part

be critical enough to reside in the kernel space and to ac-
cess peripheral I/O devices directly.

Applications implemented as above can freely contain
computation with and without an optional part. However,
the RT-Frontier operating system restricts applications that
allow imprecise computation to conform to the original ex-
tended imprecise computation model described in the fol-
lowing.

The extended imprecise computation model, shown in
Figure 2, is similar to the traditional imprecise computation
model in a sense that the optional part follows the manda-
tory part. However, this extended model is significantly dif-
ferent from the traditional model in that an extra operation
can be executed after the optional part is terminated prema-
turely. Consider the case where a periodic imprecise com-
putation is terminated in its optional part. If its context is
not modified at all, it will resume, in its next cycle, ex-
actly at where it has been stopped. If this is not what the
programmer intended and the intension was to execute the
program from the top of the mandatory part in each cycle,
some compensation operations are indispensable for fixing
the context. Such operations are commonly desired, for ex-
ample, for transmitting the results to other nodes, for un-
rolling the effect of prematurely terminated operations, and
for performing statistical feedbacks based on the quality of
the result.

In order to meet these demands, our extended model adds
a new part called the wind-up part for putting these com-
pensation operations. The wind-up part is required to be
completed without exception, since operations in this part
mostly need to be executed even when the optional part
is completed. If the programmers do not want to have the
wind-up part executed when the optional part is completed,
they can still structure their programs to check whether the
optional part is completed before executing the wind-up
part. Or alternatively, the wind-up part may be structured
as idempotent. By contrast, the traditional imprecise com-
putation model does not permit these operations after the
optional part. Thus, application designers had to either seek
support from the operating system or integrate them into the
mandatory part of the next cycle. The first approach, how-

ever, leads to poor portability, while the second one cannot
be used for aperiodic requests.

4. Scheduling Method

This section describes a novel scheduling algo-
rithm called Slack Stealer for Optional Parts (SS-OP)
and its implementation on the RT-Frontier operating sys-
tem. The SS-OP algorithm is developed for on-line
preemptive scheduling on a uniprocessor and schedules in-
dependent imprecise computation in a deadline driven
manner.

The objective of SS-OP is to provide support for applica-
tions with optional parts whose maximum execution times
are not constant. Its primary focus is on keeping its run-
time overhead small enough so that the system performance
is not unnecessarily lowered when the system is not over-
loaded. We note that it is not the focus of SS-OP to theoret-
ically minimize the error of computation, because the error
generated upon terminating an optional part cannot be esti-
mated properly when the length of the time required for its
completion is not known.

There are two rules for maintaining the overhead of SS-
OP to a practicable level. The first rule is to keep the com-
putational complexity at the same level of that of EDF for
every common scheduling event. The second rule is to keep
the overhead of SS-OP to O(1) for every new scheduling
event which is not present in EDF. These rules allow the
overhead of the SS-OP scheduler to be accounted for, in a
way that is similar to the EDF scheduler. This property adds
a significant advantage to SS-OP, because EDF, being one
of the simplest yet most effective algorithms, has been used
in many systems and analyzed thoroughly. Consequently,
the hurdle for adopting SS-OP becomes lower than other-
wise.

The performance of SS-OP, on the other hand, is im-
proved by reclaiming unused processor time dynamically
for optional parts. As was stated, the performance of im-
precise computation is usually measured in terms of the er-
ror, which only decreases by executing a larger portion of
the optional part. The resource reclaiming has good poten-
tial of improving the performance, because the execution
times of the mandatory and wind-up parts must be reserved
for their worst cases which rarely occur.

4.1. Assumptions and Terminology

The SS-OP algorithm allows workload that consists of
hard periodic tasks and soft aperiodic tasks. The periodic
tasks are assumed to have the relative deadline that is the
same as their period, while the aperiodic tasks only request
a short response time. Since aperiodic tasks have no dead-
line, it is assumed that they do not have any optional part ei-

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

ther. It is also assumed that periodic tasks are not activated
dynamically.

Each instance of the tasks, or the job, Ji is character-
ized by four parameters: a release time (ri), a deadline (di),
a WCET of the mandatory part (mi), and a WCET of the
wind-up part (wi). Since precise jobs do not have optional
parts, wi is zero for them. It is assumed that no mandatory
nor wind-up part overruns. This should be a fair assumption,
because the ability of SS-OP to perform dynamic resource
reclaiming would encourage programmers to set the WCET
with a wider margin. The WCET of the optional part and
the error function is not required in SS-OP, because these
are hard to determine in many applications.

