
Dependable Responsive

Multithreaded Processor

ユーザーズマニュアル
第 3版

平成 29 年 2 月 10 日
慶應義塾大学 理工学部 山﨑研究室

1

http://www.ny.ics.keio.ac.jp/research/rmt/

3

目 次

第 1章 DRMTP-I 評価キットの使い方 5

1.1 準備するもの . 5

1.2 使用方法 . 5

1.2.1 電源の接続 . 5

1.2.2 シリアルケーブルの接続 . 8

1.2.3 プログラムの転送 . 8

第 2章 RmtSimの使い方 11

2.1 ビルド方法 . 11

2.2 使用方法 . 12

2.3 主なコマンドラインオプション . 13

2.4 複数プロセッサ実行 . 14

2.5 レスポンシブリンクの接続 . 14

2.6 RmtSim拡張機能 . 14

2.7 ドキュメントについて . 15

第 3章 クロス開発ツールのビルド方法 17

3.1 binutilsのビルド . 17

3.2 gccのビルド . 19

3.3 obj2prgのビルド . 20

3.4 トラブルシューティング . 20

3.4.1 gcc/c-parse.yでエラー . 20

3.4.2 gcc/collect2.cでエラー . 21

第 4章 Favor OS の使い方 23

4.1 ビルド方法 . 23

4.2 生成されるファイル . 25

4.3 アプリケーションコードの記述 . 25

4.4 Favor API . 26

4.4.1 システム制御 . 26

4.4.2 NANDフラッシュ . 35

4.4.3 Responsive Link . 36

4.4.4 SPI . 49

4.4.5 PWM発生器 . 56

4

4.4.6 PWM入力器 . 61

4.4.7 パルスカウンタ . 64

4.4.8 PIO . 66

4.4.9 ロック機構 . 67

4.4.10 DMAC . 69

4.4.11 LED . 71

4.4.12 ベクトル演算器 . 71

4.4.13 MMU . 73

4.4.14 ユーティリティ . 74

4.4.15 標準ライブラリ関数 . 78

第 5章 ITRON仕様OSの使い方 83

5.1 ビルド方法 . 83

5.2 生成されるファイル . 84

5.3 アプリケーションコードの記述 . 84

5.4 ITRON API . 85

5.4.1 cre tsk . 85

5.4.2 act tsk . 86

5.4.3 ext tsk . 86

5.4.4 slp tsk . 86

5.4.5 wup tsk . 86

5.4.6 dly tsk . 86

5.4.7 cre sem . 87

5.4.8 wai sem . 87

5.4.9 sig sem . 87

5.4.10 sig sem . 88

5.4.11 cre cyc . 88

第 6章 更新履歴 89

5

1

DRMTP-I 評価キットの使い方

本章では，DRMTP-I (Dependable Responsive Multithreaded Processor-I) 評価キットの使い方

を説明します．

1.1 準備するもの

• DRMTP-I 評価キット（図 1.1）

• 作業用 PC

• 電源ケーブル

– ACアダプタ 5V（図 1.2）

– USBケーブル A-miniBタイプ（図 1.3）

• シリアルケーブル（図 1.4）

– 図 1.2では，DRMTP-I と接続する方から順に RS232Cコネクタ，RS232Cケーブル

（ストレート），USB-RS232Cコンバータとなっています．

1.2 使用方法

1.2.1 電源の接続

電源は家庭用 AC電源または USB給電のどちらかを使うことができます．家庭用電源を用いる

場合はACアダプタ 5Vを接続してください．USB給電を用いる場合はUSBケーブル A-miniBタ

6 第 1章 DRMTP-I 評価キットの使い方

図 1.1: 評価キット

図 1.2: ACアダプタ 5V

1.2. 使用方法 7

図 1.3: USBケーブル A-miniBタイプ

図 1.4: シリアルケーブル

8 第 1章 DRMTP-I 評価キットの使い方

イプを用意し，A端子を PCに，miniB端子を評価キットに接続してください（図 1.5では，USB

給電を用いています）．電源を投入すると LEDが点灯します．

1.2.2 シリアルケーブルの接続

シリアルケーブルで DRMTP-I と PCを接続します．シリアルポートがどのように認識される

かは環境によって異なりますが，例えば Linuxでは/dev/ttyS0，/dev/ttyUSB0（USB-シリアル変

換ケーブルを通して接続した場合）のようになります．cuコマンドを使う場合の例を以下に示し

ます．-lオプションでデバイス名を，-sオプションでボーレートを指定します．

% cu -l /dev/ttyUSB0 -s 115200

シリアルケーブル接続後，評価キットに電源を投入してリセットボタンを押してください．ロー

ダからのメッセージがコンソールに出力されれば成功です．

図 1.5: 全体の接続

1.2.3 プログラムの転送

評価キットには，シリアルローダと USBローダの 2つが用意されています．この 2つはディッ

プスイッチ（図 1.6）によって切り替えることができます．シリアルローダとUSBローダのディッ

プスイッチの設定をそれぞれ表 1.1と表 1.2に示します．

転送には XMODEMを使用します．ここでは cuコマンドでの転送方法を例に説明します．

まず，プログラムを用意します．プログラムデータの作成方法は他の章で解説しているので参考

にしてください．使用するファイルの拡張子は.binです．

1.2. 使用方法 9

図 1.6: ディップスイッチ

表 1.1: シリアルローダの場合のディップスイッチ

1 2 3 4 5 6 7 8

ON ON ON OFF ON ON OFF ON

表 1.2: USBローダの場合のディップスイッチ

1 2 3 4 5 6 7 8

ON ON ON ON OFF ON OFF ON

10 第 1章 DRMTP-I 評価キットの使い方

cu上で ∼（チルダ）を入力するとコマンドの入力待ち状態になります．ここで以下のように入
力し (hoge.binは転送したいファイル名)，エンターキーを押すと転送開始待ち状態になります．こ

の状態で評価キットのリセットボタンを押すと転送が開始されます．

+sx hoge.bin

11

2

RmtSimの使い方

本章では，RmtSim の使い方を説明します．RmtSim は RMT Processor の命令レベルシミュ

レータであり，実機を使わずに PC上で RMT Processor の命令をエミュレートして動作を確認す

ることができます．また， RmtSim 固有のデバッグ機能を使用することもできます．

2.1 ビルド方法

RmtSim のトップディレクトリで以下のコマンドを入力します．gcj-devel等のパッケージのイ

ンストールが必要になる場合があります．make installには root権限が必要になります．デフォ

ルトのインストール先は /opt/rmtp-sdk/rmtsim/ 以下です．/opt/rmtp-sdk/rmtsim/bin/ にパス

を通してください．make installを行わない場合は，rmtsim.bin をパスの通った場所に置いてくだ

さい．

% make

% make install

ファイルを指定せずに起動し，以下のようなエラーメッセージが出力されれば成功です．

12 第 2章 RmtSimの使い方

% rmtsim.bin

MIPS/IDT R3052E Simulator - (c) 1996-1997 gfa

RMTSIM - RMTP Simulator (c) 2003-2009 AXE,Inc.

Version 1.52 2009/MAR/14

Configured as trace=false, verbose=false, verbose2=false, debugMode=00000000,

dump=false, doublefault=0, mipsLikeExceptionOnDelaySlot=false

ROM:00000000-001fffff(2MB)

RAM:80000000-83ffffff(64MB)

Not specified ROM image or RAM image

2.2 使用方法

以下のように，コマンドライン引数にモトローラ Sレコード形式のファイルを指定して起動しま

す．なお，ELF形式にも対応しています．プログラムデータの作成方法は他の章で解説している

ので参考にしてください．モトローラ Sレコード形式の拡張子は .srec です．以下は命令レベルシ

ミュレータ用にビルドした Favor OS を実行した例です．

2.3. 主なコマンドラインオプション 13

% rmtsim.bin favor.srec

MIPS/IDT R3052E Simulator - (c) 1996-1997 gfa

RMTSIM - RMTP Simulator (c) 2003-2009 AXE,Inc.

Version 1.52 2009/MAR/14

Configured as trace=false, verbose=false, verbose2=false, debugMode=00000000,

dump=false, doublefault=0, mipsLikeExceptionOnDelaySlot=false

ROM:00000000-001fffff(2MB)

RAM:80000000-83ffffff(64MB)

Loading from ’/usr/users/ito/favor/build/favor.srec’

Entry address: 0x80000000

Loading from ’boot.eprom’

ROM not initialized: boot.eprom (No such file or directory)

***** Favor OS 1.2.0 *****

!

A

B

C

!

!

A

2.3 主なコマンドラインオプション

RmtSim は，起動時にコマンドラインオプションを指定することによって様々な機能を使用する

ことができます．

% rmtsim.bin [options...] hoge.srec

-t

トレースモード．1命令ごとに実行した命令を出力する．

-rom size

ROMのサイズを指定する．sizeはMB単位で指定する．デフォルトは 2MB．

14 第 2章 RmtSimの使い方

-ram size

RAMのサイズを指定する．sizeはMB単位で指定する．デフォルトは 64MB．

-norl

レスポンシブリンクの一部の機能を無効にする．無効にすることにより，少し実行速度が向

上する．

-2

2CPU構成で起動する．

-4

4CPU構成で起動する．

2.4 複数プロセッサ実行

-2 または -4 オプションを指定することで，複数のプロセッサでの同時実行をシミュレーション

することができます．全てののプロセッサのメモリに同じプログラムがロードされます．このと

き，CPU IDをメモリアドレス 0xfffe0080 から取得 (32bit; RmtSim 固有機能) することができま

す．CPU ID は 0から始まります．

unsigned long cpu_id = *((unsigned long *)0xfffe0080);

switch (cpu_id) {

case 0:

...

case 1:

...

...

}

2.5 レスポンシブリンクの接続

各 CPU数でのレスポンシブリンクの接続を表 2.1，表 2.2，表 2.3に示します．

2.6 RmtSim拡張機能

RmtSimでは，システムレジスタの 0xff番地に値を書き込むことによって独自の拡張機能を呼び出

すことができます．システムレジスタへの書き込みには mtc0 命令を使用します．詳細は RmtSim

のドキュメントを参照してください．

2.7. ドキュメントについて 15

表 2.1: 1CPUでの接続
CPU ID Port CPU ID Port

0 OUT0 → 0 DPM

0 OUT1 → 0 IN2

0 OUT2 → 0 IN3

0 OUT3 → 0 IN4

0 OUT4 → 0 IN3

表 2.2: 2CPUでの接続
CPU ID Port CPU ID Port

0 OUT0 → 0 DPM

0 OUT1 → 1 IN1

0 OUT2 → 1 IN2

0 OUT3 → 1 IN3

0 OUT4 → 1 IN4

1 OUT0 → 1 IN0

1 OUT1 → 0 IN1

1 OUT2 → 0 IN2

1 OUT3 → 0 IN3

1 OUT4 → 0 IN4

2.7 ドキュメントについて

より詳細なドキュメントは docs/以下にあります．make installした場合は /opt/rmtp-sdk/rmtsim/docs/

にインストールされています．

16 第 2章 RmtSimの使い方

表 2.3: 4CPUでの接続
CPU ID Port CPU ID Port CPU ID Port CPU ID Port

0 OUT0 → 0 DPM 2 OUT0 → 2 DPM

0 OUT1 → 2 IN3 2 OUT1 → 0 IN3

0 OUT2 → 1 IN4 2 OUT2 → 3 IN4

0 OUT3 → 2 IN1 2 OUT3 → 0 IN1

0 OUT4 → 1 IN2 2 OUT4 → 3 IN2

1 OUT0 → 1 DPM 3 OUT0 → 3 DPM

1 OUT1 → 3 IN3 3 OUT1 → 1 IN3

1 OUT2 → 0 IN4 3 OUT2 → 2 IN4

1 OUT3 → 2 IN1 3 OUT3 → 1 IN1

1 OUT4 → 1 IN2 3 OUT4 → 2 IN2

17

3

クロス開発ツールのビルド方法

本章では，RMTP用クロス開発環境のビルド及びインストール方法について説明します．本章

で必要なファイルはすべて http://www.ny.ics.keio.ac.jp/research/rmt/からダウンロードすること

ができます．上記のサイトから以下のファイルをダウンロードします1．

• GCC-RMT-1.0.5

• BINUTILS-RMT-2.0.0

• NEWLIB-RMT-1.0.1

• OBJ2PRG

RMTP用クロス開発ツールのプレフィクスはmips-rmt-elf- です（例：mips-rmt-elf-gcc）．

以下の説明では，クロス開発ツールのインストール先が環境変数 PREFIXに設定されているも

のとし，すべての作業はホームディレクトリ直下の installディレクトリ内で行うものとします．

% set PREFIX = /opt/rmt

% mkdir ~/install

% cd ~/install

3.1 binutilsのビルド

はじめに，RMTP用の binutilsをビルドします．binutilsはバイナリを扱うためのツール群で

す．主なものを以下に挙げます．
1バージョン数字は平成 29 年 2 月 10 日現在のもの．

18 第 3章 クロス開発ツールのビルド方法

図 3.1: クロス開発環境のビルドに必要なファイルのダウンロードページ

mips-rmt-elf-as

アセンブラ

mips-rmt-elf-ls

リンカ

mips-rmt-elf-objcopy

主にフォーマットの変換に使用

mips-rmt-elf-objdump

逆アセンブル等に使用

ダウンロードした binutils-rmt-xxx.tar.gz（xxxはバージョン数字）を installディレクトリに移

動し，展開します．展開後に生成されたディレクトリに入り，その中で configureスクリプトを実

行した後にmake, make installを実行します．インストールには管理者権限が必要です．binutils

はこれ以降の作業に必要ですので，インストールが完了したら $PREFIX/bin にパスを通してくだ

さい．

3.2. gccのビルド 19

% tar xzf binutils-rmt-xxx.tar.gz

% cd binutils-xxx

% ./configure \

--prefix=${PREFIX} \

--target=mips-rmt-elf \

--disable-werror

% make

% sudo make install

（パスが通っているかどうかを確認）

% mips-rmt-elf-as --help

% mips-rmt-elf-ld --help

3.2 gccのビルド

次に，Cコンパイラ (gcc)をビルドします．gccのビルドには binutilsが必要です．

binutilsと同様に，展開して生成されたディレクトリの中で configureスクリプトを実行した後

に2 make, make installを実行します．mips-rmt-elf-gccは binutilsと同じ場所にインストールさ

れます

2 Windows 7 (64bit) 上の Cygwin (64bit) にインストールする場合，
% ./configure x84 64-unknown-cygwin –prefix=${PREFIX}（以下同様）
でインストールできることを確認しました．

20 第 3章 クロス開発ツールのビルド方法

% tar xzf gcc-rmt-xxx.tar.gz

% tar xzf newlib-rmt-xxx.tar.gz

% cd gcc-xxx

% ln -s ../newlib-xxx/libgloss .

% ln -s ../newlib-xxx/newlib .

% ./configure \

--prefix=${PREFIX} \

--target=mips-rmt-elf \

--with-newlib \

--with-gnu-as \

--with-gnu-ld \

--enable-languages=c

% make

% sudo make install

(正常にインストールされたかどうかを確認)

% mips-rmt-elf-gcc

mips-rmt-elf-gcc: no input files

3.3 obj2prgのビルド

% tar xzf obj2prg.tar.gz

% gcc -o mips-rmt-elf-obj2prg obj2prg.c

% sudo mv mips-rmt-elf-obj2prg ${PREFIX}/bin

3.4 トラブルシューティング

ビルドに使用する各種ツールのバージョン等によっては，gccのmakeでエラーが発生すること

があります．以下はその対処例です．

3.4.1 gcc/c-parse.yでエラー

bison ツールで c-parse.y から c-parse.c を生成する際にエラーが発生した場合の対処例です．

c-parse.y は c-parse.in から生成されているため，これを修正します．c-parse.in 内を以下のよう

に修正してください．マイナスは修正前の行を，プラスは修正後の行を表します．それぞれ 2箇所

ずつ，計 4箇所あります．

3.4. トラブルシューティング 21

- $$ = start_struct

+ $<ttype>$ = start_struct

- $$ = start_enum

+ $<ttype>$ = start_enum

3.4.2 gcc/collect2.cでエラー

collect2.c でコンパイルエラーが発生した場合，以下のように open関数の引数を追加してくだ

さい．マイナスは修正前の行を，プラスは修正後の行を表します．

- redir_handle = open (redir, O_WRONLY | O_TRUNC | O_CREAT);

+ redir_handle = open (redir, O_WRONLY | O_TRUNC | O_CREAT, 0755);