The utilization of a task which Ji belongs to is defined as
follows. If the task is periodic,

ui =
mi + wi

Ti
, (1)

where Ti is the period of the task. And otherwise ui is zero.
Accordingly, the utilization of the system with n tasks can
be defined as Ue =

∑n
i=1 ui. We call this Ue the essential

utilization, since it represents the processor bandwidth that
is essential for meeting all timing constraints. We also use
Uo to denote the optional utilization, which is the proces-
sor bandwidth that can be spared to execute optional parts
and aperiodic jobs. Thus, Uo = 1−Ue. We assume that Ue is
less than one, because otherwise there is no point in adopt-
ing the imprecise computation technique.

In addition, we define the following variables.

• Γs: the group of periodic jobs that are executing their
optional part and all aperiodic jobs

• JE: the job with the earliest deadline in Γs

• Jp(i): the job whose deadline is the latest among all jobs
Jk such that dk ≤ di

• Jn(i): the job whose deadline is the earliest among all
jobs Jk such that dk ≥ di

• tc: the current time of the system

• Ri: the amount of remaining execution time which job
Ji is allowed to spend before any scheduling event oc-
curs

• S i: the amount of slack which job Ji is allocated

Finally for the sake of description, we use Ei to represent
Ri if the job Ji has finished its mandatory part or Ji is aperi-
odic, and to represent S i otherwise.

4.2. SS-OP Algorithm

As the name implies, the SS-OP scheduler steals an
amount of slack from the mandatory and wind-up parts to
execute the optional parts. The mandatory first approach
cannot be used in RT-Frontier, since we need to schedule

Unless one of the following events occurs, execute the job Ji with
the earliest deadline and decrease Ri accordingly.

i. When an aperiodic job Ji has become ready, set Ri = mi,
S i = 0, and then set di according to Equation (3).

ii. When a periodic job Ji has become ready, set Ri = mi and S i

according to Equation (2), and if Jn(i) exists, then set En(i) =

En(i) − S i.
iii. When an imprecise job Ji has completed its mandatory part,

set Ri = Ri + S i and S i = 0.
iv. When an imprecise job Ji has completed its optional part or

when Ri has become zero, set Ri = Ri + wi.
v. When an aperiodic job Ji has consumed all the allocated time

as a consequence of being stolen e unit of time, set Ri = e
and then set di according to Equation (3).

vi. When a job Ji is completed and if the job Jn(i) exists, then set
En(i) = En(i) + Ri.

Figure 3. SS-OP algorithm

the wind-up part after the optional part. Prior to all the de-
scription, we show the entire algorithm in Figure 3.

The SS-OP algorithm executes jobs in the EDF manner
and has six scheduling events associated with operations for
managing the amount of the slack. In other words, the ma-
jor difference between SS-OP and EDF is in the manage-
ment of the slack.

Under SS-OP, all jobs in the system receive an amount
of slack, in addition to the execution time reserved using
the essential utilization. A periodic job only consumes this
slack in its optional part, whereas an aperiodic job must con-
sume it at any instant. The slack allocated to a precise pe-
riodic job is never consumed, but it can be stolen and con-
sumed by other jobs.

In the following, we first describe the term slack inter-
val and explain how slack is allotted to jobs. Then, we de-
scribe how SS-OP calculates the amount of slack for peri-
odic tasks and how it assigns a deadline to aperiodic tasks.

4.2.1. Slack interval. A slack interval is what shows the
amount of slack available to its owner. The rationale behind
the slack interval is derived from the notion of the proces-
sor bandwidth. The notion of processor bandwidth allows
the amount of slack in any interval [t1, t2) to be calculated
as Uo(t2 − t1). We call this interval the slack interval. Note
that the length of a slack interval and the amount of slack
available in it are equivalent, because they can be converted
to each other using the optional utilization Uo.

We regard that a slack interval [t1, t2) is first created
when a job succeeds in stealing an amount of slack from
the system. As the job consumes x unit of this allocated
slack, the corresponding slack interval shortens accordingly
to [t1 + x/Uo, t2). And finally, the slack interval is regarded

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

J1

J2

Time
r2 d 2 d 3r1

J3

r3 d 1

Figure 4. Allotment of slack intervals under SS-
OP

to vanish from the system at the time when its length has be-
come zero.

Figure 4 illustrates how SS-OP allots slack intervals to
jobs. The largest possible interval from which a job Ji can
claim slack is clearly confined to [ri, di). When these inter-
vals overlap, that is when more than one job contends for
the slack in the same interval, the overlapping interval is as-
signed to the job with the earliest deadline. In other words,
the slack is allocated to jobs in the same order as they are ex-
ecuted. This simplifies dynamic slack management greatly,
because the scheduler does not have to maintain any ex-
tra data structure, such as a list, for merely managing the
amount of slack. And this means that SS-OP and EDF has
the same order of complexity for managing ready jobs.