23

4

Favor OS の使い方

本章では，Favor OS の使い方を説明します．Favor OS は山﨑研究室オリジナルのリアルタイ

ム OSです．

4.1 ビルド方法

まず，トップディレクトリ直下（ここでは favorディレクトリとします）にある appディレクト

リ内でmain.cを作成します．次に，ビルドの設定を configureを用いて行った後，makeコマンド

を実行します．Favor OS では 2つの configureを実行する必要があります．それぞれアーキテク

チャ依存（RMT Processor 特有）部分と OS依存部分であり，この順序で設定します．

24 第 4章 Favor OS の使い方

（共通）

% cd favor

% ls

Common.make Makefile app/ build/ doc/ include/ lib/ tool/

CompileOption README arch/ configure* drivers/ kernel/ scripts/

% vim app/main.c

（DRMTP-I評価キットの場合）

% ./arch/rmt/configure --cpu=drmtp \

--mode=pciboot \

--memory=sdram \

--serial=fpga_kit

（命令レベルシミュレータ RmtSimの場合）

% ./arch/rmt/configure --cpu=drmtp \

--mode=ils \

--memory=sdram

（共通）

% ./configure --tick=10000 --sched=fp

% make

アーキテクチャ依存のオプション

modeオプションには評価キット用の場合は pciboot 1，命令レベルシミュレータ用の場合は ils

を指定してください．

RmtSim ではキャッシュ機能をサポートしていないので，cacheオプションは offを指定してく

ださい．RmtSim がサポートしていない機能についてはドキュメントを参照してください2．

その他のオプションについては favor/arch/rmt/READMEを参照してください．

OS依存のオプション

tickオプションにはリアルタイムスケジューラが呼び出される間隔 (µs単位)を指定します．値

を小さくするほどより高精度のスケジューリングを行えますが，カーネルのオーバーヘッドも大き

くなります．デフォルトは 10000 (= 10ms)です．

schedオプションにはスケジューリングアルゴリズムを指定します．現在 Favor OS がサポート

しているアルゴリズムは固定優先度 (fp)，Earliest Deadline First (edf)，Rate Monotonic (rm)

1シリアルブートおよび USB ブートのどちらも pciboot を使います．この名前は歴史的な理由によります．
2favor/tool/RMTSIM/rmtsim.1.html にあります．

4.2. 生成されるファイル 25

です．デフォルトは fpです．

その他のオプションについては favor/READMEを参照してください．

4.2 生成されるファイル

makeが成功すると，結果は buildディレクトリに出力されます．主なものを表 4.1に示します．

トップディレクトリでmake cleanを行うと，中間生成ファイルを含むこれらのファイルを削除す

ることができます．

表 4.1: Favor OS の出力ファイル
ファイル 説明

favor.bin 評価キットへロードするファイル

favor.srec 命令レベルシミュレータ用のファイル

favor.dmp 逆アセンブルリスト

favor.map マップファイル（リンカの動作ログ）

4.3 アプリケーションコードの記述

アプリケーションコードは appディレクトリ内に置きます．Favor OS カーネルとアプリケー

ションは同時にビルドされます．

以下に app/Makefileの内容を示します．アプリケーションコードに合わせて main.o の部分を

追加，修正してください（任意の xxx.o は xxx.c に依存し，mips-rmt-elf-gccで生成されるよう

Common.makeに記述されています）．

TOPDIR = ..

.PHONY: all

ここを追加，修正

all: main.o

include $(TOPDIR)/Common.make

clean:

@rm -fr *.d *~

26 第 4章 Favor OS の使い方

4.4 Favor API

4.4.1 システム制御

create task rt

long create_task_rt(int priority,

unsigned long period,

unsigned long wcet,

void (*entry)(void));

/* entryに渡す関数の形式*/

void task_function(void);

スケジューラ（ソフトウェア）によって管理される周期リアルタイムタスクを生成します．

priority

タスクの優先度．0から 63の 64段階の設定が可能で，0が最高優先度．この優先度が反映

されるのは固定優先度スケジューリング (fp) の場合に限ります．

period

タスクの周期．単位は µs．tickの倍数でないと正しく反映されない場合があります．

wcet

タスクの最悪実行時間．単位は µs．

entry

タスクとして実行する関数へのポインタ．

返り値

タスク ID．タスク生成に失敗すると 0が返されます．

create task hw

long create_task_hw(int priority,

unsigned long period,

unsigned long wcet,

void (*entry)(void));

/* entryに渡す関数の形式*/

void task_function(void);

4.4. Favor API 27

スケジューラとは独立して自身のタイマ割り込み（ハードウェア）で起床を繰り返す周期リア

ルタイムタスクを生成します．favor/configureで指定した論理プロセッサ数 (cores) とは別にス

レッドが生成されますので，論理プロセッサ数とこの APIで生成したタスク数の合計が 7以下で

ないと誤動作を起こす可能性が有ります．また，スケジューラに管理されないため，オーバランの

ハンドリングはできません．

priority

タスクの優先度．0から 63の 64段階の設定が可能で，0が最高優先度．

period

タスクの周期．単位は µs．tickの倍数でなくても構いません．

wcet

タスクの最悪実行時間．単位は µs．

entry

タスクとして実行する関数へのポインタ．

返り値

タスク ID．タスク生成に失敗すると 0が返されます．

create task

long create_task(void (*entry)(void));

/* entryに渡す関数の形式 */

void task_function(void);

通常のタスクを生成します．

entry

タスクとして実行する関数へのポインタ．

返り値

タスク ID．タスク生成に失敗すると 0が返されます．

system run

void system_run(void);

タスクスケジューリングを開始します．リアルタイムスケジューラによって選ばれたタスクから

実行が開始されます．

28 第 4章 Favor OS の使い方

wait period

void wait_period(void);

タスクが 1周期分の実行を完了したことをシステムに通知します．create task rtで生成した周

期タスク内から呼び出してください．wait period を呼び出した関数は待ち状態に遷移し，次の周

期が来たときにスケジューラによって実行可能状態に遷移させられます．

hw scheduler wait period

void hw_scheduler_wait_period(void);

タスクが 1周期分の実行を完了したことをシステムに通知します．周期タスク内から呼び出し

てください．create task hwで生成した周期タスク内から呼び出してください．

delete task

void delete_task(tid_t id);

タスクを削除します．

id

タスク ID．

set priority

void set_priority(tid_t id,

int priority);

タスクの優先度を変更します．

id

タスク ID．

priority

タスクの優先度．0から 63の 64段階の設定が可能で，0が最高優先度．この優先度が反映

されるのは固定優先度スケジューリング (fp) の場合に限ります．

4.4. Favor API 29

set period

void set_period(tid_t id,

unsigned long period);

タスクの周期を変更します．

id

タスク ID．

period

タスクの周期．単位は µs．tickの倍数でないと正しく反映されない場合があります．

current count

unsigned long current_count();

システムタイマのクロックカウントの下位 32bitを取得します．

返り値

システムタイマの下位 32bit．

current count high

unsigned long current_count_high();

システムタイマのクロックカウントの上位 32bitを取得します．

返り値

システムタイマの上位 32bit．

current time

unsigned long long current_time(void);

システムタイマのクロックカウンタを取得します．

返り値

64bitのシステムタイマのカウント値．

30 第 4章 Favor OS の使い方

mfc0

unsigned long mfc0(unsigned long addr);

スレッド制御レジスタの値を取得します．

addr

スレッド制御レジスタ番号．

返り値

スレッド制御レジスタの値．

mtc0

void mtc0(unsigned long data,

unsigned long addr);

スレッド制御レジスタの値を変更します．

data

スレッド制御レジスタに書き込むデータ．

addr

スレッド制御レジスタ番号．

getcid

unsigned long getcid(tid);

コンテキスト IDを取得します．

tid

タスク ID．

返り値

コンテキスト ID．

this cid

unsigned long this_cid();

呼び出したタスクのコンテキスト IDを取得します．

返り値

コンテキスト ID．

4.4. Favor API 31

getotid

unsigned long getotid(void);

呼び出したタスクのスレッド IDを取得します．

返り値

スレッド ID．

thread state

int thread_state(int tid);

Thread Statusレジスタの値を取得します．

tid

タスク ID．

返り値

Thread Statusレジスタの値．

set status reg

void set_status_reg(int value,

int th);

Thread Statusレジスタへ書き込みます．

value

Thread Statusレジスタへ書き込む値．

th

スレッド ID．

read rmt prio

int read_rmt_prio(int tid);

RMTP固有機能であるハードウェア上の優先度を取得します．

tid

タスク ID．

返り値

ハードウェアの優先度．

32 第 4章 Favor OS の使い方

setup hw timer

void setup_hw_timer(void);

CPUタイマを初期化します．

start hw timer

uint_t start_hw_timer(int cid,

unsigned long count,

uint_t type,

void (*func)(void));

CPUタイマを開始します．

cid

コンテキスト ID．

count

タイマの設定値．

type

タイマの設定．0を指定すると 1回だけタイマが起動します．1を指定すると繰り返しタイ

マが起動します．

func

タイマ割込み発生時の例外ハンドラ．

stop hw timer

uint_t stop_hw_timer(int cid);

CPUタイマを停止します．

cid

コンテキスト ID．

4.4. Favor API 33

timer int clear

void timer_int_clear(int cid);

CPUタイマ割込みをクリアします．

cid

コンテキスト ID．

set timeout

void set_timeout(int cid,

unsigned long time,

void (*func)(void));

タイムアウト時間を設定します．

cid

コンテキスト ID．

time

タイムアウト時間．

func

タイマ割込み発生時の例外ハンドラ．

set intr handler

int set_intr_handler(unsigned long irq,

void (*handler)(void));