We continue to use the slack interval in the following
description, since it is useful in expressing the slack allot-
ment scheme. However, the scheduler implemented in RT-
Frontier does not use the slack interval directly as described
above, because it is impracticable to keep track of all the
slack intervals at run-time. Consider the case where, at time
r2 of Figure 4, J1 has not consumed all the slack in the inter-
val [r1, r2). Since d2 < d1, the slack interval requested by J2

must be deallocated from J1. If the scheduler tries to keep
track of all the beginning and end of the intervals, it needs to
maintain two separate intervals for J1, one before r2 and an-
other after d2. And in the worst case, the scheduler needs
to consider O(n) separate intervals after n times of preemp-
tion.

In order to avoid this undesirable situation, the SS-OP
scheduler calculates the maximum amount of slack at the
same time as the arrival of jobs, although the slack is not ac-
tually required until the mandatory part is completed. This
early calculation is crucially important, because an amount
of slack can then be handed on from one job to another
through simple addition and subtraction, even when the jobs
involved in this transfer of slack have not finished their
mandatory part. As a result, the scheduler does not need
to maintain discrete slack intervals any more.

4.2.2. Slack stolen by periodic jobs. The SS-OP sched-
uler calculates the amount of slack S i for a newly arrived
periodic job Ji as follows. Let tE be the beginning of the
earliest slack interval that still exists in the system. Then,

S i =

{
0 if di ≤ tE

Uo(di −max{dp(i), tE , ri}) otherwise.
(2)

The first condition corresponds to the case where all the
slack that Ji tries to steal has already been consumed by
other jobs. In the second case, there is still slack left for Ji.
As was stated, the slack interval must be always allocated to
the job with the earliest deadline on contention. Thus, if the
job Jp(i) exists, Ji cannot not steal slack from the slack in-
terval before dp(i). Conversely, if the job Jn(i) exists, a part
of the slack interval before di must be deallocated from Jn(i)

and given to Ji. And otherwise, if there is no job with the
deadline later than di, a new slack interval is safely created
for Ji without affecting the slack intervals already allocated
to other jobs.

It must be noted that tE can be later than dp(i). For ex-
ample, consider the case shown in Figure 4 again. Suppose
that all jobs are periodic and that r1 = 0, r2 = 3, r3 = 4,
d1 = 10, d2 = 8, d3 = 9, m1 = 1, m2 = m3 = 2, w1 = 0.5,
and w2 = w3 = 0. Then at time 0, the scheduler calculates
S 1 as 0.5. Since J1 exhausts this slack at time 1.5, tE al-
ready reaches 10 at this moment. Thus, at the time the job
J3 arrived, tE is later than d2.

4.2.3. Deadline assigned to aperiodic jobs. An aperiodic
job is similar to an optional part from the viewpoint of
scheduling, since it needs to steal slack to execute any of its
portion. However, they are actually the opposite, since the
aperiodic job does not have a deadline but a fixed execu-
tion time. Thus, it is an appropriate deadline that the sched-
uler must assign to a newly arrived aperiodic job. The dead-
line of an aperiodic job should be as early as possible to
make its response time short, but it should be adequately
late for the job to steal enough slack without violating the
timing constraints of other jobs.

Upon an arrival of an aperiodic job Ji, the SS-OP sched-
uler calculates its deadline di as

di = max{tc, dL} + e
Uo
, (3)

where dL is the latest deadline among ready jobs and e is the
maximum amount of slack which Ji requires for its comple-
tion. Calculating the deadline as above is virtually equiva-
lent to assigning the job a slack interval which begins just
after the latest interval, which leaves the slack intervals of
all the other jobs unaffected.

The value of e in Equation (3) equals to mi when a job
Ji has become ready. On the other hand, there is also a case
where the value of e does not equal to mi. Consider the case
where an imprecise job has become ready after a deadline

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

was assigned to an aperiodic job and where the deadline of
the imprecise job is earlier than that of the aperiodic job. In
this case, for the better performance of the system, SS-OP
makes the imprecise job steal slack from the aperiodic job.
Since no aperiodic job is given an extra amount of time, this
aperiodic job will overrun. Thus, the scheduler will have to
assign a later deadline to this job on its overrun. And this
time, e must equal the amount of time that was stolen by the
imprecise job.

4.3. Schedulability Analysis

From the theoretical results on the assessment problem
of task set feasibility under EDF, it is known that the sys-
tem utilization must be no more than one to have a feasi-
ble schedule. Likewise, SS-OP produces a correct schedule
if Ue ≤ 1, because all optional parts are discarded in the
worst case, allowing us to regard the imprecise computa-
tion as precise. Therefore, in order to show the correctness
of SS-OP, it is sufficient to prove that the sum of the proces-
sor bandwidth allocated to the optional parts and the aperi-
odic jobs does not exceed Uo under the condition Ue < 1.
This is shown in the following lemma.

Lemma 1 In any interval of time [t1, t2), the processor de-
mand h[t1,t2) of all optional parts and all aperiodic jobs is
less than or equal to Uo(t2 − t1).

Proof. Without loss of generality, we assume that there ex-
ist n jobs J1, J2, · · · , Jn whose release times are later than or
equal to t1 and whose deadlines are less than or equal to t2.
We also assume that if j < k then d j < dk.

The lemma holds clearly if n is equal to 1, since the max-
imum amount of slack time given to J1 is Uo(d1 − r1). If we
suppose that the lemma holds for the interval [t1, t2), it is
sufficient to prove that the lemma still holds after a new job
Ji is released.

If Ji belongs to a periodic task, we have three cases to
consider with respect to its deadline di.

First, if di < d1, then slack Uo(di − max{tE , ri}) is trans-
ferred from J1 to Ji. By definition of tE , the amount of slack
which J1 had held just before the arrival of Ji must have
been Uo(d1 − max{tE , r1}). Since this is larger than the re-
quested amount, the sum of the processor demand in [t1, t2)
remains the same.

Second, if there exists k such that dk < di < dk+1, then
slack Uo(di −max{dk, tE , ri}) is stolen from Jk+1 to Ji. Since
the amount of slack which Jk+1 had held just before the ar-
rival of Ji must have been Uo(dk+1 − max{dk, tE , rk+1}), the
processor demand in [t1, t2) does not change.

And third, if dn < di < t2 holds, then slack Uo(di −
max{dn, tE , ri}) is stolen from a new slack interval that be-
gins at max{dn, tE , ri}. Since dn was the latest deadline in Γs

before Ji has arrived, the processor demand in [t1, t2) must

have been the same in [t1, dn). Therefore, the processor de-
mand in [t1, t2) becomes

h[t1,t2) = h[t1,dn) + S i

≤ Uo(dn − r1) + S i

≤ Uo(di − r1)
≤ Uo(t2 − t1).

Thus, the lemma holds for the periodic job arrival.
If Ji belongs to an aperiodic task and the amount of slack

requested by Ji is e, this job is assigned a deadline accord-
ing to Equation (3). By transforming the Equation (3), we
have e = Uo(di − max{tc, tE , dn}). Thus, assuming the re-
lease time of Ji as tc and substituting S i with e, the argu-
ments for the third case of the aperiodic job arrival applies
to this case. Thus, the lemma holds for the aperiodic job ar-
rival.

Hence, the lemma holds. �

4.4. Implementation of SS-OP

The RT-Frontier operating system implements the SS-
OP algorithm through the coordination of three different
components, namely the scheduler, a hardware timer, and
jobs. It is the scheduler that controls the other two compo-
nents for the most of the time. The role of the scheduler is
to manage the maximum allowable time and slack for the
jobs. The timer is used to measure the length of execution
and to notify the scheduler when the running job has run out
of its allocated time. The jobs, unlike other scheduling al-
gorithms, also take an important role to detect scheduling
events.

4.4.1. Detection of scheduling events. First of all, the
scheduling events that are unique to SS-OP are the comple-
tion of the mandatory parts and that of the optional parts.
These two events are rather annoying, since they cannot be
detected by the scheduler.

The RT-Frontier operating system seeks help from the
jobs here. A job knows when its mandatory or optional part
is completed. Thus, a job can tell the scheduler when these
events occur, through software traps that can be generated
using one of the trap instructions. Since these software traps
must be issued at proper timings, they are embedded in a li-
brary routine for spawning an imprecise thread.

Figure 5 shows the inner body of the library in
pseudo code. The pointers to the functions that repre-
sent the mandatory, optional, and wind-up part are given
as the arguments to the routine. The first trap for signal-
ing the completion of mandatory part must always be
issued safely within the reserved time mi for the job to de-
termine whether the optional part must be discarded. On
the other hand, the second trap needs to be issued only af-
ter the completion of the optional part. Thus, if the optional

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

mfunc(); /* mandatory part */

res = end_mandatory(); /* 1st trap */

if (res != DISCARD) {

ofunc(); /* optional part*/

end_optional(); /* 2nd trap */

}

wfunc(); /* wind-up part */

Figure 5. Pseudo code for imprecise computa-
tion

part is discarded or terminated, the second trap is not is-
sued at all.