割込みハンドラを設定します．

irq

ハンドリングする割込みチャネル．

handler

割込みハンドラのポインタ．

返り値

割込みハンドラの設定に成功したら 1を返します．

34 第 4章 Favor OS の使い方

set intr sub handler

int set_intr_sub_handler(unsigned long irq,

void (*handler)(void));

Sub IRCの割込みハンドラを設定します．

irq

ハンドリングする Sub IRCの割込みチャネル．

handler

割込みハンドラのポインタ．

返り値

割込みハンドラの設定に成功したら 1を返します．

cache off all

void cache_off_all(void);

全てのスレッドでキャッシュを無効にします．

cache on all

void cache_on_all(void);

全てのスレッドでキャッシュを有効にします．

cache off

void cache_off(unsigned int cid);

キャッシュを無効にします．

cid

コンテキスト ID．

4.4. Favor API 35

cache on

void cache_on(unsigned int cid);

キャッシュを有効にします．

cid

コンテキスト ID．

flush i cache

void sys_flush_i_cache(void);

命令キャッシュの内容をフラッシュします．

flush d cache

void sys_flush_d_cache(void);

データキャッシュの内容をフラッシュします．

4.4.2 NANDフラッシュ

flash chip erase

unsigned long flash_chip_erase(void)

NANDフラッシュに chip eraseコマンドを発行します．

返り値

常に 0．

flash block erase

unsigned long flash_block_erase(unsigned long blk)

NANDフラッシュに block eraseコマンドを発行します．

blk

消去するブロックアドレス．

返り値

常に 0．

36 第 4章 Favor OS の使い方

flash write to buffer

unsigned long flash_write_to_buffer(unsigned long addr,

unsigned long word);

NANDフラッシュに書き込みます．

addr

書き込み先のアドレス．

word

書き込むデータ．

返り値

常に 0．

flash auto write enable

void flash_auto_write_enable(void);

NANDフラッシュの自動書き込みモードを ONにします．

4.4.3 Responsive Link

DPLL ALL

unsigned long DPLL_ALL(unsigned int e1,

unsigned int e2,

unsigned int e3,

unsigned int e4,

unsigned int d1,

unsigned int d2,

unsigned int d3,

unsigned int d4);

DPLLの設定値を作成します．

e1

イベントリンク 1番ポートの DPLL設定値

e2

イベントリンク 2番ポートの DPLL設定値

4.4. Favor API 37

e3

イベントリンク 3番ポートの DPLL設定値

e4

イベントリンク 4番ポートの DPLL設定値

d1

データリンク 1番ポートの DPLL設定値

d2

データリンク 2番ポートの DPLL設定値

d3

データリンク 3番ポートの DPLL設定値

d4

データリンク 4番ポートの DPLL設定値

返り値

DPLLの設定値．

MAKE FER

unsigned long MAKE_FER(unsigned int blk_ecc,

unsigned int ecc,

unsigned int linecode);

Responsive Linkのコーデック設定値を作成します．

blk ecc

ブロックエラー訂正の設定．

ecc

bitエラー訂正の設定．

linecode

ラインコードの設定．

返り値

コーデックの設定値．

38 第 4章 Favor OS の使い方

MAKE FER 4PORT

void MAKE_FER_4PORT(unsigned int p1,

unsigned int p2,

unsigned int p3,

unsigned int p4);

4ポート分の Responsive Linkのコーデック設定値を作成します．

p1

1番ポートのコーデック設定値．

p2

2番ポートのコーデック設定値．

p3

3番ポートのコーデック設定値．

p4

4番ポートのコーデック設定値．

返り値

4ポート分のコーデック設定値．

4.4. Favor API 39

link init

void link_init(unsigned long para_flag,

unsigned long dpll,

unsigned long event_fer,

unsigned long data_fer,

unsigned long switch_mode);

/* 使用例 */

link_init(

RL_SERIAL_MODE,

DPLL_ALL(MODE32, MODE16, MODE8, MODE4,

MODE2, MODE4, MODE8, MODE16),

MAKE_FER_4PORT(MAKE_FER(REED_SOLOMON, NO_ECC, LC_8B10B),

MAKE_FER(NO_BLOCK_ECC, NO_ECC, LC_4B10B),

MAKE_FER(NO_BLOCK_ECC, HAM, BS_NRZI),

MAKE_FER(NO_BLOCK_ECC, BCH, LC_8B10B)),

MAKE_FER_4PORT(MAKE_FER(NO_BLOCK_ECC, BCH, BS_NRZI),

MAKE_FER(REED_SOLOMON, NO_ECC, LC_4B10B),

MAKE_FER(NO_BLOCK_ECC, HAM, BS_NRZI),

MAKE_FER(NO_BLOCK_ECC, NO_ECC, LC_8B10B)),

STORE_FORWARD);

Responsive Linkの初期設定を一括して行います．

para flag

パラレルモード/シリアルモードの設定．

dpll

4ポート分の DPLLの設定．

event fer

4ポート分のイベントリンクのコーデック設定．

data fer

4ポート分のデータリンクのコーデック設定．

switch mode

パケットスイッチ方式．

link set dpll

void link_set_dpll(unsigned long dpll);

40 第 4章 Favor OS の使い方

DPLLの設定を行います．

dpll

4ポート分の DPLL設定値．

link set codec data/link set codec event

void link_set_codec_data(unsigned long fer);

void link_set_codec_event(unsigned long fer);

コーデックを設定します．

fer

4ポート分のコーデック設定値．

link sdram init

void link_sdram_init(unsigned long memsize);

追い越しバッファから溢れた Responsive Linkのパケットを SDRAMに退避する際に，退避用

バッファとして使用するメモリサイズを設定します．

memsize

使用する SDRAMの容量．

link stop

void link_stop(void);

Responsive Linkの動作を停止します．

link start

void link_start(void);

Responsive Linkの動作を開始します．

4.4. Favor API 41

link switch initialize

void link_switch_initialize(void);

Responsive Linkのスイッチを初期化します．

link encoder reset/link encoder reset port

void link_encoder_reset(void);

void link_encoder_reset_port(unsigned long ep,

unsigned long dp);

Responsive Linkのエンコーダを初期化します．

ep

初期化するイベントリンクのポート

dp

初期化するデータリンクのポート

link input dpm reset

void link_input_dpm_reset(void);

Responsive Linkのデュアルポートメモリを初期化します．

link decoder reset/link decoder reset port

void link_decoder_reset(void);

void link_decoder_reset_port(unsigned long ep,

unsigned long dp);

Responsive Linkのデコーダを初期化します．

ep

初期化するイベントリンクのポート

dp

初期化するデータリンクのポート

42 第 4章 Favor OS の使い方

link interruption clear offline

void link_interruption_clear_offline(void);

Responsive Linkのオンライン割込み/オフライン割込みをクリアする．

add rtable entry

void add_rtable_entry(unsigned long src,

unsigned long dst,

unsigned long cur_prio,

unsigned long chpr,

unsigned long new_prio,

unsigned long outport,

unsigned long type,

unsigned long index);

Responsive Linkのルーティングテーブルを追加します．

src

送信元アドレス．

dst

送信先アドレス．

cur prio

本エントリが有効なパケットの優先度．Responsive Linkのパケットは送信元アドレスと送

信先アドレス，パケットの優先度が一致したルーティングテーブルのエントリを参照します．

ただし，一致するエントリが存在しない場合は優先度 0のエントリを参照します．

chpr

ホップ時にパケットの優先度を変更するかどうかの指定．

new prio

ホップ時にパケットの優先度を変更する場合に新たに設定する優先度．

outport

パケットを出力するポート．

type

イベントリンク/データリンクどちらで有効なエントリかの指定．両方の通信リンクで有効

にすることも可能です．

index

ルーティングテーブルのインデックス．

4.4. Favor API 43

remove rtable entry

void remove_rtable_entry(unsigned long index);

Responsive Linkのルーティングテーブルを削除します．

index

削除するルーティングテーブルのインデックス．

rtable init

void rtable_init(void);

Responsive Linkのルーティングテーブルを初期化します．

getDPMCtrlVal

unsigned long getDPMCtrlVal(unsigned long from_addr,

unsigned long to_addr,

unsigned long dpm_mode,

unsigned long dreq,

unsigned long intr);

DPMの制御レジスタの設定値を作成します．

from addr

DMA転送を開始するアドレス．

to addr

DMA転送を開始するアドレス．

dpm mode

DPMの使用モード．

dreq

DMAリクエストの on/off．

intr

割込みの on/off．

44 第 4章 Favor OS の使い方

setEventOutCtrl/setDataOutCtrl/setEventInCtrl/setDataInCtrl

void setEventOutCtrl(unsigned long val);

void setDataOutCtrl(unsigned long val);

void setEventInCtrl(unsigned long val);

void setDataInCtrl(unsigned long val);

/* 使用例 */

setEventOutCtrl(

getDPMCtrlVal(PKTNUM_TO_MODE0EVENT_ADDR(0),

PKTNUM_TO_MODE0EVENT_ADDR(1),

MODE0, DREQ_ON, DPM_INTR_OFF));