Although we hope to eradicate any misuse of these traps
with the help of this library, it may also happen that a ma-
licious programmer tries to break down the system using
the same trap instruction. The remedy is that SS-OP can en-
sure that no timing violation occurs to the rest of the jobs. If
a job tries to cause an overrun in its mandatory or wind-up
part, the SS-OP scheduler can immediately detect that the
job is insane, since the WCET of these parts is given. Thus,
the only chance where a job can illegally consume proces-
sor time is when the second trap is issued too late or not at
all. However, due to the fourth event in Figure 3, any op-
tional part is terminated as soon as its allocated time is ex-
hausted. Hence, no job can execute illegally long to cause a
timing fault to any other job.

Secondly, an overrun of a job, which is in the fourth and
the fifth event, is detected using a hardware timer. Specif-
ically, the following steps are taken by the scheduler. Be-
fore making a job Ji running, the scheduler sets the timer to
the maximum allowable time Ri. If Ji is completed or pre-
empted before the timer expires, then the scheduler updates
the remaining time Ri by reading the counter of the timer.
Otherwise, the scheduler is invoked by an interrupt gener-
ated by the timer, in which the variable Ri is set to zero.
Note that in this manner, any operation in Figure 3 requires
the value of Ri to be updated beforehand.

Finally, the rest of the events are easy to detect. Since
it is the scheduler that makes jobs ready, the detection of
the first and the second event is trivial. Similarly, the nor-
mal completion of a job, which is the sixth event, can be de-
tected without any modification from an EDF scheduler.

4.4.2. Detection of earliest slack interval. In the previ-
ous arguments, we have ignored how the scheduler can find
the earliest interval to steal slack. In other words, the pro-
cedure for obtaining the value of tE in Equation (2) has not
been clarified.

Obviously, tE is zero in the beginning. The scheduler up-
dates this value only when a context switch occurs that in-
volves a job in Γs, because this value is unchanged or not

dominant in any other cases. In particular, it is sufficient to
consider the cases where JE is preempted or completed, be-
cause no other job has been able to consume any amount of
slack since JE was released. In either case, the scheduler up-
dates

tE = max{dE , tE} − RE

Uo
. (4)

This equation moves tE backward from the latest time which
tE would have reached if JE had consumed all the allo-
cated slack. This is easier to implement than moving tE for-
ward by the amount of slack consumed, because a hardware
timer, necessary for measuring the length of execution, usu-
ally decreases the counter.

The maximum operator in Equation (4) is crucially im-
portant, as we aim to improve the performance by reclaim-
ing any unused time. In order to reclaim all unused time in
the mandatory part of a job for its optional part, the sched-
uler simply gives the job the sum of the unused time Ri and
the slack S i in the third event of Figure 3. It is safe to reclaim
this unused time, because SS-OP, like EDF, does not make
the processor idle, whenever a ready job exists. Since this
reclaimed time can be regarded as newly generated slack,
the job Ji can also enter Γs when S i = 0. As a consequence,
tE can be later than the deadline of JE , which is dE , in Equa-
tion (4).

4.4.3. Termination of optional parts. The extended im-
precise computation model proposed in this paper requires
a scheme to execute its wind-up part whenever its optional
part is terminated before completion. The crucial point is
that the SS-OP algorithm requires the wind-up part to be
executed in a preemptive manner.

The RT-Frontier operating system allows the wind-up
part to be executed by the same job using a mechanism simi-
lar to the signal handler. One of the prerequisites is the stack
context of the job in the beginning of the mandatory part,
which can be easily saved, for example, using the ‘setjmp’
defined in POSIX. Another prerequisite is the registration
of a function that corresponds to the wind-up part.

When an optional part needs to be terminated, the kernel
constructs another stack on top of the old one, which the
terminated job has been using to execute its optional part,
and make the job switch to this new stack. And at the same
time, the kernel overrides the program counter of this job
to the registered address of its wind-up part and also mod-
ifies the return address of the wind-up part to generate a
software trap. Consequently, when this job resumes, it exe-
cutes the function that corresponds to the wind-up part using
the new stack and generates a trap on its return. This trap al-
lows the kernel to override the context of this job again with
the context that was saved in the beginning of the manda-
tory part.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

4.4.4. Overhead reduction for processors without FPU.
The SS-OP algorithm requires division and multiplication
by the optional utilization Uo. In a naive way of implemen-
tation, the utilization of the system would be maintained in
a floating point variable that is in the range of [0, 1]. How-
ever, some embedded processors do not have any floating
point unit (FPU) and emulating an FPU with a software li-
brary can be very expensive.

In the RT-Frontier operating system, any variable that
may be in the range of [0, 1] are shifted and maintained
as integer variables, unless there is danger of causing an
overflow. The idea behind this conversion is to emulate
floating point calculations by fixed point calculations. More
specifically, the scheduler maintains the essential utiliza-
tion and the optional utilization in two integer variables that
hold the value 1024 times larger than the actual value. In
other words, these utilizations are maintained in the range
of [0, 1024] by calculating the utilization of a job Ji as
�(mi + wi) × 1024/Ti�. As a result, floating point division
by Uo is replaced by integer division by Uo/1024, which
certainly decreases the overhead on processors without an
FPU.

5. Performance Estimation

This section estimates the performance of the SS-OP al-
gorithm implemented on the RT-Frontier operating system,
in terms of the cost, the error of imprecise computation,
and the response time of aperiodic jobs. The RT-Frontier
operating system currently runs on a Responsive Proces-
sor described in [20], whose processing unit is a SPAR-
Clite which can achieve 121 relative MIPS. Using one of
the hardware timers, the system tick in RT-Frontier is man-
aged in the unit of 1ms.

In the compilation of all programs, we used version
2.95.3 of GNU gcc compiler, patched to generate ELF bi-
naries. The optimization level of the compiler was set to the
second level with the option of ‘-O2’.

5.1. Cost of SS-OP

The cost of SS-OP is estimated from two different as-
pects. One aspect is the cost for the implementation and the
other is that for the computation. The EDF scheduler is used
as the baseline, because the purpose of this estimation is to
confirm that the cost of SS-OP is at a comparable level of
that of EDF.

The implementation cost can be estimated from the size
of the memory required by the scheduler. Since it is dif-
ficult to grasp the precise amount of the memory solely
required by the scheduler, we measured the total size of
the whole kernel and the supporting library. From the re-
sult shown in Table 1, the memory requirement of SS-OP is

Algorithm text data bss total
EDF 25304 312 824 26440
SS-OP 27296 328 824 28448

Table 1. Size of RT-Frontier (byte)

Calculated value Overhead (µs)
Slack of periodic job (S i) 20.00
Deadline of aperiodic job (di) 11.50

Table 2. Overhead of run-time calculation

only 2008 bytes larger than that of EDF. This could be sat-
isfactory considering that the size of the RT-Frontier kernel
roughly ranges from 20 kilobytes to 50 kilobytes, depend-
ing on its configuration. Moreover, the impact on the size of
the RAM is very small, since the most of the increase comes
from the text section.

On the other hand, the computational complexity can be
estimated by the run-time overhead additionally incurred
in SS-OP. Comparing the SS-OP scheduler with the EDF
scheduler, the difference is merely in the way slack is man-
aged, because jobs are executed in the same order un-
der both algorithms. Moreover, the overhead for managing
slack is in O(1), since Equation (2) and Equation (3) as well
as all the operations shown in Figure 3 do not depend on
the number of jobs is the system. Thus, the run-time over-
head of SS-OP is theoretically guaranteed to be at a compa-
rable level of that of EDF.

In order to quantitatively estimate the overhead addition-
ally incurred in the slack management, we have measured
the overhead of calculating Equation (2) and Equation (3)
after flushing all the caches.

The result obtained using a hardware timer whose res-
olution is 0.05µs is shown in Table 2. Each value within
this table is the average of 100 measurements. The over-
head for calculating the slack of periodic jobs is larger than
the other, because the scheduler must perform two opera-
tions beforehand. One is the calculation of the remaining
execution time Ri for the currently running job Ji. And the
other is the calculation of the beginning of the earliest in-
terval tE . Subtracting these overheads, the pure overhead of
calculating the slack for periodic jobs can be estimated as
7.70µs.

These rather large overheads are due to the fact that the
SPARClite only implements an integer divide step instruc-
tion, instead of an integer divide instruction. In particular,
the scheduler needs to issue 32 integer divide step instruc-
tions to obtain a quotient or a remainder from 32-bit integer
variables.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

ra
ge

 c
om

pl
et

ed
 r

at
io

 o
f

op
tio

na
l p

ar
ts

Essential utilization

Workload (A)
Workload (B)

Figure 6. Average completed ratio

5.2. Error of Imprecise Computation

An experiment was performed to confirm that the im-
precise computation is properly managed by the SS-OP al-
gorithm. We used two types of synthetic workload, Work-
load (A) and Workload (B), which consist of periodic im-
precise tasks. Jobs that belong to the same task has a fixed
WCET of the mandatory part and a fixed WCET of the
wind-up part. Their optional parts, however, require differ-
ent execution times.