DPMの制御レジスタを設定します．

val

DPM制御レジスタに書き込む値．

getEventInPacketnum/getDataInPacketnum

unsigned long getEventInPacketnum(void);

unsigned long getDataInPacketnum(void);

Responsive Linkの受信パケット数．

返り値

受信パケット数．

getEventOutPacketnum/getDataOutPacketnum

unsigned long getEventOutPacketnum(void);

unsigned long getDataOutPacketnum(void);

Responsive Linkの送信パケット数．

返り値

送信パケット数．

4.4. Favor API 45

link initialize/link initialize channel

void link_initialize(void);

void link_initialize_channel(unsigned long value);

Responsive Linkの各種機能を初期化する．初期化する機能はデュアルポートメモリ，デコーダ，

エンコーダ，スイッチです．

value

初期化するポート．

setEventInDMA/setDataInDMA/setEventOutDMA/setDataOutDMA

void setEventInDMA(unsigned long src,

unsigned long dst,

unsigned long length,

unsigned long flag);

void setDataInDMA(unsigned long src,

unsigned long dst,

unsigned long length,

unsigned long flag);

void setEventOutDMA(unsigned long src,

unsigned long dst,

unsigned long length,

unsigned long flag);

void setDataOutDMA(unsigned long src,

unsigned long dst,

unsigned long length,

unsigned long flag);

Responsive Link用の DMAの設定を行います．本 APIは設定のみ行うため，本 APIを実行し

ても DMA転送は行われません．

src

転送元アドレス．

dst

転送先アドレス．

length

転送バイト数．

46 第 4章 Favor OS の使い方

flag

DMA転送のモード．何も指定しない場合，Responsive Linkモードで DMA転送する設定

が行われます．

read offline reg/read offline reg hr

void read_offline_reg(void);

void read_offline_reg_hr(void);

Responsive Linkのオンラインレジスタの内容を表示します．

sendDataPacket/sendEventPacket

void sendDataPacket(unsigned long intr_flag,

unsigned long src,

unsigned long dst,

unsigned long prio);

void sendEventPacket(unsigned long intr_flag,

unsigned long src,

unsigned long dst,

unsigned long prio);

Responsive Linkのテストパケットを送信します．

intr flag

パケット受信時に割込みを発生させるかどうかの指定．

src

送信元アドレス．

dst

送信先アドレス．

prio

パケットの優先度．

4.4. Favor API 47

get rl baudrate port

unsigned long get_rl_baudrate_port(unsigned long link_type,

unsigned long port);

Responsive Linkの通信ボーレートを取得する

link type

通信リンク．

port

通信ポート．

返り値

通信ボーレート．単位は bps

get rl speed port

unsigned long get_rl_speed_port(unsigned long link_type,

unsigned long port);

Responsive Linkの通信速度を取得する

link type

通信リンク．

port

通信ポート．

返り値

通信速度．単位は bps

get rl throughput port

unsigned long get_rl_throughput_port(unsigned long link_type,

unsigned long port);

Responsive Linkの実効スループットを取得する

link type

通信リンク．

48 第 4章 Favor OS の使い方

port

通信ポート．

返り値

実効スループット．単位は bps

rl console

void rl_console(void);

Responsive Linkのソフトウェアデバッグ用コンソール．

init link intr

void init_link_intr(void);

Responsive Linkの割込みハンドラを初期化します．Responsive Linkの割込みをハンドリング

する場合は必ずユーザ領域で呼び出してください．

set link intr handler

int set_link_intr_handler(unsigned long irq,

void (*handler)(void));

Responsive Linkの割込みハンドラを設定します．Responsive Linkは内部に複数の割込み源を

持っており，それぞれにハンドリング方法を設定できます．

irq

Responsive Link内の割込みチャネル番号．

handler

ハンドラとして実行する関数へのポインタ．

返り値

ハンドラの追加に成功すると 1，失敗すると 0が返されます．

4.4. Favor API 49

clear link intr handler

int clear_link_intr_handler(unsigned long irq);

Responsive Linkの割込みハンドラを削除します．

irq

Responsive Link内の割込みチャネル番号．

返り値

ハンドラの削除に成功すると 1，失敗すると 0が返されます．

4.4.4 SPI

spi set slave control

void spi_set_slave_control(unsigned long ch,

unsigned long slave_num);

SPIのスレーブを選択する．

ch

SPIのチャネル番号．D-RMTPIは SPIを 2チャネル内蔵しています．

slave num

SPIのスレーブ番号．D-RMTPIの SPIは各チャネルに 4個のスレーブが存在します．

spi set fifo control enable

void spi_set_fifo_control_enable(unsigned long ch,

unsigned long bit);

SPIの FIFO Controlレジスタに 1を設定します．

ch

SPIのチャネル番号．

bit

FIFO Controlレジスタに 1を書き込む bit番号．

50 第 4章 Favor OS の使い方

spi set fifo control disable

void spi_set_fifo_control_disable(unsigned long ch,

unsigned long bit);

SPIの FIFO Controlレジスタに 0を設定します．

ch

SPIのチャネル番号．

bit

FIFO Controlレジスタに 0を書き込む bit番号．

spi read fifo status

unsigned long spi_read_fifo_status(unsigned long ch);

SPIの FIFO Statusレジスタを取得します．

ch

SPIのチャネル番号．

返り値

FIFO Statusレジスタの値．

spi write fifo/spi put

void spi_write_fifo(unsigned long ch,

unsigned long data);

void spi_put(unsigned long ch,

unsigned long data);

SPIの FIFOに書き込みます．

ch

SPIのチャネル番号．

data

FIFOに書き込むデータ

4.4. Favor API 51

spi read fifo/spi get

unsigned long spi_read_fifo(unsigned long ch);

unsigned long spi_get(unsigned long ch);

SPIの FIFOからデータを取得します．

ch

SPIのチャネル番号．

返り値

FIFOから読み出した値

spi interrupt bit clear

void spi_interrupt_bit_clear(unsigned long ch,

unsigned long bit);

SPIの割込みをクリアします．

ch

SPIのチャネル番号．

bit

SPIの割込みをクリアする bit位置．

spi set interval

void spi_set_interval(unsigned long ch,

unsigned long interval);

SPIのスレーブに対する一連のアクセスが終了した後の待ち時間を設定します．

ch

SPIのチャネル番号．

interval

SPIの待ち時間．

52 第 4章 Favor OS の使い方

spi read interval

unsigned long spi_read_interval(unsigned long ch);

SPIのスレーブに対する一連のアクセスが終了した後の待ち時間を読み出します．

ch

SPIのチャネル番号．

返り値

設定されている SPIの待ち時間．

spi set clock ratio

void spi_set_clock_ratio(unsigned long ch,

unsigned long slave_num,

unsigned long ratio);

同期クロックで出力するクロックの分周率を設定します．

ch

SPIのチャネル番号．

slave num

SPIのスレーブ番号．

ratio

クロックの分周率．実際には指定した値の 2倍で分周されます．また，0を指定した場合は

222 × 2分周されます．

spi set haol

void spi_set_haol(unsigned long ch,

unsigned long slave_num,

unsigned long haol);

SPIの動作モードを指定します．

ch

SPIのチャネル番号．

4.4. Favor API 53

slave num

SPIのスレーブ番号．

haol

SPIの動作モード

spi set size

void spi_set_size(unsigned long ch,

unsigned long slave_num,

unsigned long size);

SPIのデータ転送サイズを設定します．

ch

SPIのチャネル番号．

slave num

SPIのスレーブ番号．

size

SPIのデータ転送サイズ．実際には指定した値+1bitが転送されます．

spi set lsb

void spi_set_lsb(unsigned long ch,

unsigned long slave_num);

SPIの転送を LSBから行うように設定します．

ch

SPIのチャネル番号．

slave num

SPIのスレーブ番号．

spi set msb

void spi_set_msb(unsigned long ch,

unsigned long slave_num);

SPIの転送をMSBから行うように設定します．

54 第 4章 Favor OS の使い方

ch

SPIのチャネル番号．

slave num

SPIのスレーブ番号．

spi set read disable

void spi_set_read_disable(unsigned long ch,

unsigned long slave_num);

SPIを外部からデータを読み込まない設定にします．

ch

SPIのチャネル番号．

slave num

SPIのスレーブ番号．

spi set read enable

void spi_set_read_enable(unsigned long ch,

unsigned long slave_num);

SPIを外部からデータを読み込む設定にします．

ch

SPIのチャネル番号．

slave num

SPIのスレーブ番号．

spi set write disable

void spi_set_write_disable(unsigned long ch,

unsigned long slave_num);

SPIを外部へデータを書き込まない設定にします．

ch

SPIのチャネル番号．

slave num

SPIのスレーブ番号．

4.4. Favor API 55

spi set write enable

void spi_set_write_enable(unsigned long ch,

unsigned long slave_num);

SPIを外部へデータを書き込む設定にします．

ch

SPIのチャネル番号．

slave num

SPIのスレーブ番号．

spi read config reg

unsigned long spi_read_config_reg(unsigned long ch);

SPIの Configレジスタの値を読み出します．

ch

SPIのチャネル番号．

返り値

SPIの Configレジスタの値．

spi init

void spi_init(unsigned long ch,

unsigned long slave_num);

SPIを初期化します．

ch

SPIのチャネル番号．

slave num

SPIのスレーブ番号．

56 第 4章 Favor OS の使い方

4.4.5 PWM発生器

pwmgen init

void pwmgen_init(int ch);

PWM発生器を初期化します．

ch

PWM発生器のチャネル番号．

pwmgen start

void pwmgen_start(int ch,

unsigned long cycle,

unsigned long reversetime,

int deadtime,

int way);

PWM発生器を開始します．

ch

PWM発生器のチャネル番号．

cycle

PWM発生器の周期．

reversetime

PWM発生器の反転制御時間．

deadtime

PWM発生器のデッドタイム．

way

PWM波の論理．0を指定すると負論理，1を指定すると正論理になります．それ以外の値

を指定すると，Reverse Modeになります．

pwmgen stop

void pwmgen_stop(int ch);

PWM発生器の停止します．

ch

PWM発生器のチャネル番号．

4.4. Favor API 57

pwmgen clear

void pwmgen_clear(int ch);

PWM発生器のカウンタをクリアします．

ch

PWM発生器のチャネル番号．

pwmgen clear and stop

void pwmgen_clear_and_stop(int ch);

PWM発生器を停止し，カウンタをクリアします．

ch

PWM発生器のチャネル番号．

pwmgen control write

void pwmgen_control_write(int ch,

unsigned long data);

PWM発生器の Controlレジスタに書き込みます．

ch

PWM発生器のチャネル番号．

data

PWM発生器の Controlレジスタに書き込む値．

pwmgen control read

unsigned long pwmgen_control_read(int ch);

PWM発生器の Controlレジスタを読み出します．

ch

PWM発生器のチャネル番号．

返り値

PWM発生器の Controlレジスタの値．

58 第 4章 Favor OS の使い方

pwmgen forward counter write

void pwmgen_forward_counter_write(int ch,

unsigned long data);

PWM発生器の周期を設定します．

ch

PWM発生器のチャネル番号．

data

PWM発生器の周期．

pwmgen forward counter read

unsigned long pwmgen_forward_counter_read(int ch);

PWM発生器の周期を読み出します．

ch

PWM発生器のチャネル番号．

返り値

PWM発生器の周期の値．

pwmgen reverse counter write

void pwmgen_reverse_counter_write(int ch,

unsigned long data);

PWM発生器の反転制御時間を設定します．

ch

PWM発生器のチャネル番号．

data

PWM発生器の反転制御時間．

4.4. Favor API 59

pwmgen reverse counter read

unsigned long pwmgen_reverse_counter_read(int ch);

PWM発生器の反転制御時間を読み出します．

ch

PWM発生器のチャネル番号．

返り値

PWM発生器の反転制御時間の値．

pwmgen deadtime write

void pwmgen_deadtime_write(int ch,

unsigned long data);

PWM発生器のデッドタイムを設定します．

ch

PWM発生器のチャネル番号．

data

PWM発生器のデッドタイム．

pwmgen deadtime read

unsigned long pwmgen_deadtime_read(int ch);

PWM発生器のデッドタイムの値を読み出します．

ch

PWM発生器のチャネル番号．

返り値

PWM発生器のデッドタイムの値．

60 第 4章 Favor OS の使い方

pwmgen start forward

void pwmgen_start_forward(int ch);

PWM発生器を正論理で出力開始します．

ch

PWM発生器のチャネル番号．

pwmgen start reverse

void pwmgen_start_reverse(int ch);

PWM発生器を負論理で出力開始します．

ch

PWM発生器のチャネル番号．

pwmgen set first

void pwmgen_set_first(int ch,

unsigned int cycle,

unsigned int reversetime,

unsigned short deadtime);

PWM発生器の周期，反転制御時間，デッドタイムを設定します．

ch

PWM発生器のチャネル番号．

cycle

PWM発生器の周期．

reversetime

PWM発生器の反転制御時間．

deadtime

PWM発生器のデッドタイム．

4.4. Favor API 61

pwmgen output

void pwmgen_output(int ch,

int way);

PWM発生器を出力開始します．

ch

PWM発生器のチャネル番号．

way

PWM波の論理．0を指定すると負論理，1を指定すると正論理になります．それ以外の値

を指定すると，Reverse Modeになります．

4.4.6 PWM入力器

pwmin init

void pwmin_init(int ch);

PWM入力器を初期化します．

ch

PWM入力器のチャネル番号．

pwmin intr set

void pwmin_intr_set(int ch,

int flag);

PWM入力器の割込みを発生させます．

ch

PWM入力器のチャネル番号．

flag

割込みフラグ．1を指定すると割込みを発生させます．

62 第 4章 Favor OS の使い方

pwmin intr clear

void pwmin_intr_clear(int ch);

PWM入力器の割込みをクリアします．

ch

PWM入力器のチャネル番号．

pwmin lpo write

void long pwmin_lpo_write(int ch,

unsigned int period);

デューティー比を平均化する周期を設定します．

ch

PWM入力器のチャネル番号．

period

デューティー比を平均化する周期．

pwmin lpo read

unsigned long pwmin_lpo_read(int ch);

デューティー比を平均化する周期を読み出します．

ch

PWM入力器のチャネル番号．

返り値

デューティー比を平均化する周期．

4.4. Favor API 63

pwmin lp read

unsigned long pwmin_lp_read(int ch);

現在の周期を読み出します．

ch

PWM入力器のチャネル番号．

返り値

現在の周期．

pwmin h read

unsigned long pwmin_h_read(int ch);

指定した周期で Highの期間の合計を読み出します．

ch

PWM入力器のチャネル番号．

返り値

指定した周期で Highの期間の合計．

pwmin l read

unsigned long pwmin_l_read(int ch);

指定した周期で Lowの期間の合計を読み出します．

ch

PWM入力器のチャネル番号．

返り値

指定した周期で Lowの期間の合計．

64 第 4章 Favor OS の使い方

pwmin ctr read

unsigned long pwmin_ctr_read(int ch);

PWM入力器のコントロールレジスタを読み出します．

ch

PWM入力器のチャネル番号．

返り値

PWM入力器のコントロールレジスタの値．

pwmin ctr write

void pwmin_ctr_write(int ch,

unsigned long data);

PWM入力器のコントロールレジスタに書き込みます．

ch

PWM入力器のチャネル番号．

data

PWM入力器のコントロールレジスタへ書き込む値．

4.4.7 パルスカウンタ

plscntr init

void plscntr_init(int ch);

パルスカウンタを初期化します．

ch

パルスカウンタのチャネル番号．

4.4. Favor API 65

plscntr start

void plscntr_start(int ch);

パルスカウンタを開始します．

ch

パルスカウンタのチャネル番号．

plscntr stop

void plscntr_stop(int ch);

パルスカウンタを停止します．

ch

パルスカウンタのチャネル番号．

plscntr control read

unsigned long plscntr_control_read(int ch);

パルスカウンタのコントロールレジスタを読み出します．

ch

パルスカウンタのチャネル番号．

返り値

パルスカウンタのコントロールレジスタの値．

plscntr write

void plscntr_write(int ch,

unsigned long data);

パルスカウンタのコントロールレジスタへ書き込みます．

66 第 4章 Favor OS の使い方

ch

パルスカウンタのチャネル番号．

data

パルスカウンタのコントロールレジスタへ書き込む値．

plscntr count read

unsigned long plscntr_count_read(int ch);

パルスカウンタのカウントレジスタを読み出します．

ch

パルスカウンタのチャネル番号．

返り値

パルスカウンタのカウントレジスタの値．

4.4.8 PIO

pio setup

void pio_setup(void);

PIOを初期化します．全てのチャネルを出力に設定します．

pio direction

void pio_direction(unsigned long direction);

PIOの入出力の方向を設定します．

direction

PIOの入出力の設定．1に設定したチャネルは出力，0に設定したチャネルは入力になります．

pio put

void pio_put(unsigned long data);

PIOに出力します．

data

PIOに出力するデータ

4.4. Favor API 67

pio get

unsigned long pio_get(void);

PIOからデータを読み出します．

返り値

PIOから読み出した値

pio intr enable

void pio_intr_enable(unsigned long intr);

PIOの割込みを設定します．

intr

割込みの設定値．1を指定したチャネルの値が 0から 1に変化すると割込みがかかります．

4.4.9 ロック機構

rgpsh

unsigned long rgpsh(unsigned long shreg);

ロックをかけずに共有レジスタから整数値を読み出します．

shreg

共有レジスタ番号．

返り値

共有レジスタの値．

wgpsh

void wgpsh(unsigned long gpreg,

unsigned long shreg);

ロックをかけずに共有レジスタへ整数値を書き込みます．

gpreg

書き込みデータ．

shreg

書き込み先の共有レジスタ番号．

68 第 4章 Favor OS の使い方

rgpex

unsigned long rgpex(unsigned long shreg);

ハードウェアセマフォを獲得して共有レジスタから整数値を読み出します．

shreg

共有レジスタ番号．

返り値

共有レジスタの値．

wgpex

void wgpex(unsigned long gpreg,

unsigned long shreg);

ハードウェアセマフォを解放して共有レジスタへ整数値を書き込みます．

gpreg

書き込みデータ．

shreg

書き込み先の共有レジスタ番号．

down sem

void down_sem(semaphore_t *sem);

ソフトウェアセマフォを獲得します．

sem

セマフォの構造体のポインタ．

up sem

void up_sem(semaphore_t *sem);

ソフトウェアセマフォを解放します．

sem

セマフォの構造体のポインタ．

4.4. Favor API 69

4.4.10 DMAC

dma set priority

void dma_set_priority(unsigned long n,

unsigned long p);

DMACの優先度を変更します．

n

DMACのチャネル番号．

p

DMACの優先度．0を指定するとラウンドロビン，1を指定すると ch0 > ch1 > ch2 > ch3

の優先度になります．

start dma

void start_dma(int n,

int ch);

DMACの転送を開始します．

n

DMACの番号．D-RMTPIは 4個の DMACを内蔵しています．

ch

DMACのチャネル番号．DMACは 1個あたり 4チャネルの入力チャネルを持っています．

set dma tmr

void set_dma_tmr(int n,

int ch,

unsigned long flag);

DMACの転送モード制御レジスタを設定します．

n

DMACの番号．

ch

DMACのチャネル番号．

flag

DMACの転送モード制御レジスタに書き込む値．

70 第 4章 Favor OS の使い方

clear dma tmr

void clear_dma_tmr(int n,

int ch);

DMACの転送モード制御レジスタを初期化します．

n

DMACの番号．

ch

DMACのチャネル番号．

dma setting

void dma_setting(int n,

int ch,

unsigned long src,

unsigned long dst,

unsigned long length,

unsigned long flag);

n

DMACの番号．

ch

DMACのチャネル番号．

src

転送元アドレス．

dst

転送先アドレス．

length

DMAC転送のバイト長．

flag

DMACの転送モード．

4.4. Favor API 71

wait dma finish

void wait_dma_finish(int n,

int ch);

DMACの転送終了まで待機します．

n

DMACの番号．

ch

DMACのチャネル番号．

4.4.11 LED

LED ON

void LED_ON(unsigned int x);

LEDの特定の 1個を点灯します．それ以外の LEDは消灯します．

x

点灯させる LEDの bit位置．

LED SET

void LED_SET(unsigned int x);

LEDを点灯させます．

x

LEDの点灯パターン．

4.4.12 ベクトル演算器

reserve vreg int/reserve vreg fp

int reserve_vreg_int(unsigned int mode);

int reserve_vreg_fp(unsigned int mode);

ベクトルレジスタを確保する．

72 第 4章 Favor OS の使い方

mode

ベクトルレジスタの構成．

返り値

ベクトルレジスタの確保に成功すると 1を返す．

set mask low vreg int/set mask high vreg int

void set_mask_low_vreg_int(unsigned long mask);

void set_mask_high_vreg_int(unsigned long mask);

整数ベクトル演算器のマスクレジスタを設定する．

mask

マスク値．

set mask vreg fp

void set_mask_vreg_fp(unsigned long mask);

浮動小数点ベクトル演算器のマスクレジスタを設定する．

mask

マスク値．

set round vreg fp

void set_round_vreg_fp(unsigned int mode);

浮動小数点ベクトル演算器の丸めモードを指定する．

mode

浮動小数点の丸めモード．

set length vreg int/set length vreg fp

void set_length_vreg_int(unsigned int length);

void set_length_vreg_fp(unsigned int length);

演算を行うベクトル長を設定する．

length

演算を行うベクトル長．

4.4. Favor API 73

set stride vreg int/set stride vreg fp

void set_stride_vreg_int(unsigned int stride);

void set_stride_vreg_fp(unsigned int stride);

Load/Store時のアドレスのストライドを設定する．

stride

アドレスのストライド．

release vreg int/release vreg fp

int release_vreg_int(void);

int release_vreg_fp(void);

確保していたベクトルレジスタを解放する．

4.4.13 MMU

immu on

void immu_on(unsigned long thid);

命令用MMUを有効にします．

thid

コンテキスト ID．

dmmu on

void dmmu_on(unsigned long thid);

データ用MMUを有効にします．

thid

コンテキスト ID．

74 第 4章 Favor OS の使い方

immu off

void immu_off(unsigned long thid);

命令用MMUを無効にします．

thid

コンテキスト ID．

dmmu off

void dmmu_off(unsigned long thid);

データ用MMUを無効にします．

thid

コンテキスト ID．

immu on all

void immu_on_all(void);

全てのコンテキストで命令用MMUを有効にします．

dmmu on all

void dmmu_on_all(void);

全てのコンテキストでデータ用MMUを有効にします．

4.4.14 ユーティリティ

printk

int printk(const char *fmt, ...);

シリアルの 0番ポートに文字列を出力します．

fmt

出力文字列のフォーマット．使用可能なフォーマット一覧を下に示します．

4.4. Favor API 75

• d: 10進数整数

• x: 16進数整数

• s: 文字列

• c: 文字

prints

void prints(char *s);

シリアルの 0番ポートに文字列を出力します．

s

文字列のポインタ．

serial putc

extern void serial_putc(int ch,

byte_t data);

シリアルに 1バイト送信します．

ch

出力ポート．0か 1を指定してください．

data

シリアルに送信するデータ．

serial getc

extern byte_t serial_getc(int);

シリアルから 1バイト受信します．

ch

出力ポート．0か 1を指定してください．

返り値

シリアルから受信したデータ．

76 第 4章 Favor OS の使い方

putxval

int putxval(unsigned long value,

int column);

16進数文字列をシリアルに出力します．

value

シリアルに出力する整数．

column

表示桁数．valueを文字列に変換した際の桁数よりも小さい値を指定した場合は，変換した

文字列そのものを出力します．valueを文字列に変換した際の桁数よりも大きい値を指定し

た場合は，変換した文字列の上位に’0’を付加して出力します．

putdval

int putdval(unsigned int value,

int column);

10進数文字列をシリアルに出力します．

value

シリアルに出力する整数．

column

表示桁数．valueを文字列に変換した際の桁数よりも小さい値を指定した場合は，変換した

文字列そのものを出力します．valueを文字列に変換した際の桁数よりも大きい値を指定し

た場合は，変換した文字列の上位に’0’を付加して出力します．

putbval

int putbval(const unsigned long value,

const unsigned int bit_width);

2進数文字列をシリアルに出力します．

value

シリアルに出力する整数．

bit width

表示桁数．valueを文字列に変換した際の桁数は考慮されません．

4.4. Favor API 77

print double

int print_double(const double value);

倍精度浮動小数点をシリアルに出力します．

value

シリアルに出力する値．

debug printk/debug prints

void debug_printk(...)

デバッグ用の printk関数です．Favor OSの configureオプションで”–debugprint=on”を指定し

た場合のみ，シリアルに文字列を出力します．

read byte/read hword/read word/read long

unsigned char read_byte(unsigned char addr);

unsigned short read_hword(unsigned short addr);

unsigned int read_word(unsigned int addr);

unsigned long read_long(unsigned long addr);

指定したアドレスから値を読み出します．

addr

読み出すアドレス．

返り値

読み出した値．

write byte/write hword/write word/write long

void write_byte(unsigned char *addr,

unsigned char data);

void write_hword(unsigned short *addr,

unsigned short data);

void write_word(unsigned int *addr,

unsigned int data);

void write_long(unsigned long *addr,

unsigned long data);

78 第 4章 Favor OS の使い方

指定したアドレスへ値を書き込みます．

addr

書き込み先のアドレス．

data

書き込む値．

4.4.15 標準ライブラリ関数

*memset

void *memset(void *b,

int c,

long len);

メモリ領域に文字データを書き込みます．

b

書き込みを開始する先頭アドレス．

c

メモリ領域に書き込む文字．

len

書き込むバイト長．

*memcpy

void *memcpy(void *dst,

void *src,

long len);

メモリの内容をコピーします．

dst

コピー先の先頭アドレス．

src

コピー元の先頭アドレス．

len

コピーするバイト長．

4.4. Favor API 79

memcmp

int memcmp(void *b1,

void *b2,

long len);

メモリの内容を比較します．

b1

比較する領域の先頭アドレス．

b2

比較する領域の先頭アドレス．

len

比較するバイト長．

返り値

メモリの内容が一致した場合は 0が返ります．

strlen

int strlen(const char *s);

文字列の長さを調べます．

s

文字列の先頭ポインタ．

返り値

文字列の長さ．

strcpy

char *strcpy(char *dst,

const char *src);

文字列をコピーします．

dst

コピー先の文字列の先頭ポインタ．

80 第 4章 Favor OS の使い方

src

コピー元の文字列の先頭ポインタ．

返り値

コピー先の文字列の先頭ポインタ．

strcmp/strncmp

int strcmp(char *s1,

char *s2);

int strncmp(char *s1,

char *s2,

int len);

s1

比較する文字列の先頭アドレス．

s2

比較する文字列の先頭アドレス．

len

比較する文字列の長さ．

返り値

文字列が一致した場合は 0が返ります．

atoi

int atoi(char *str);

10進数文字列を整数に変換します．

str

整数に変換する 10進数文字列．

返り値

変換した整数値．

4.4. Favor API 81

atohex

unsigned int atohex(char *str);

16進数文字列を整数に変換します．

str

整数に変換する 16進数文字列．

返り値

変換した整数値．

dump

void dump(unsigned long addr,

int dump_length);

メモリの内容を出力します．

addr

出力を開始する領域の先頭アドレス．

dump length

出力するバイト数．

wait msec

void wait_msec(unsigned long msec);

指定した時間だけ処理を停止します．

msec

処理を停止する時間．単位はms．

83

5

ITRON仕様OSの使い方

本章では，RMTP 用 ITRON 仕様 OS の使い方を説明します．RMTP 用 ITRON 仕様 OS は

µITRON4.0仕様1 のリアルタイム OSである Hyper Operating System (HOS) 2を拡張したもの

になっています．

5.1 ビルド方法

hosの sampleディレクトリ以下でビルドの設定を config.makファイルに書き込んだ後，make

コマンドを実行します．config.makファイルの設定サンプルは config example/以下にあります．

% ls

README config/ document/ include/ sample/ src/

% cd sample/

% ls

Makefile cache.c mk.sh printk.c script/

Rules.mak config.mak mmu.c sample.c system.cfg

backup/ config_example/ ostimer.c sample.c.bak uart.c

boot.S conv ostimer.h sample.h

% cp config_example/config.mak.serial_load config.mak

(rmtsimの場合は cp config_example/config.mak.inst config.mak)

% make clean

% make

1http://www.ertl.jp/ITRON/SPEC/mitron4-j.html
2http://sourceforge.jp/projects/hos/

84 第 5章 ITRON仕様 OSの使い方

初回のみカーネルのビルドが必要なため，srcディレクトリ以下でmakeするか，sampleディレ

クトリ以下のmk.shを実行して下さい

% ls

README config/ document/ include/ sample/ src/

% cd sample/

% ./mk.sh

5.2 生成されるファイル

makeが成功すると，結果は sampleディレクトリに出力されます．主なものを表 5.1に示します．

表 5.1: ITRON仕様 OSの出力ファイル
ファイル 説明

sample.bin 評価キットへロードするファイル

sample.srec 命令レベルシミュレータ用のファイル

sample.dmp 逆アセンブルリスト

sample.map マップファイル (リンカの動作ログ)

sampleディレクトリでmake cleanを行うと，中間生成ファイルを含むこれらのファイルを削除

することができます．

5.3 アプリケーションコードの記述

アプリケーションコードや各種設定ファイルは sampleディレクトリ内に置きます．ユーザが編

集するファイルを表 5.2に示します．

表 5.2: ITRON仕様 OSの各種ファイル
ファイル 説明

sample.c アプリケーションファイル

sample.h ヘッダファイル (sample.c内の関数を記述)

system.cfg コンフィグレーションファイル (静的 APIを記述)

ostimer.h スケジューラが呼ばれる間隔 (TICK)を記述

5.4. ITRON API 85

5.4 ITRON API

5.4.1 cre tsk

ER cre_tsk(ID tskid, {ATR tskatr,

VP_INT exinf,

FP task,

PRI itskpri,

SIZE stksz,

VP stk,

UW period,

UW wcet});

リアルタイムタスクを生成します．

tskid

生成対象のタスクの ID番号．

tskatr

タスク属性．TA HLNG（C言語で記述）か TA ASM（アセンブリ言語で記述）のどちらか

を指定することができます．

exinf

タスクの拡張情報．開発者が任意に使うことができます．

task

タスクの起動番地．関数名を指定します．

itskpri

タスクの起動時優先度．1以上の値を指定します．値が低いほど優先度は高くなります．

stksz

タスクのスタック領域のサイズ（バイト数）．

stk

タスクのスタック領域の先頭番地．NULLを指定するとカーネルが適当に確保します．

period

タスクの周期．

wcet

タスクの最悪実行時間．

86 第 5章 ITRON仕様 OSの使い方

5.4.2 act tsk

ER act_tsk(ID tskid);

タスクを起動します．

tskid

起動対象のタスクの ID番号．

5.4.3 ext tsk

void ext_tsk(void);

自タスクを終了します．

5.4.4 slp tsk

ER slp_tsk(void);

自タスクを起床待ち状態に移行します．

5.4.5 wup tsk

ER wup_tsk(ID tskid);

タスクを起床させます．

tskid

起床対象のタスクの ID番号．

5.4.6 dly tsk

ER dly_tsk(RELTIM dlytim);

自タスクを遅延させます．

dlytim

自タスクの遅延時間（相対時間）．

5.4. ITRON API 87

5.4.7 cre sem

ER cre_sem(ID semid, {ATR sematr,

UINT isemcnt,

UINT maxsem});

セマフォを生成します．

semid

生成対象のセマフォの ID番号．

sematr

セマフォ属性．待ち行列の順を指定します．TA FIFO（FIFO順）か TA TPRI（タスクの

優先度順）のどちらかを指定します．

isemcnt

セマフォの資源数の初期値．

maxsem

セマフォの最大資源数．

5.4.8 wai sem

ER wai_sem(ID semid);

セマフォ資源を獲得します．

semid

資源獲得対象のセマフォの ID番号．

5.4.9 sig sem

ER sig_sem(ID semid);

セマフォ資源を獲得します．

semid

資源獲得対象のセマフォの ID番号．

88 第 5章 ITRON仕様 OSの使い方

5.4.10 sig sem

ER wai_sem(ID semid);

セマフォ資源を返却します．

semid

資源返却対象のセマフォの ID番号．

5.4.11 cre cyc

ER cre_cyc(ID cycid, {ATR cycatr,

VP_INT exinf,

FP cychdr,

RELTIM cyctim,

RELTIM cycphs});

周期ハンドラを生成します．

cycid

生成対象の周期ハンドラの ID番号．

cycatr

周期ハンドラ属性．TA HLNGか TA ASMを指定します．同時に TA STA（生成と同時に

起動）を指定することができます．

exinf

周期ハンドラの拡張情報．

cychdr

周期ハンドラの起動番地．周期的に起動させたい関数名を指定します．

cyctim

周期ハンドラの起動周期．

cycphs

周期ハンドラの起動位相．

89

6

更新履歴

Revision Date Description

第 1版 2013年 6月 17日 初版公開．

第 2版 2014年 5月 30日 ITRON仕様 OSの APIを追加．

第 3版 2014年 12月 8日 Favor OS の APIを追加．

	DRMTP-I 評価キットの使い方
	準備するもの
	使用方法
	電源の接続
	シリアルケーブルの接続
	プログラムの転送

	RmtSimの使い方
	ビルド方法
	使用方法
	主なコマンドラインオプション
	複数プロセッサ実行
	レスポンシブリンクの接続
	RmtSim拡張機能
	ドキュメントについて

	クロス開発ツールのビルド方法
	binutilsのビルド
	gccのビルド
	obj2prgのビルド
	トラブルシューティング
	gcc/c-parse.yでエラー
	gcc/collect2.cでエラー

	Favor OS の使い方
	ビルド方法
	生成されるファイル
	アプリケーションコードの記述
	Favor API
	システム制御
	NANDフラッシュ
	Responsive Link
	SPI
	PWM発生器
	PWM入力器
	パルスカウンタ
	PIO
	ロック機構
	DMAC
	LED
	ベクトル演算器
	MMU
	ユーティリティ
	標準ライブラリ関数

	ITRON仕様OSの使い方
	ビルド方法
	生成されるファイル
	アプリケーションコードの記述
	ITRON API
	cre_tsk
	act_tsk
	ext_tsk
	slp_tsk
	wup_tsk
	dly_tsk
	cre_sem
	wai_sem
	sig_sem
	sig_sem
	cre_cyc

	更新履歴