All the parameters that characterize the jobs are ran-
domly selected from discrete uniform distributions. In
the Workload (A), the periods, the WCET of manda-
tory parts, and the WCET of wind-up parts are respec-
tively chosen from [20,60], [30, 50], and [1, 10]. Using
thus chosen WCET of the mandatory part, the execu-
tion time of optional parts is chosen from the distribution
of [2mi − 25, 2mi + 25]. The Workload (B) is only differ-
ent from the Workload (A) in that the WCET of the manda-
tory parts and the execution time of the optional parts are
chosen from [Ti − 10, Ti + 10] and [3mi − 25, 3mi + 25], re-
spectively. For both types of workload, the unit of the peri-
ods is 1ms, while the unit of all the other ranges is 100µs.
These ranges are not set to express the finest timing con-
straints the RT-Frontier operating system can handle, be-
cause there is usually only little notion of quality in such
processes. For instance, there is scarcely a notion of qual-
ity in the way a value is read from a sensor or an actuator is
stopped.

The experiment was performed ten times for every task
set. Each run started in phase and lasted 5s. The result is
shown in Figure 6. Every one of the plotted data represents
the average of the completed ratio of the optional parts.
We did not convert these ratios into the error, since an er-
ror function can not characterize the relationship properly

Total Essential Response time (ms)
Utilization Utilization Ave. Max. Min.

0 0 30.0 30.0 30.0
0.30 0.11 40.8 47.8 30.0
0.81 0.29 134.8 175.9 88.6
1.36 0.49 750.2 1492.7 203.5

Table 3. Response time of aperiodic jobs

for tasks whose optional part does not have any fixed maxi-
mum execution time. As the figure shows, the completed ra-
tio got lower as the task sets with the higher utilization were
tested. This result confirms that SS-OP succeeds in man-
aging imprecise computation under various essential uti-
lizations, without requiring any information on the optional
parts.

5.3. Response Time of Aperiodic Tasks

The last experiment was performed to estimate the re-
sponse time of aperiodic jobs. In this experiment, aperiodic
jobs with the execution time of 30ms are dynamically added
to the system while periodic tasks accounted for different
utilizations.

The result from ten times of measurement with a hard-
ware timer whose resolution is 0.1ms is shown in Table 3.
The total utilization in the table refers to the sum of the
processor demand required by the mandatory parts, that by
wind-up parts, and the average processor demand required
by the optional parts. As the result shows, the average re-
sponse time of an aperiodic job is longer when the total uti-
lization is higher. This result is not pessimistic, because we
were able to confirm that aperiodic jobs with the logically
largest deadline, which simulate non-real-time jobs, were
not able to execute at all when the total utilization was 1.36.
Since it is probable that the sum of the requested processor
bandwidth occasionally goes over one in systems where the
imprecise computation model is used, it can be concluded
that SS-OP successfully discriminated soft aperiodic jobs
from non-real-time jobs.

6. Conclusions

The RT-Frontier operating system presents a new frame-
work for constructing real-time systems based on the notion
of imprecise computation. Under this framework, computa-
tion is logically split into three parts, namely the mandatory
part, the optional part, and the wind-up part. This proposed
model allows the imprecise computation to be terminated in
a less demanding manner than the traditional model, owing
to the newly added wind-up part, which greatly improves
the applicability of the imprecise computation technique.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

The presence of the wind-up part also works in favor of en-
hancing the portability of applications, because it obviates
the need for application specific support in the underlying
operating system. The SS-OP algorithm, developed to man-
age imprecise computation with a wind-up part, can be used
with minimal effort in systems where EDF has been used,
because the run-time overhead of the SS-OP scheduler is at
a comparable level of that of the EDF scheduler.

Our approach can be considered as a powerful alterna-
tive to other approaches that try to adjust the resource reser-
vation amount, possibly incurring high overhead every time
the condition changes. The most significant advantage in
our approach is that dynamic adjustment against different
environment is possible without explicitly determining and
adjusting the resource requirements. This is a crucial prop-
erty in modern real-time embedded systems that contain a
significant amount of uncertainty.

As for future work, we plan to further extend SS-OP to
allow dynamic activation of periodic tasks and to handle
shared resources between computations with the intention
of supporting broader ranges of real-time applications.

Acknowledgment

This study was performed through Special Coordination
Funds of the Ministry of Education, Culture, Sports, Sci-
ence and Technology of the Japanese Government.

References

[1] M. Amirijoo, J. Hansson, and S. H. Son. Error-Driven QoS
Management in Imprecise Real-Time Databases. In Proceed-
ings of the 15th Euromicro Conference on Real-Time Sys-
tems, pages 63–72, July 2003.

[2] H. Aydin, P. Mejia-Alvarez, R. Melhem, and D. Mossé. Opti-
mal Reward-Based Scheduling of Periodic Real-Time Tasks.
In Proceedings of the 20th IEEE Real-Time Systems Sympo-
sium, pages 79–89, Dec. 1999.

[3] S. Baruah and M. Hickey. Competitive On-Line Schedul-
ing of Imprecise Computations. IEEE Trans. Comput.,
47(9):1027–1032, Sept. 1998.

[4] R. Bettati, N. Bowen, and J.-Y. Chung. On-Line Schedul-
ing for Checkpointing Imprecise Computation. In Proceed-
ings of the Fifth Euromicro Workshop on Real-Time Systems,
pages 238–243, June 1993.

[5] X. Chen and A. M. K. Cheng. An Imprecise Algorithm for
Real-Time Compressed Image and Video Transmission. In
Proceedings of 6th International Conference on Computer
Communications and Networks, pages 390–397, Sept. 1997.

[6] J.-Y. Chung, J. W. S. Liu, and K.-J. Lin. Scheduling Periodic
Jobs That Allow Imprecise Results. IEEE Trans. Comput.,
39(9):1156–1174, Sept. 1990.

[7] W. Feng and J. W. S. Liu. An Extended Imprecise Compu-
tation Model for Time-Constrained Speech Processing and

Generation. In Proceedings of the IEEE Workshop on Real-
Time Applications, pages 76–80, May 1993.

[8] K. Fujisawa, S. Hayakawa, T. Aoki, T. Suzuki, and
S. Okuma. Real Time Motion Planning for Autonomous
Mobile Robot using Framework of Anytime Algorithm. In
Proceedings of the 1999 IEEE International Conference on
Robotics & Automation, pages 1347–1352, May 1999.

[9] J. Hansson, M. Thuresson, and S. Son. Imprecise Task
Scheduling and Overload Management using OR-ULD. In
Proceedings of the Seventh International Conference on
Real-Time Computing Systems and Applications, pages 307–
314, Dec. 2000.

[10] X. Huang and A. M. K. Cheng. Applying Imprecise Algo-
rithms to Real-Time Image and Video Transmission. In Pro-
ceedings of Real-Time Technology and Applications Sympo-
sium, pages 96–101, May 1995.

[11] D. Hull, W. Feng, and J.-S. Liu. Enhancing the Performance
and Dependability of Real-Time Systems. In Proceedings of
the IEEE International Computer Performance and Depend-
abilility Symposium, pages 174–182, Apr. 1995.

[12] M. Humphrey and J. Stankovic. Predictable Threads for Dy-
namic, Hard Real-Time Environments. IEEE Transactions
on Parallel and Distributed Systems, 10(3):281–295, Mar.
1999.

[13] K. Lin, S. Natarajan, and J.-S. Liu. Imprecise Results: Utiliz-
ing Partial Computations in Real-Time Systems. In Proceed-
ings of the IEEE 8th Real-Time Systems Symposium, pages
210–217, Dec. 1987.

[14] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung,
and W. Zhao. Algorithms for Scheduling Imprecise Compu-
tations. IEEE Computer, 24(5):58–68, 1991.

[15] J. W. S. Liu and W. K. Shih. Algorithms for Scheduling
Imprecise Computations with Timing Constraints to Mini-
mize Maximum Error. IEEE Trans. Comput., 44(3):466–
471, 1995.

[16] G. B. Parker. Punctuated Anytime Learning for Hexapod
Gait Generation. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and System, volume 3,
pages 2264–2671, Oct. 2002.

[17] W.-K. Shih and J. W. S. Liu. On-Line Scheduling of Im-
precise Computations to Minimize Error. SIAM J. Comput.,
25(5):1105–1121, 1996.

[18] W.-K. Shih, J. W. S. Liu, and J.-Y. Chung. Algorithms
for Scheduling Imprecise Computations with Timing Con-
straints. SIAM J. Comput., 20(3):537–552, June 1991.

[19] M. Spuri and G. Buttazzo. Scheduling Aperiodic Tasks in
Dynamic Priority Systems. The Journal of Real-Time Sys-
tems, 10(2):179–210, Mar. 1996.

[20] N. Yamasaki. Responsive Processor for Parallel/Distributed
Real-Time Control. In Proceedings of IEEE/RSJ Interna-
tional Conference on Interlligent Robots and Systems, pages
1238–1244, Oct. 2001.

[21] S. Zilberstein and S. J. Russel. Anytime Sensing, Planning
and Action: A Practical Model for Robot Control. In Pro-
ceedings of the 13th International Joint Conference on Arti-
ficial Intelligence, pages 1402–1407, Aug. 1993.

Proceedings of the 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’04)
1080-1812/04 $ 20.00 © 2004 IEEE

	footer1:

