
Space Responsive Multithreaded Processor

Version 1 Specification
The 6th Edition.

November 5, 2021

Yamasaki Lab.,

Department of Information and Computer Science,
Keio University

— NY0030 —

http://www.ny.ics.keio.ac.jp/research/rmt/

1

Contents

第 1章 概要 11

1.1 Overview . 11

1.2 設計ポリシ . 11

1.3 全体構成 . 12

1.4 Responsive Multithreaded Processing Unit . 13

1.4.1 命令発行ユニット . 14

1.4.2 命令演算ユニット . 15

1.4.3 キャッシュユニット . 16

1.5 Responsive Link . 17

第 2章 PIN assignments 19

第 3章 Instruction Set 75

3.1 Instructions compatible with MIPS ISA . 75

3.1.1 Load / Store Instruction . 75

3.1.2 Computational Instructions . 85

3.1.3 Jump / Branch Instructions . 97

3.1.4 Floating-Point Instructions . 107

3.1.5 Miscellaneous Instructions . 121

3.2 Instructions which are not compatible with MIPS ISA . 128

3.2.1 Computational Instructions . 128

3.2.2 Floating-Point Instructions . 139

3.2.3 Other Instructions . 142

3.2.4 Unsupported MIPS II Instructions . 142

3.3 Responsive Multithreaded Processor Specific Instructions 143

3.3.1 Load / Store Instruction . 143

3.3.2 Arithmetic Instructions . 150

3.3.3 Data Transfer Instructions . 161

3.3.4 System Control Instruction . 162

3.3.5 Thread Control Instructio . 166

3.3.6 SIMD Arithmetic Instruction . 183

3.3.7 同期命令 . 216

3.3.8 Integer Vector Instructions . 226

3.3.9 浮動小数点ベクトル命令 . 323

第 4章 Address Decoder 375

4.1 Register Interface . 375

4.2 Address Mapping . 376

2

第 5章 MMU 379

5.1 TLBエントリ . 379

5.2 MMUの制御 . 383

5.3 MMUが発生させる例外 . 388

第 6章 CACHE 389

6.1 キャッシュシステム . 389

6.1.1 概要 . 389

6.1.2 キャッシュ制御 . 390

6.1.3 victim buffer . 390

6.1.4 wait buffer . 390

6.1.5 キャッシュのコントロールレジスタ . 391

第 7章 システムレジスタ 395

7.1 レジスタマップ . 395

7.1.1 Status Register . 400

7.1.2 Thread Table Register . 400

7.1.3 Thread ID Register . 401

7.1.4 Instruction Counter Register . 401

7.1.5 Count Register . 402

7.1.6 Compare Register . 402

7.1.7 Floating-Point Control Register . 402

7.1.8 Issue Mode Register . 403

7.1.9 CPU Count Register . 404

7.1.10 MMU Register . 405

7.1.11 Exception PC Register . 405

7.1.12 Exception Cause Register . 405

7.1.13 Interruption Wait Register (スレッド毎) . 406

7.1.14 External Interruption Level Register (スレッド毎) 406

7.1.15 Interruption Pending Register . 407

7.1.16 Interruption Clear Register . 407

7.1.17 Exception Base Address Register . 407

7.1.18 Event Link In Register . 407

7.1.19 Event Link Out Register . 407

7.1.20 Instruction Cache Control Register . 407

7.1.21 Data Cache Control Register . 407

7.1.22 Multiplexer Arbitor Mode Bus . 408

7.1.23 Multiplexer Arbitor Priorty 256bit Bus . 408

7.1.24 Multiplexer Arbitor Priorty High 32bit Bus . 408

7.1.25 Multiplexer Arbitor Priorty Low 32bit Bus . 408

7.1.26 Multiplexer Watchdog Timer 256bit Bus Enable 409

7.1.27 Multiplexer Watchdog Timer 256bit Bus Count 409

7.1.28 Multiplexer Error Handler State 256bit Bus . 409

7.1.29 Multiplexer Error Handler State 32bit Bus . 410

7.1.30 Multiplexer Error Handler Instruction Cache . 410

7.1.31 Multiplexer Error Handler Data Cache . 412

7.1.32 Multiplexer Error Handler MDMAC256 . 412

3

7.1.33 Multiplexer Watchdog Timer 32bit Bus Enable 412

7.1.34 Multiplexer Error Handler Master32 . 412

7.1.35 Multiplexer Error Handler Master256 . 412

7.1.36 Multiplexer Watchdog Timer 32bit Bus Count 412

7.1.37 Reservation Station Aging . 413

7.1.38 Reservation Station Aging Increment . 413

7.1.39 Reservation Station Aging Span . 413

7.1.40 PID Parameter Register . 413

7.1.41 Target IPC Register . 414

7.1.42 Fetch Bound Register . 414

7.1.43 Own Status Register . 415

7.1.44 Own Thread Table Register . 415

7.1.45 Own Thread ID Register . 415

7.1.46 Own Instruction Count Register . 415

7.1.47 Own Count Register . 415

7.1.48 Own Compare Register . 415

7.1.49 Own Floating-Point Control Register . 415

7.1.50 Own Bad Virtual Address Register . 415

7.1.51 Own Exception PC Register . 415

7.1.52 Own Exception Cause Register . 416

7.1.53 Own Interruption Wait Register . 416

7.1.54 Own External Interruption Level Register . 416

7.1.55 Own Target IPC Register . 416

7.1.56 Own Fetch Bound Register . 416

7.1.57 Special Mode Register . 416

7.1.58 NMI Mode Register . 417

7.1.59 Special Operation Register . 417

7.1.60 I Cache ECC ON Register . 417

7.1.61 I Cache ECC Mode Register . 418

7.1.62 D Cache ECC ON Register . 418

7.1.63 D Cache ECC Mode Register . 419

7.1.64 Address Decoder Control Register . 419

7.1.65 Extbus0 Status . 419

7.1.66 Extbus1 Status . 420

7.1.67 Extbus2 Status . 420

7.1.68 Extbus3 Status . 420

7.1.69 Extbus4 Status . 420

7.1.70 Extbus5 Status . 420

7.1.71 Extbus6 Status . 421

7.1.72 Extbus7 Status . 421

7.1.73 ROM Status . 421

7.1.74 E2M Status . 421

7.1.75 Extbus Mem IO . 421

7.1.76 Multiplexer Error Handler DMAC0-5 . 421

7.1.77 Multiplexer Error Handler Extbus0-7 . 421

4

第 8章 例外処理 423

8.1 割り込みコントローラ (IRC) . 423

8.1.1 レジスタマップ . 423

8.1.2 Trigger Mode Register . 423

8.1.3 Request Sense Register . 424

8.1.4 Request Clear Register . 424

8.1.5 Mask Register . 424

8.1.6 IRL Latch/Clear . 425

8.1.7 IRC Mode Register . 425

8.2 動作/使用方法 . 425

8.2.1 IRC . 425

8.2.2 RMT固有機能 . 428

8.2.3 例外処理プロセス . 428

第 9章 クロックジェネレータ 431

9.1 接続図 . 432

9.2 制御レジスタ . 433

9.2.1 Clock Enable . 433

9.2.2 Soft Reset . 433

9.2.3 Clock Enable / Soft Reset Bit Map . 434

9.2.4 Divider Ratio . 434

9.2.5 Clock Synchronization . 435

9.2.6 All Reset . 435

9.2.7 Micro Reset . 435

9.2.8 HiZ Control . 437

第 10章 スレッド制御 439

10.1 スレッドの概要 . 439

10.2 スレッド起床メカニズム . 439

10.3 スレッドの種類 . 439

10.4 スレッド制御命令 . 440

10.4.1 作成・削除 . 440

10.4.2 状態制御 . 440

10.4.3 転送 . 441

10.5 状態遷移 . 442

第 11章 同期 443

11.1 概要 . 443

11.2 共有レジスタバイナリ . 443

11.3 バイナリセマフォレジスタ . 443

11.4 同期命令 . 444

第 12章 IPC Control Mechanism 447

12.1 Abstract . 447

12.2 Configurable Parameters . 447

12.3 Usage . 447

12.4 Program Example . 448

5

第 13章 Vector Unit 451

13.1 概要 . 451

13.1.1 Vector Execution Unit . 452

13.1.2 命令フォーマット . 452

13.2 ベクトルレジスタ . 453

13.3 ステータスレジスタ . 455

13.4 使用例 . 457

13.5 複合演算命令 . 457

第 14章 Responsive Link 463

14.1 概要 . 463

14.2 Responsive Linkのインタフェース . 464

14.3 パケットフォーマット . 465

14.3.1 固定長（64B）のデータパケット . 466

14.3.2 固定長（16B）のイベントパケット . 466

14.3.3 優先度による追い越し機構 . 467

14.4 フレームフォーマット . 469

14.5 ルーティング・テーブル . 469

14.6 パケットの加減速制御 . 470

14.7 優先度に従った経路制御 . 471

14.8 低レベル通信 . 473

14.8.1 CODEC . 473

14.8.2 巡回組織ハミング符号化 . 473

14.8.3 Bit Stuffing . 474

14.8.4 NRZI符合化 . 474

14.8.5 セットアップパターン . 474

14.8.6 DPLLを用いたビット同期 . 475

14.8.7 エラーの取扱い . 475

14.8.8 通信速度 . 475

14.9 メモリマップ . 476

14.10 レジスタマップ . 476

14.10.1 SDRAMモードレジスタ . 476

14.10.2 レスポンシブリンク速度設定レジスタ . 477

14.10.3 レスポンシブリンク初期化レジスタ . 477

14.10.4 レスポンシブリンク割り込みクリアレジスタ . 478

14.10.5 デコーダリセット割り込みクリアレジスタ . 479

14.10.6 レスポンシブリンク送信停止割り込みクリアレジスタ 480

14.10.7 レスポンシブリンク継続割り込みクリアレジスタ 480

14.10.8 レスポンシブリンク致命的エラー割り込みクリアレジスタ 481

14.10.9 レスポンシブリンクルーティングテーブル割り込みクリアレジスタ 482

14.10.10 レスポンシブリンク SDRAMバスリクエストレジスタ 482

14.10.11 レスポンシブリンク SDRAMバスグラントレジスタ 482

14.10.12 レスポンシブリンクルーティングテーブルバスリクエストレジスタ 483

14.10.13 レスポンシブリンクルーティングテーブルバスグラントレジスタ 484

14.10.14 イベントリンク LRUアドレスレジスタ . 485

14.10.15 データリンク LRUアドレスレジスタ . 485

6

14.10.16 レスポンシブリンク用割り込みコントローライネーブルレジスタ 486

14.10.17 イベントリンク用 SDRAMループカウントレジスタ 486

14.10.18 データリンク用 SDRAMループカウントレジスタ 486

14.10.19 レスポンシブリンクスイッチモードレジスタ . 487

14.10.20 レスポンシブリンク用オフラインレジスタ . 487

14.10.21 パラレルモードレジスタ . 488

14.10.22 エラーパケットヘッダレジスタ . 489

14.10.23 エラーヘッダポインタレジスタ . 489

14.10.24 エラーパケットモードレジスタ . 489

14.10.25 SDRAM回復イネーブルレジスタ . 490

14.10.26 通信コーデック設定レジスタ . 490

14.10.27 レスポンシブリンク用 EXT RL CLK イネーブルレジスタ 490

14.10.28 レスポンシブリンク用オフライン割り込みマスクレジスタ 491

14.10.29 送信用 DPLLモード設定レジスタ . 492

14.10.30 送信用通信コーデック設定レジスタ . 493

14.10.31 送信用通信速度・コーデックイネーブルレジスタ 493

14.10.32 モード 1用サンプリングエッジ設定レジスタ . 494

14.10.33 Routing Table ECC設定レジスタ . 495

14.10.34 タイムアウト設定レジスタ . 495

14.10.35 イベントリンクタイムアウトカウント設定レジスタ 495

14.10.36 データリンクタイムアウトカウント設定レジスタ 496

14.10.37 オートリンクアップ設定レジスタ . 496

14.11 DPM (Dual Port Memory) . 497

14.11.1 Event Output . 497

14.11.2 Event Input . 499

14.11.3 Data Output . 502

14.11.4 Data Input . 504

14.12 通信方法 . 506

14.12.1 手順 . 506

14.12.2 相互通信の際の注意点 . 507

14.13 Responsive Link の割り込みコントローラ . 507

14.13.1 レジスタマップ . 508

第 15章 DMAC 511

15.1 レジスタマップ . 511

15.1.1 DMA制御レジスタ . 512

15.1.2 DMA割り込みクリアレジスタ . 512

15.1.3 ポート／ソースアドレスレジスタ . 512

15.1.4 メモリ／デスティネーションアドレスレジスタ . 512

15.1.5 転送モード制御レジスタ . 513

15.1.6 ステータスレジスタ . 515

15.1.7 転送レングスレジスタ . 515

15.2 I/O DMAリクエスト . 515

7

第 16章 DMACDIAG 517

16.1 レジスタマップ . 517

16.1.1 DMA制御レジスタ . 518

16.1.2 DMA割り込みクリアレジスタ . 518

16.1.3 コンペアリザルトレジスタ . 519

16.1.4 カレントエラーアドレスレジスタ . 519

16.1.5 エラーアドレスレジスタ . 519

16.1.6 エラーデータレジスタ . 519

16.1.7 データバッファレジスタ . 520

16.1.8 ポート／ソースアドレスレジスタ . 520

16.1.9 メモリ／デスティネーションアドレスレジスタ . 520

16.1.10 転送モード制御レジスタ . 521

16.1.11 ステータスレジスタ . 523

16.1.12 転送レングスレジスタ . 523

第 17章 バスサイジング機能付きDMA 525

17.1 本 DMAの特徴 . 525

17.2 制御レジスタ詳細 . 525

17.2.1 DMA割り込みクリアレジスタ . 525

17.2.2 ポート／ソースアドレスレジスタ . 526

17.2.3 メモリ／デスティネーションアドレスレジスタ . 526

17.2.4 転送モード制御レジスタ . 526

17.2.5 ステータスレジスタ . 527

17.2.6 転送レングスレジスタ . 527

第 18章 パルスカウンタ 529

18.1 パルスカウンタ概要 . 529

18.2 レジスタインタフェース . 529

18.2.1 パルスカウンタ制御レジスタ . 529

18.2.2 コンペアデータレジスタ . 530

18.2.3 カウンタレジスタ . 531

18.2.4 タイマレジスタ . 531

第 19章 PWM発生器 533

19.1 PWM発生器概要 . 533

19.2 PWMコントロールレジスタ . 534

19.3 PWM周期制御レジスタ . 536

19.4 PWM反転制御レジスタ . 537

19.5 デッドタイムレジスタ . 537

第 20章 PWM入力器 541

20.1 PWM入力器概要 . 541

20.2 PWMINコントロールレジスタ . 541

20.3 PWMIN HIGHレジスタ . 542

20.4 PWMIN LOWレジスタ . 542

8

第 21章 Ext Timer 543

21.1 概要 . 543

21.2 レジスタマップ . 543

21.2.1 アドレスマップ . 543

21.2.2 ビットマップ . 544

第 22章 64-bit Ext Timer 547

22.1 概要 . 547

22.2 レジスタマップ . 547

22.2.1 アドレスマップ . 547

22.2.2 ビットマップ . 548

第 23章 DDR SDRAM I/F 551

23.1 レジスタマップ . 551

23.1.1 主記憶 I/F幅設定レジスタ . 552

23.1.2 I/F起動レジスタ . 552

23.1.3 メモリモジュール設定レジスタ . 552

23.1.4 EMRS設定レジスタ . 553

23.1.5 MRS設定レジスタ . 553

23.1.6 DDR設定レジスタ 1 . 553

23.1.7 DDR設定レジスタ 2 . 554

23.1.8 リフレッシュインターバル設定レジスタ . 554

23.2 ECC制御レジスタマップ . 555

23.2.1 ECC設定レジスタ . 555

23.2.2 Fatal/Correctレジスタ . 555

23.2.3 カレントエラーアドレスレジスタ . 556

23.2.4 ネクストエラーアドレスポインタレジスタ . 556

23.3 エラーアドレスバッファ . 556

23.3.1 エラーアドレスバッファレジスタ . 557

23.3.2 訂正可能エラーバッファレジスタ . 557

23.3.3 訂正不可能エラーバッファレジスタ . 557

第 24章 SRAMコントローラ 559

24.1 概要 . 559

24.2 SRAMコントローラレジスタマップ . 559

24.2.1 ECC設定レジスタ . 559

24.2.2 Fatal/Correctレジスタ . 560

24.2.3 ネクストエラーアドレスポインタレジスタ . 560

24.2.4 カレントエラーアドレスレジスタ . 560

24.3 エラーアドレスバッファ . 561

24.3.1 エラーアドレスバッファレジスタ . 561

24.3.2 訂正不可エラーバッファレジスタ . 561

24.3.3 訂正可能エラーバッファレジスタ . 562

9

第 25章 Flash I/F 563

25.1 概要 . 563

25.2 アドレス空間 . 563

25.3 アクセス . 563

25.4 Flash I/F の設定レジスタ . 563

第 26章 Universal Asynchronous Receiver/Transmitter 565

26.1 アドレスマップ . 565

26.1.1 Receiver Buffer (RB) / Transmitter Holding Register (THR) 565

26.1.2 Interrupt Enable Register (IER) . 566

26.1.3 Interrupt Identification Register (IIR) . 566

26.1.4 FIFO Control Register (FCR) . 567

26.1.5 Line Control Register (LCR) . 568

26.1.6 Modem Control Register (MCR) . 569

26.1.7 Line Status Register (LSR) . 570

26.1.8 Modem Status Register (MSR) . 572

26.1.9 Divisor Latches (DL) . 572

26.2 動作/使用方法 . 573

26.2.1 Initialization . 573

第 27章 Serial Peripheral Interface Unit 575

27.1 Outline . 575

27.2 Interface . 575

27.2.1 Address Format . 575

27.2.2 Control Register . 576

27.3 Operation . 583

27.3.1 Manual Mode . 583

27.3.2 Auto Mode . 583

第 28章 Parallel I/O Unit 585

28.1 Outline . 585

28.2 Interface . 585

28.2.1 Address Format . 585

28.2.2 Control Register . 585

28.3 Operation . 588

第 29章 I2C Master Controller 589

29.1 Outline . 589

29.2 Interface . 589

29.2.1 Address Format . 589

29.2.2 Control Register . 589

29.3 Operation . 594

29.3.1 System Configuration . 594

29.3.2 I2C Protocol . 594

29.3.3 Arbitration Procudure . 596

29.3.4 Clock Stretching . 596

10

第 30章 外部バス 597

30.1 外部バス仕様 . 597

30.2 EXT 0(ROM) . 599

30.3 デフォルトメモリマップ（予定） . 599

第 31章 Real Time Clock Unit 601

31.1 Outline . 601

31.2 Interface . 602

31.2.1 Address Map . 602

第 32章 Trace Buffer 611

32.1 概要 . 611

32.2 アドレスマップ . 611

32.3 制御レジスタ領域 . 611

32.4 Trace PC Buffer領域 . 612

32.5 Trace Exception Buffer領域 . 614

第 33章 On-Chip Emulator 617

33.1 Outline . 617

33.2 Operation . 617

33.2.1 Single Write . 617

33.2.2 Single Read . 618

第 34章 Update History 619

11

1

概要

1.1 Overview

RMT Processorは，分散リアルタイムシステムを実現するために，リアルタイム通信・処理・制御を同時

にハードウェアレベルで行うことを目的にして設計を行ったシステム LSIである．分散リアルタイムシステ

ムを容易かつ効率的に実現するには，リアルタイム通信及びリアルタイム処理を行なうための基本機能を有し

た共通プラットホームを用意し，それらをブロックを組み立てるように組み合わせてシステムを構築できるよ

うにすれば良いと考えられる．プラットホームに必要な機能としては，リアルタイム処理機能，リアルタイム

通信機能，コンピュータ用周辺機能，各種周辺制御機能が考えられる．プラットホームとして様々なシステム

の中に容易に組み込んで使用できるようにするために，RMT Processorは以下の機能を全て 1チップに集積

(System-on-a-chip)している．

• リアルタイム処理機能 (RMT Processing Unit)

• リアルタイム通信機能 (Responsive Link)

• コンピュータ用周辺機能 (UART232C, DDR SDRAM I/Fs, DMAC, etc.)

• 各種周辺制御機能 (PWM Generators，Pulse Counters, etc.)

システム設計者は本チップに必要な I/O（センサ，アクチュエータ，ディジタルカメラ等）を接続するだけ

で必要な機能を実現できる．それら I/Oを接続し固有の機能を有した RMT Processorをそのシステムにふさ

わしいトポロジでResponsive Link を用いて複数個接続することによって，分散リアルタイムシステムを構築

する．

1.2 設計ポリシ

RMT Processorはリアルタイム処理・通信の理論をそのまま実現できることを目標にして設計されている．

リアルタイムスケジューラには，動的スケジューリングとして EDF(Earliest Deadline First)等があり，静的

スケジューリングとして RM(Rate Monotonic) 等があるが，ほぼ全てのリアルタイムスケジューリングは，

優先度に従ってプリエンプションを行いながら実行や通信を行うことを要求する．プリエンプションは，演算

（処理）の場合はコンテキストスイッチに相当し，通信の場合はパケットの追い越しに相当する．

12 第 1章 概要

従って，処理の場合は優先度付きスレッドのハードウェアによる優先実行やコンテキストスイッチのオー

バヘッドの削減等を実現する．通信の場合は，従来までの通信では実現されていなかった，優先度付きパケッ

トの追い越し機構等を実現する．

RMT Processorはこれらの機能を実装することにより，リアルタイムスケジューリング理論を背景に設計

されたリアルタイムスケジューラ（ソフトウェア）により優先度付けされた処理や通信を，そのまま理論通り

にリアルタイム処理および通信を実現することのできるハードウェアを実現している．

1.3 全体構成

図 1.1 に RMT Processorのブロック図を示す．RMT PUは，256bitのバスを介して DDR SDRAM I/F

と接続している．バンド幅の広いバスを用いてプロセッシングコアとメインメモリを接続することにより，命

令フェッチや後に述べるベクトル演算において，メモリアクセスのスループットを改善している．

Responsive Link，各種 I/Oは 32bitバスに接続されている．32bitバスと 256bitバスはゲートウェイ（GW）

を介して接続されている．それぞれのバスを流れるデータはゲートウェイにおいてバスサイジングが行われ，

もう片方のバスに送られる．また，Responsive Link のイベントリンクは RMT PUのメモリアクセスユニッ

トに直接接続され，プロセッシングコアからはバスを介さず，制御レジスタの一部としてアクセスすることが

できる．これにより，高速にイベントリンクにアクセスすることが可能である．

RMT PU
Real-Time Execution
8way Prioritized SMT
2D Vector Units
32 Context Cache

DRAM I/F

Memory bus (256bit)

Gateway

I/O bus (32bit)

256/32bit DMAC

SPI UART
Flash

IF

PWM-in

PWM-out

Encoder

32bit

External

Bus

Responsive

Link

144/32bit

DRAM

ADC /

DAC

ROM /
I/O Dev.

sRMTP

4cs x 2ch
(8ch)

4ch 32bit
In: 3ch
Out: 12ch
Cnt: 6ch

8cs
4dreq
4irq

21ch1ch

144 bit

I/O
Devices

RMTPRMTPRMTPRMTP

4ch

GPS
Clock

Flash
Memory

48bit DRAM

for Responsive Link

SRAM (256kB)

Data link

Event link

32bit

DMAC

PIO

I/O
Devices

8ch

RS ECC RS ECC

32 bit

non ECC

I2C

1ch

I/O
Devices

32/64bit
Timer

RTC

HAM ECC

Trace

Buffer

OCE

AC/DC
Motors

Emulate
Device

D
R

A
M

I/
F

����������	
���
�����
��

Figure 1.1: RMT Processorのブロック図

以下に RMT Processorが持つ I/Oを示す．

• Responsive Link (4ch)

• Trace Buffer

1.4. Responsive Multithreaded Processing Unit 13

• 32/64bit Timer

• Real Time Clock Unit

• PWM Input (3ch)

• PWM Output (12ch)

• Pulse Counter (6ch)

• On-Chip Emulator (1ch)

• Parallel I/O Unit (8ch)

• Serial Peripheral Interface (4cs × 2ch)

• UART (4ch)

• I2C (1ch)

• NOR Flash I/F (1ch)

• External Bus I/F (8cs, 4dreq, 4irq)

• 256/32bit DMA Controller (1ch)

• 32bit DMA Controller (4ch × 5 + 1)

• Hamming ECC SRAM (256kB)

• 144bit ReedSolomon DDR SDRAM I/F (1ch)

• 48bit ReedSolomon DDR SDRAM I/F for RL(1ch)

1.4 Responsive Multithreaded Processing Unit

RMT PUは 8wayの細粒度マルチスレッディングに優先度を用いた制御を行うことにより，ハードウェア

で様々なレベルのリアルタイム処理を支援する．マルチスレッドアーキテクチャでは複数のスレッドが並列に

実行されるため，スレッド間で演算器やキャッシュシステム等の計算資源の競合が起こる．競合が起こった場

合，RMT PUはスレッド毎に設定された優先度を基に，優先度のより高い命令に対して先に計算資源を割り

当てる．これにより並列に実行しているスレッドの中で，優先度の高いスレッドから優先的に実行する．

図 1.2 に RMT PUのブロック図を示す．RMT PUは命令発行ユニット（Issue Unit），命令演算ユニット

（Execution Unit），キャッシュユニット（Cache Unit）の大きく 3つに分かれる．命令発行ユニットは各ス

レッドの実行を制御し，優先度に従って命令演算ユニットに対して各スレッドの命令を送る．命令演算ユニッ

トは命令発行ユニットから送られてきた命令を演算する．キャッシュユニットは命令発行ユニットからの命令

フェッチ要求，命令演算ユニットからのデータアクセス要求を処理する．

14 第 1章 概要

Instruction

Cache

Instruction

Unit

Thread Control

Unit

Register

File

Context

Cache

Reservation

Station

Reservation

Station

Reservation

Station

Common Data Bus Arbitor

Instruction

MMU

Memory

Read / Write

Buffer

Data

MMU

Data

Cache

Cache Unit

Issue Unit

Reservation

Station

Reservation

Station

VINT

VFPBranch

FPUINT
Memory

Access

Execution Unit

Figure 1.2: RMT PUのブロック図

ENABLE

13

STATE KEEP PRIORITY

12:9 8 7:0

Figure 1.3: スレッドテーブルのフォーマット

1.4.1 命令発行ユニット

命令発行ユニットの役割は各スレッドの実行を制御し，命令演算ユニットに対して命令を発行することであ

る．表 1.1 に命令発行ユニットの概要を示す．

アクティブスレッドとはプロセッサ内に保持されているスレッドで，すぐに実行を開始することができる．

キャッシュスレッドとは後で述べるコンテキストキャッシュ内に保持されているスレッドを示す．優先度は 8bit

を用いて 256levelで表し，値が大きいほど優先度は高くなる．

各スレッドの制御はスレッド制御ユニットで行う．アクティブスレッドはスレッド制御ユニット内にあるス

レッドテーブルによって管理される．スレッドテーブルのフォーマットを 図 1.3 に示す．ENABLEフィール

ドはアクティブスレッドが有効であるかどうかを示す．STATEフィールドはアクティブスレッドの状態を示

し，実行中，停止中，後述するコンテキストキャッシュへの退避中等といった状態を示す．KEEPフィールド

はアクティブスレッドをプロセッサ内に保持しつづけるかどうかを示す．PRIORITYフィールドはスレッド

の優先度を示し，この値が RMT PU全体で使用される．

RMT PUではスレッドの生成，削除，実行，停止，優先度の設定等のために新たに命令を追加した．スレッ

ド制御ユニットはこれらの命令が発行されると，命令に応じてスレッドテーブルを書き換え，アクティブス

レッドの制御を行う．

先に述べた通り，RMT PUでは 8つのコンテキストをプロセッサ内に保持して実行することができる．し

1.4. Responsive Multithreaded Processing Unit 15

Table 1.1: 命令発行ユニットの概要

アクティブスレッド数 8

キャッシュスレッド数 32

優先度の指定 256level

命令フェッチ数 8

同時命令発行数 4

同時命令完了数 4

整数レジスタ (GPR)数 32bit × 32entry × 8set (1set/thread)

整数リネームレジスタ数 32bit × 64entry

浮動小数点レジスタ (FPR)数 64bit × 8entry × 8set (1set/thred)

浮動小数点リネームレジスタ数 64bit × 64entry

かしそれ以上のスレッドを実行する場合，コンテキストスイッチが発生する．コンテキストスイッチは現在実

行しているスレッドのコンテキストをメモリに退避し，新しく実行するスレッドのコンテキストをメモリから

復帰しなければならないため，オーバヘッドが大きくなる．

RMT PUではコンテキストを格納するための専用キャッシュをオンチップに用意し，レジスタファイルと

の間を広いバス（GPR:256bit，FPR:128bit）で接続している．コンテキストキャッシュは 32個のコンテキス

トを格納することができ，コンテキストスイッチをハードウェアにより 4クロックサイクルで行う．これによ

りコンテキストスイッチにかかるオーバヘッドを大幅に削減する．

アクティブスレッドのコンテキストキャッシュへの退避，キャッシュスレッドのプロセッサ内への復帰，ア

クティブスレッドとキャッシュスレッドの入れ替えは新たに追加した命令により，スレッド制御ユニットが行

う．スレッド制御ユニットはスレッドの退避命令や復帰命令，入れ替え命令を受け取ると，内部に保持してい

るキャッシュスレッドのテーブルを検索し，コンテキストキャッシュをアクセスするためのアドレスを生成し

て，コンテキストキャッシュをアクセスする．

命令発行ユニットは命令キャッシュアクセスと命令演算ユニットへの命令発行スロットで，優先度を用いた

調停を行う．

1.4.2 命令演算ユニット

命令演算ユニットの役割は命令発行ユニットから送られてくる命令を演算することである．表 1.2 に命令

演算ユニットの概要を，表 1.3には各演算ユニットごとにコンフリクトが発生しない場合のレイテンシ (命令

がリザベーションステーションからディスパッチされ、データが使用可能となるまでのクロックサイクル)を

示す．表 1.3中の vlenはプログラマの指定したベクトル長を意味し、表 13.2で示されるベクトルユニット内

の制御レジスタにより設定を行うことができる。また、ストア命令に関しては書き込み先がレジスタではなく

メモリであり、ロード命令以外からのアクセスはできないため、レイテンシは省略した。

RMT PUはリザベーションステーションとリオーダバッファを用いて，アウトオブオーダ実行を行う．RMT

PUでは複数のスレッドが並列に実行されているため，各演算器においてスレッド間で競合が起こる．命令演

算ユニットではリザベーションステーションにおいて，優先度による制御を行う．リザベーションステーショ

ンでは演算に必要なオペランドがそろうまで命令は保持される．演算に必要なオペランドがそろい命令の実行

が可能になると，各演算器に対して命令が発行される．RMT PUでは複数の命令が実行可能になった場合，

リザベーションステーションは，各命令の優先度を調べ，優先度の高い命令から先に演算器に発行する．これ

により優先度の高いスレッドの命令に対して，先に演算器を割り当てる．

一方，マルチメディア処理のようなソフトリアルタイム処理では多くのデータを繰り返し演算しなければな

らないため，高い演算性能が要求される．このような処理ではデータの並列性を利用して演算性能を高めるこ

16 第 1章 概要

Table 1.2: 命令演算ユニットの概要

整数演算器 4 + 1（Divider）

浮動小数点演算器 2 + 1（Divider）

64bit整数演算器 1

整数ベクトル演算器 1（8IU × 2unit）

浮動小数点ベクトル演算器 1（4FPU × 2unit）

分岐ユニット 2

メモリアクセスユニット 1

同期ユニット 1

Table 1.3: 命令演算ユニットのレイテンシ

整数演算器 1 cycle

整数演算器 (Divide) 3 cycle

浮動小数点演算器 2 cycle

浮動小数点演算器 (Divide) 13 cycle

64bit整数演算器 2 cycle

整数ベクトル演算器 ⌈ vlen/8 ⌉
整数ベクトル演算器 (Divide) 6 + vlen

浮動小数点ベクトル演算器 ⌈ vlen/4 ⌉
浮動小数点ベクトル演算器 (Divide) 3 + vlen × 13

メモリアクセスユニット (Load, Cache hit) 8 cycle

メモリアクセスユニット (Load, SRAM) 22 cycle

メモリアクセスユニット (Load, SDRAM) 35 cycle

メモリアクセスユニット (Store) -

とができる．

RMT PUではベクトル演算機構を用いている．ベクトル演算により，少ない命令スロットを有効に活用し，

ソフトリアルタイム処理に要求される高い演算性能を実現する．また，ベクトル演算を行うスレッドの数や

プログラムによって必要とされるベクトルレジスタの構成は異なってくる．そこで RMT PUでは整数，浮動

小数点共に 512セットあるベクトルレジスタを，ベクトル長やレジスタの個数等の構成を動的に変更してス

レッド間で共有することにより，複数のスレッドで柔軟なベクトル演算を可能としている．

ベクトル演算は整数演算，浮動小数点演算共に 2つの演算パイプラインが並列に動作することにより，複数

のスレッドで並列してベクトル演算を行うことができる．各演算パイプラインは，整数演算パイプラインで 8

個，浮動小数点演算パイプラインで 4個の演算器を持つことにより，複数のベクトル要素を並列に演算する．

また，プログラマが複合演算を定義し，定義した命令を 1 命令で実行することにより，ベクトル演算器の使

用率を向上させ，ベクトル演算の性能を向上させている．

1.4.3 キャッシュユニット

キャッシュユニットの役割は命令発行ユニットから送られてくる命令フェッチ要求と，命令実行ユニットか

ら送られてくるデータアクセス要求を処理することである．表 1.4 にキャッシュユニットの概要を示す．

1.5. Responsive Link 17

Table 1.4: キャッシュユニットの概要

TLBエントリ （命令，データ） 64 entry

キャッシュサイズ （命令，データ） 32K byte

victim cache （命令，データ） 512 byte

キャッシュユニットはMMU（Memory Management Unit）を持ち，ハードウェアでアドレス変換を行うた

め，各スレッドは仮想アドレスを用いてプログラミングを行うことができる．

MMUが置かれる場所により，仮想アドレスでキャッシュをアクセスするか物理アドレスでキャッシュをアク

セスするかが決まる．図 1.2 に示した通り，RMT PUではMMUはキャッシュよりも前に置かれ，キャッシュ

アクセスを行う前にアドレス変換を行う．よってキャッシュは物理アドレスを用いてアクセスされる．キャッ

シュアクセスの前にアドレス変換を行うため，キャッシュアクセスにかかるレイテンシが増加するが，実行す

るスレッドがコンテキストスイッチにより切り替わった場合でもキャッシュをフラッシュする必要がなくなる．

また，複数のスレッドでメモリ領域を共有する場合，仮想アドレスでキャッシュをアクセスすると同一の物理

メモリのデータが複数キャッシュされる問題（synonym）が起こるが，物理アドレスを用いてキャッシュをア

クセスすることによりその問題を回避することができる．

MMUにおける TLBエントリには仮想ページ番号，物理ベージ番号の他に，複数スレッドで共有するため

の共有情報，コンテキストグループ番号を指定する．RMT PUは最大 8つのスレッドが動作するため，TLB

エントリのミス率が高くなることが考えられる．共有情報を用いることにより，複数のスレッドで TLBエン

トリを共有し，使用する TLBのエントリ数を削減することができる．

共有情報を設定した後に，新しいスレッドを共有情報に追加する場合はコンテキストグループ番号を用い

る．TLBを設定する場合，コンテキストグループ番号を指定することにより，コンテキストグループ番号の

一致するエントリの共有情報に自身のスレッドを追加する．これにより，使用する TLBのエントリ数を増や

すことなく TLBを有効化することができる．

キャッシュは命令キャッシュ，データキャッシュ共に 8wayの set-associative方式，ブロックサイズは 32byte

で，キャッシュアクセスはパイプライン化されている．キャッシュミスが起こった場合，入れ換えるブロック

の選択方法は LRUと優先度がある．優先度を基に入れ換えるブロックを選択する場合，より優先度の低い

スレッドが使用しているブロックから先にキャッシュを追い出される．これにより，優先度の高いスレッドの

キャッシュブロックが追い出されることを防ぐ．

victim cacheは，キャッシュブロックの入れ換えに伴ないキャッシュを追い出されたブロックを，full associative

方式で保持する．キャッシュミスを起した場合，victim cacheにデータが残っていれば，そのブロックをキャッ

シュに戻すことにより．キャッシュミスによる内部バスへの要求を減らし，メモリアクセスの遅延を減少さ

せる．

キャッスミス等によりバスを介して下位メモリをアクセスする場合にも優先度を用いた制御を行う．メモリ

アクセスはキャッシュよりも低速なため，待ち行列が発生する．この場合，より優先度の高いスレッドからバ

スを使用して下位メモリにアクセスする．

1.5 Responsive Link

Responsive Link は，柔軟なリアルタイム通信を実現するために，ソフトリアルタイム通信（データリンク）

とハードリアルタイム通信（イベントリンク）の分離，パケットに優先度を付加しノード毎に高優先度パケッ

トが低優先度パケットの追い越し，パケットの優先度が異なると優先度毎に別経路を設定して専用回線や迂回

路を実現可能，ノード毎に優先度を付け替えることができ分散管理型でパケットの加減速を制御可能，ハード

ウェアによるエラー訂正，通信速度を動的に変更可能，トポロジーフリー，Hot-Plug&Play等の様々な機能

18 第 1章 概要

を実現する．

Responsive Link は国内では情報処理学会試行標準 (IPSJ-TS 2003:0006)として標準化されており，国際的

にはでは ISO/IEC JTC1 SC25 WG4において標準化作業が行われている．

19

2

PIN assignments

PIN assignments of SRMTP is shown below.

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

CORNER LEFT CORNER TL pnl iocrnr NGPIO COR-

NER

1 LEFT hiz pad LINK PAD HIZ GEN 3 link hiz NGPIO

input link hiz

2 LEFT hiz pad LINK PAD HIZ GEN 4 link hiz NGPIO

input link hiz

3 LEFT vdd vop ngpio l7 pnl vop NGPIO

4 LEFT ext iopad0 data31 NGPIO

inout bus data

5 LEFT vss gcs ngpio l30 pnl gcs NGPIO

6 LEFT ext iopad0 data30 NGPIO

inout bus data

7 LEFT ext iopad0 data29 NGPIO

inout bus data

8 LEFT vdd vc ngpio l14 pnl vc NGPIO

9 LEFT ext iopad0 data28 NGPIO

inout bus data

10 LEFT vss go ngpio l8 pnl go NGPIO

20 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

11 LEFT ext iopad0 data27 NGPIO

inout bus data

12 LEFT vss gcs ngpio l29 pnl gcs NGPIO

13 LEFT ext iopad0 data26 NGPIO

inout bus data

14 LEFT ext iopad0 data25 NGPIO

inout bus data

15 LEFT vss gcs ngpio l28 pnl gcs NGPIO

16 LEFT ext iopad0 data24 NGPIO

inout bus data

17 LEFT vdd vc ngpio l13 pnl vc NGPIO

18 LEFT ext iopad0 data23 NGPIO

inout bus data

19 LEFT vss go ngpio l7 pnl go NGPIO

20 LEFT ext iopad0 data22 NGPIO

inout bus data

21 LEFT vss gcs ngpio l27 pnl gcs NGPIO

22 LEFT ext iopad0 data21 NGPIO

inout bus data

23 LEFT ext iopad0 data20 NGPIO

inout bus data

24 LEFT vdd vop ngpio l6 pnl vop NGPIO

25 LEFT ext iopad0 data19 NGPIO

inout bus data

26 LEFT vss gcs ngpio l26 pnl gcs NGPIO

27 LEFT ext iopad0 data18 NGPIO

inout bus data

28 LEFT ext iopad0 data17 NGPIO

inout bus data

29 LEFT vdd vc ngpio l12 pnl vc NGPIO

30 LEFT ext iopad0 data16 NGPIO

inout bus data

21

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

31 LEFT vss gcs ngpio l25 pnl gcs NGPIO

32 LEFT ext iopad0 data15 NGPIO

inout bus data

33 LEFT ext iopad0 data14 NGPIO

inout bus data

34 LEFT ext iopad0 data13 NGPIO

inout bus data

35 LEFT vdd vc ngpio l11 pnl vc NGPIO

36 LEFT ext iopad0 data12 NGPIO

inout bus data

37 LEFT ext iopad0 data11 NGPIO

inout bus data

38 LEFT ext iopad0 data10 NGPIO

inout bus data

39 LEFT vss gcs ngpio l24 pnl gcs NGPIO

40 LEFT ext iopad0 data9 NGPIO

inout bus data

41 LEFT vss go ngpio l6 pnl go NGPIO

42 LEFT ext iopad0 data8 NGPIO

inout bus data

43 LEFT ext iopad0 data7 NGPIO

inout bus data

44 LEFT vss gcs ngpio l23 pnl gcs NGPIO

45 LEFT ext iopad0 data6 NGPIO

inout bus data

46 LEFT vdd vop ngpio l5 pnl vop NGPIO

47 LEFT ext iopad0 data5 NGPIO

inout bus data

48 LEFT ext iopad0 data4 NGPIO

inout bus data

49 LEFT ext iopad0 data3 NGPIO

inout bus data

50 LEFT ext iopad0 data2 NGPIO

inout bus data

22 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

51 LEFT ext iopad0 data1 NGPIO

inout bus data

52 LEFT vss gcs ngpio l22 pnl gcs NGPIO

53 LEFT ext iopad0 data0 NGPIO

inout bus data

54 LEFT vdd vc ngpio l10 pnl vc NGPIO

55 LEFT hiz pad ebiu hiz NGPIO

input ebiu hiz

56 LEFT vss gcs ngpio l21 pnl gcs NGPIO

57 LEFT ext iopad0 data dir NGPIO

output bus dir

58 LEFT vdd vc ngpio l9 pnl vc NGPIO

59 LEFT ext iopad0 ie NGPIO

output bus ie

60 LEFT ext iopad0 oe NGPIO

output bus oe

61 LEFT ext iopad0 addr31 NGPIO

inout bus addr

62 LEFT vss gcs ngpio l20 pnl gcs NGPIO

63 LEFT ext iopad0 addr30 NGPIO

inout bus addr

64 LEFT vss go ngpio l5 pnl go NGPIO

65 LEFT ext iopad0 addr29 NGPIO

inout bus addr

66 LEFT vss gcs ngpio l19 pnl gcs NGPIO

67 LEFT ext iopad0 addr28 NGPIO

inout bus addr

68 LEFT vdd vop ngpio l4 pnl vop NGPIO

69 LEFT ext iopad0 addr27 NGPIO

inout bus addr

70 LEFT vss gcs ngpio l18 pnl gcs NGPIO

23

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

71 LEFT ext iopad0 addr26 NGPIO

inout bus addr

72 LEFT ext iopad0 addr25 NGPIO

inout bus addr

73 LEFT ext iopad0 addr24 NGPIO

inout bus addr

74 LEFT vdd vc ngpio l8 pnl vc NGPIO

75 LEFT ext iopad0 addr23 NGPIO

inout bus addr

76 LEFT vss gcs ngpio l17 pnl gcs NGPIO

77 LEFT ext iopad0 addr22 NGPIO

inout bus addr

78 LEFT vdd vc ngpio l7 pnl vc NGPIO

79 LEFT ext iopad0 addr21 NGPIO

inout bus addr

80 LEFT vss gcs ngpio l16 pnl gcs NGPIO

81 LEFT ext iopad0 addr20 NGPIO

inout bus addr

82 LEFT ext iopad0 addr19 NGPIO

inout bus addr

83 LEFT ext iopad0 addr18 NGPIO

inout bus addr

84 LEFT ext iopad0 addr17 NGPIO

inout bus addr

85 LEFT ext iopad0 addr16 NGPIO

inout bus addr

86 LEFT vss go ngpio l4 pnl go NGPIO

87 LEFT ext iopad0 addr15 NGPIO

inout bus addr

88 LEFT ext iopad0 addr14 NGPIO

inout bus addr

89 LEFT ext iopad0 addr13 NGPIO

inout bus addr

90 LEFT vss gcs ngpio l15 pnl gcs NGPIO

24 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

91 LEFT ext iopad0 addr12 NGPIO

inout bus addr

92 LEFT vdd vop ngpio l3 pnl vop NGPIO

93 LEFT ext iopad0 addr11 NGPIO

inout bus addr

94 LEFT vss gcs ngpio l14 pnl gcs NGPIO

95 LEFT ext iopad0 addr10 NGPIO

inout bus addr

96 LEFT ext iopad0 addr9 NGPIO

inout bus addr

97 LEFT ext iopad0 addr8 NGPIO

inout bus addr

98 LEFT vdd vc ngpio l6 pnl vc NGPIO

99 LEFT ext iopad0 addr7 NGPIO

inout bus addr

100 LEFT vss gcs ngpio l13 pnl gcs NGPIO

101 LEFT ext iopad0 addr6 NGPIO

inout bus addr

102 LEFT vdd vc ngpio l5 pnl vc NGPIO

103 LEFT ext iopad0 addr5 NGPIO

inout bus addr

104 LEFT vss gcs ngpio l12 pnl gcs NGPIO

105 LEFT ext iopad0 addr4 NGPIO

inout bus addr

106 LEFT vss go ngpio l3 pnl go NGPIO

107 LEFT ext iopad0 addr3 NGPIO

inout bus addr

108 LEFT ext iopad0 addr2 NGPIO

inout bus addr

109 LEFT ext iopad0 chip select 7 cs NGPIO

output bus cs

110 LEFT vss gcs ngpio l11 pnl gcs NGPIO

25

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

111 LEFT ext iopad0 chip select 6 cs NGPIO

output bus cs

112 LEFT ext iopad0 chip select 5 cs NGPIO

output bus cs

113 LEFT ext iopad0 chip select 4 cs NGPIO

output bus cs

114 LEFT vdd vop ngpio l2 pnl vop NGPIO

115 LEFT ext iopad0 chip select 3 cs NGPIO

output bus cs

116 LEFT vss gcs ngpio l10 pnl gcs NGPIO

117 LEFT ext iopad0 chip select 2 cs NGPIO

output bus cs

118 LEFT vdd vc ngpio l4 pnl vc NGPIO

119 LEFT ext iopad0 chip select 1 cs NGPIO

output bus cs

120 LEFT ext iopad0 chip select 0 cs NGPIO

output bus cs

121 LEFT ext iopad0 as NGPIO

inout bus as

122 LEFT vss gcs ngpio l9 pnl gcs NGPIO

123 LEFT ext iopad0 rw NGPIO

inout bus rw

124 LEFT ext iopad0 be3 NGPIO

inout bus be

125 LEFT ext iopad0 be2 NGPIO

inout bus be

126 LEFT vdd vc ngpio l3 pnl vc NGPIO

127 LEFT ext iopad0 be1 NGPIO

inout bus be

128 LEFT vss gcs ngpio l8 pnl gcs NGPIO

129 LEFT ext iopad0 be0 NGPIO

inout bus be

130 LEFT ext iopad0 ready NGPIO

inout bus ready

26 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

131 LEFT vss go ngpio l2 pnl go NGPIO

132 LEFT ext iopad0 err NGPIO

inout bus err

133 LEFT ext iopad0 burst1 NGPIO

inout bus burst

134 LEFT vss gcs ngpio l7 pnl gcs NGPIO

135 LEFT ext iopad0 burst0 NGPIO

inout bus burst

136 LEFT vdd vop ngpio l1 pnl vop NGPIO

137 LEFT ext iopad0 br ack1 NGPIO

inout bus br ack

138 LEFT ext iopad0 br ack0 NGPIO

inout bus br ack

139 LEFT ext iopad0 dma req 3 dreq NGPIO

input bus dreq

140 LEFT vss gcs ngpio l6 pnl gcs NGPIO

141 LEFT ext iopad0 dma req 2 dreq NGPIO

input bus dreq

142 LEFT ext iopad0 dma req 1 dreq NGPIO

input bus dreq

143 LEFT ext iopad0 dma req 0 dreq NGPIO

input bus dreq

144 LEFT vdd vc ngpio l2 pnl vc NGPIO

145 LEFT ext iopad0 dack3 NGPIO

output bus dack

146 LEFT vss gcs ngpio l5 pnl gcs NGPIO

147 LEFT ext iopad0 dack2 NGPIO

output bus dack

148 LEFT ext iopad0 dack1 NGPIO

output bus dack

149 LEFT vdd vc ngpio l1 pnl vc NGPIO

150 LEFT ext iopad0 dack0 NGPIO

output bus dack

27

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

151 LEFT ext iopad0 bus req 3 req NGPIO

input bus req

152 LEFT ext iopad0 bus req 2 req NGPIO

input bus req

153 LEFT ext iopad0 bus req 1 req NGPIO

input bus req

154 LEFT vss gcs ngpio l4 pnl gcs NGPIO

155 LEFT ext iopad0 bus req 0 req NGPIO

input bus req

156 LEFT vss go ngpio l1 pnl go NGPIO

157 LEFT ext iopad0 bgrnt 3 grant NGPIO

output bus grant

158 LEFT ext iopad0 bgrnt 2 grant NGPIO

output bus grant

159 LEFT ext iopad0 bgrnt 1 grant NGPIO

output bus grant

160 LEFT ext iopad0 bgrnt 0 grant NGPIO

output bus grant

161 LEFT vss gcs ngpio l3 pnl gcs NGPIO

162 LEFT pnl filler 4g l0 pnl filler 4g FILLER

163 LEFT pnl filler 2g l0 pnl filler 2g FILLER

164 LEFT vdd vop ngpio l0 pnl vop NGPIO

165 LEFT ext iopad0 birq 3 irq NGPIO

input bus irq

166 LEFT ext iopad0 birq 2 irq NGPIO

input bus irq

167 LEFT vss gcs ngpio l2 pnl gcs NGPIO

168 LEFT ext iopad0 birq 1 irq NGPIO

input bus irq

169 LEFT ext iopad0 birq 0 irq NGPIO

input bus irq

170 LEFT vdd vc ngpio l0 pnl vc NGPIO

28 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

171 LEFT ext iopad0 cs toggle NGPIO

input bus cs toggle

172 LEFT ext iopad0 auto rdy en NGPIO

input bus auto ready en

173 LEFT ext iopad0 flash byte NGPIO

output flash byte

174 LEFT vss gcs ngpio l1 pnl gcs NGPIO

175 LEFT ext iopad0 bit16 NGPIO

input bus 16

176 LEFT ext iopad0 bit8 NGPIO

input bus 8

177 LEFT vss gcs ngpio l0 pnl gcs NGPIO

178 LEFT ext iopad0 FLASH RDY 0 flash rdy NGPIO

input flash ready

179 LEFT ext iopad0 FLASH RDY 1 flash rdy NGPIO

input flash ready

180 LEFT ext iopad0 clk out NGPIO

output ext clk out

181 LEFT vss go ngpio l0 pnl go NGPIO

182 LEFT pnl filler 16g l0 pnl filler 16g FILLER

183 LEFT pnl filler 8g l0 pnl filler 8g FILLER

184 LEFT pnl filler 4g dummy DUMMY(deleated

for DRC)

185 LEFT pnl filler std2sstl bkp l0 pnl filler std2sstl BREAKER

186 LEFT vss go bkp l5 pnl go NGPIO BKP

187 LEFT rtc pad rtc clk i NGPIO BKP

input rtc clk

188 LEFT vss gcs bkp l16 pnl gcs NGPIO BKP

189 LEFT rtc pad rtc hold i NGPIO BKP

input rtc hold

190 LEFT rtc pad rtc reset i NGPIO BKP

input rtc reset

29

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

191 LEFT pp iopad0 PWMIN 5 pwm in pad NGPIO BKP

input pp pwm in

192 LEFT vdd vc bkp l8 pnl vc NGPIO BKP

193 LEFT pp iopad0 PWMIN 4 pwm in pad NGPIO BKP

input pp pwm in

194 LEFT vss gcs bkp l15 pnl gcs NGPIO BKP

195 LEFT pp iopad0 PWMIN 3 pwm in pad NGPIO BKP

input pp pwm in

196 LEFT pp iopad0 PWMIN 2 pwm in pad NGPIO BKP

input pp pwm in

197 LEFT pp iopad0 PWMIN 1 pwm in pad NGPIO BKP

input pp pwm in

198 LEFT vdd vc bkp l7 pnl vc NGPIO BKP

199 LEFT pp iopad0 PWMIN 0 pwm in pad NGPIO BKP

input pp pwm in

200 LEFT vss gcs bkp l14 pnl gcs NGPIO BKP

201 LEFT pp iopad0 PWM 11 pwm out pad NGPIO BKP

output pp pwm out

202 LEFT vdd vop bkp l4 pnl vop NGPIO BKP

203 LEFT pp iopad0 PWM 10 pwm out pad NGPIO BKP

output pp pwm out

204 LEFT pp iopad0 PWM 9 pwm out pad NGPIO BKP

output pp pwm out

205 LEFT pp iopad0 PWM 8 pwm out pad NGPIO BKP

output pp pwm out

206 LEFT vss gcs bkp l13 pnl gcs NGPIO BKP

207 LEFT pp iopad0 PWM 7 pwm out pad NGPIO BKP

output pp pwm out

208 LEFT vss go bkp l4 pnl go NGPIO BKP

209 LEFT pp iopad0 PWM 6 pwm out pad NGPIO BKP

output pp pwm out

210 LEFT hiz pad pwmout hiz NGPIO BKP

input pwmout hiz

30 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

211 LEFT pp iopad0 PWM 5 pwm out pad NGPIO BKP

output pp pwm out

212 LEFT vss gcs bkp l12 pnl gcs NGPIO BKP

213 LEFT pp iopad0 PWM 4 pwm out pad NGPIO BKP

output pp pwm out

214 LEFT pp iopad0 PWM 3 pwm out pad NGPIO BKP

output pp pwm out

215 LEFT pp iopad0 PWM 2 pwm out pad NGPIO BKP

output pp pwm out

216 LEFT vdd vc bkp l6 pnl vc NGPIO BKP

217 LEFT pp iopad0 PWM 1 pwm out pad NGPIO BKP

output pp pwm out

218 LEFT vss gcs bkp l11 pnl gcs NGPIO BKP

219 LEFT pp iopad0 PWM 0 pwm out pad NGPIO BKP

output pp pwm out

220 LEFT pp iopad0 PLSCNT 5 pz pad NGPIO BKP

input pp pz

221 LEFT pp iopad0 PLSCNT 5 pb pad NGPIO BKP

input pp pb

222 LEFT vdd vc bkp l5 pnl vc NGPIO BKP

223 LEFT vss gcs bkp l10 pnl gcs NGPIO BKP

224 LEFT pp iopad0 PLSCNT 5 pa pad NGPIO BKP

input pp pa

225 LEFT vdd vop bkp l3 pnl vop NGPIO BKP

226 LEFT pp iopad0 PLSCNT 4 pz pad NGPIO BKP

input pp pz

227 LEFT vss gcs bkp l9 pnl gcs NGPIO BKP

228 LEFT pp iopad0 PLSCNT 4 pb pad NGPIO BKP

input pp pb

229 LEFT pp iopad0 PLSCNT 4 pa pad NGPIO BKP

input pp pa

230 LEFT vss go bkp l3 pnl go NGPIO BKP

31

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

231 LEFT pp iopad0 PLSCNT 3 pz pad NGPIO BKP

input pp pz

232 LEFT pp iopad0 PLSCNT 3 pb pad NGPIO BKP

input pp pb

233 LEFT vss gcs bkp l8 pnl gcs NGPIO BKP

234 LEFT pp iopad0 PLSCNT 3 pa pad NGPIO BKP

input pp pa

235 LEFT vdd vc bkp l4 pnl vc NGPIO BKP

236 LEFT pp iopad0 PLSCNT 2 pz pad NGPIO BKP

input pp pz

237 LEFT pp iopad0 PLSCNT 2 pb pad NGPIO BKP

input pp pb

238 LEFT vss gcs bkp l7 pnl gcs NGPIO BKP

239 LEFT pp iopad0 PLSCNT 2 pa pad NGPIO BKP

input pp pa

240 LEFT pp iopad0 PLSCNT 1 pz pad NGPIO BKP

input pp pz

241 LEFT pp iopad0 PLSCNT 1 pb pad NGPIO BKP

input pp pb

242 LEFT vdd vc bkp l3 pnl vc NGPIO BKP

243 LEFT pp iopad0 PLSCNT 1 pa pad NGPIO BKP

input pp pa

244 LEFT vss gcs bkp l6 pnl gcs NGPIO BKP

245 LEFT pp iopad0 PLSCNT 0 pz pad NGPIO BKP

input pp pz

246 LEFT pp iopad0 PLSCNT 0 pb pad NGPIO BKP

input pp pb

247 LEFT pp iopad0 PLSCNT 0 pa pad NGPIO BKP

input pp pa

248 LEFT vdd vop bkp l2 pnl vop NGPIO BKP

249 LEFT clk iopad0 EM 7 em reset in pad NGPIO BKP

input em reset

250 LEFT vss gcs bkp l5 pnl gcs NGPIO BKP

32 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

251 LEFT clk iopad0 EM 6 em reset in pad NGPIO BKP

input em reset

252 LEFT vss go bkp l2 pnl go NGPIO BKP

253 LEFT clk iopad0 EM 5 em reset in pad NGPIO BKP

input em reset

254 LEFT clk iopad0 EM 4 em reset in pad NGPIO BKP

input em reset

255 LEFT vss gcs bkp l4 pnl gcs NGPIO BKP

256 LEFT vdd vc bkp l2 pnl vc NGPIO BKP

257 LEFT clk iopad0 EM 3 em reset in pad NGPIO BKP

input em reset

258 LEFT vss gcs bkp l3 pnl gcs NGPIO BKP

259 LEFT clk iopad0 EM 2 em reset in pad NGPIO BKP

input em reset

260 LEFT vdd vc bkp l1 pnl vc NGPIO BKP

261 LEFT clk iopad0 EM 1 em reset in pad NGPIO BKP

input em reset

262 LEFT clk iopad0 EM 0 em reset in pad NGPIO BKP

input em reset

263 LEFT vss gcs bkp l2 pnl gcs NGPIO BKP

264 LEFT clk iopad0 clk outer NGPIO BKP

output clk outer p,n

265 LEFT vss gcs bkp l1 pnl gcs NGPIO BKP

266 LEFT hiz pad clk hiz NGPIO BKP

input clk hiz

267 LEFT vdd vop bkp l1 pnl vop NGPIO BKP

268 LEFT clk iopad0 reset outer NGPIO BKP

output reset outer

269 LEFT vdd vc bkp l0 pnl vc NGPIO BKP

270 LEFT clk iopad0 reset in NGPIO BKP

input reset in

33

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

271 LEFT vss gcs bkp l0 pnl gcs NGPIO BKP

272 LEFT clk iopad0 clk sel iopad NGPIO BKP

input clk sel

273 LEFT vss go bkp l1 pnl go NGPIO BKP

274 LEFT clk iopad0 clk reset NGPIO BKP

input clk reset

275 LEFT clk iopad0 F0 NGPIO BKP

input F

276 LEFT clk iopad0 F1 NGPIO BKP

input F

277 LEFT clk iopad0 F2 NGPIO BKP

input F

278 LEFT clk iopad0 F3 NGPIO BKP

input F

279 LEFT clk iopad0 F4 NGPIO BKP

input F

280 LEFT clk iopad0 F5 NGPIO BKP

input F

281 LEFT clk iopad0 FIN NGPIO BKP

input FIN

282 LEFT vdd vop bkp l0 pnl vop NGPIO BKP

283 LEFT clk iopad0 BP NGPIO BKP

input BP

284 LEFT clk iopad0 R0 NGPIO BKP

input R

285 LEFT clk iopad0 R1 NGPIO BKP

input R

286 LEFT clk iopad0 R2 NGPIO BKP

input R

287 LEFT clk iopad0 R3 NGPIO BKP

input R

288 LEFT clk iopad0 OEB NGPIO BKP

input OEB

289 LEFT vss go bkp l0 pnl go NGPIO BKP

290 LEFT clk iopad0 OD NGPIO BKP

input OD

34 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

291 LEFT clk iopad0 PD NGPIO BKP

input PD

292 LEFT pnl filler std2sstl bkp l1 pnl filler std2sstl NGPIO BKP

BREAKER

293 LEFT clk iopad0 PRCUT2P1 PRCUT2P PLL Analog

Breaker

294 LEFT clk iopad0 PVSS2P PVSS2P PLL Analog

295 LEFT clk iopad0 PVDD2P PVDD2P PLL Analog

296 LEFT clk iopad0 PVDD1P1 PVDD1P PLL Analog

297 LEFT clk iopad0 PVDD1P0 PVDD1P PLL Analog

298 LEFT clk iopad0 PVSS1PC0 PVSS1PC PLL Analog

299 LEFT clk iopad0 PVSS1P1 PVSS1P PLL Analog

300 LEFT clk iopad0 PVSS1P0 PVSS1P PLL Analog

301 LEFT clk iopad0 PVDD1PC0 PVDD1PC PLL Analog

302 LEFT clk iopad0 PRCUT2P0 PRCUT2P PLL Analog

Breaker

CORNER BOTTOM CORNER BL PCORNERDGZ PLL Analog

Corner

BREAKER BOTTOM pnl filler std2sstl b0 pnl filler std2sstl NGPIO

Breaker

303 BOTTOM uart iopad0 uart3 dcd pad NGPIO

input uart3 dcd pad in

304 BOTTOM uart iopad0 uart3 srx pad NGPIO

input uart3 srx pad in

305 BOTTOM uart iopad0 uart3 stx pad NGPIO

output uart3 stx pad out

306 BOTTOM uart iopad0 uart3 dtr pad NGPIO

output uart3 dtr pad out

307 BOTTOM vss go ngpio b6 pnl go NGPIO

308 BOTTOM hiz pad UART PAD HIZ GEN 3 uart hiz NGPIO

input uart hiz

35

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

309 BOTTOM uart iopad0 uart3 dsr pad NGPIO

input uart3 dsr pad in

310 BOTTOM uart iopad0 uart3 rts pad NGPIO

output uart3 rts pad out

311 BOTTOM uart iopad0 uart3 cts pad NGPIO

input uart3 cts pad in

312 BOTTOM vdd vop ngpio b5 pnl vop NGPIO

313 BOTTOM uart iopad0 uart3 ri pad NGPIO

input uart3 ri pad in

314 BOTTOM uart iopad0 uart2 dcd pad NGPIO

input uart2 dcd pad in

315 BOTTOM uart iopad0 uart2 srx pad NGPIO

input uart2 srx pad in

316 BOTTOM uart iopad0 uart2 stx pad NGPIO

output uart2 stx pad out

317 BOTTOM vss go ngpio b5 pnl go NGPIO

318 BOTTOM uart iopad0 uart2 dtr pad NGPIO

output uart2 dtr pad out

319 BOTTOM hiz pad UART PAD HIZ GEN 2 uart hiz NGPIO

input uart hiz

320 BOTTOM uart iopad0 uart2 dsr pad NGPIO

input uart2 dsr pad in

321 BOTTOM uart iopad0 uart2 rts pad NGPIO

output uart2 rts pad out

322 BOTTOM vdd vop ngpio b4 pnl vop NGPIO

323 BOTTOM uart iopad0 uart2 cts pad NGPIO

input uart2 cts pad in

324 BOTTOM uart iopad0 uart2 ri pad NGPIO

input uart2 ri pad in

325 BOTTOM uart iopad0 uart1 dcd pad NGPIO

input uart1 dcd pad in

326 BOTTOM uart iopad0 uart1 srx pad NGPIO

input uart1 srx pad in

327 BOTTOM vss gcs ngpio b16 pnl gcs NGPIO

328 BOTTOM uart iopad0 uart1 stx pad NGPIO

output uart1 stx pad out

36 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

329 BOTTOM vdd vc ngpio b10 pnl vc NGPIO

330 BOTTOM uart iopad0 uart1 dtr pad NGPIO

output uart1 dtr pad out

331 BOTTOM vss gcs ngpio b15 pnl gcs NGPIO

332 BOTTOM hiz pad UART PAD HIZ GEN 1 uart hiz NGPIO

input uart hiz

333 BOTTOM vdd vc ngpio b9 pnl vc NGPIO

334 BOTTOM uart iopad0 uart1 dsr pad NGPIO

input uart1 dsr pad in

335 BOTTOM uart iopad0 uart1 rts pad NGPIO

output uart1 rts pad out

336 BOTTOM vss gcs ngpio b14 pnl gcs NGPIO

337 BOTTOM uart iopad0 uart1 cts pad NGPIO

input uart1 cts pad in

338 BOTTOM uart iopad0 uart1 ri pad NGPIO

input uart1 ri pad in

339 BOTTOM vss go ngpio b4 pnl go NGPIO

340 BOTTOM uart iopad0 uart0 dcd pad NGPIO

input uart0 dcd pad in

341 BOTTOM vss gcs ngpio b13 pnl gcs NGPIO

342 BOTTOM uart iopad0 uart0 srx pad NGPIO

input uart0 srx pad in

343 BOTTOM vdd vop ngpio b3 pnl vop NGPIO

344 BOTTOM uart iopad0 uart0 stx pad NGPIO

output uart0 stx pad out

345 BOTTOM vss gcs ngpio b12 pnl gcs NGPIO

346 BOTTOM uart iopad0 uart0 dtr pad NGPIO

output uart0 dtr pad out

347 BOTTOM vdd vc ngpio b8 pnl vc NGPIO

348 BOTTOM hiz pad UART PAD HIZ GEN 0 uart hiz NGPIO

input uart hiz

37

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

349 BOTTOM uart iopad0 uart0 dsr pad NGPIO

input uart0 dsr pad in

350 BOTTOM uart iopad0 uart0 rts pad NGPIO

output uart0 rts pad out

351 BOTTOM vss gcs ngpio b11 pnl gcs NGPIO

352 BOTTOM uart iopad0 uart0 cts pad NGPIO

input uart0 cts pad in

353 BOTTOM vdd vc ngpio b7 pnl vc NGPIO

354 BOTTOM uart iopad0 uart0 ri pad NGPIO

input uart0 ri pad in

355 BOTTOM vss gcs ngpio b10 pnl gcs NGPIO

356 BOTTOM spi pad1 spi miso i NGPIO

input spi miso1

357 BOTTOM vss go ngpio b3 pnl go NGPIO

358 BOTTOM spi pad1 spi mosi o NGPIO

output spi mosi1

359 BOTTOM spi pad1 spi sck o NGPIO

output spi sck1

360 BOTTOM vss gcs ngpio b9 pnl gcs NGPIO

361 BOTTOM hiz pad SPI PAD HIZ GEN 1 spi hiz NGPIO

input spi hiz

362 BOTTOM spi pad1 spi ss 3 o NGPIO

output spi ss1

363 BOTTOM vdd vop ngpio b2 pnl vop NGPIO

364 BOTTOM spi pad1 spi ss 2 o NGPIO

output spi ss1

365 BOTTOM vss gcs ngpio b8 pnl gcs NGPIO

366 BOTTOM spi pad1 spi ss 1 o NGPIO

output spi ss1

367 BOTTOM vdd vc ngpio b6 pnl vc NGPIO

368 BOTTOM spi pad1 spi ss 0 o NGPIO

output spi ss1

38 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

369 BOTTOM vss gcs ngpio b7 pnl gcs NGPIO

370 BOTTOM spi pad0 spi miso i NGPIO

input spi miso0

371 BOTTOM vdd vc ngpio b5 pnl vc NGPIO

372 BOTTOM spi pad0 spi mosi o NGPIO

output spi mosi0

373 BOTTOM spi pad0 spi sck o NGPIO

output spi sck0

374 BOTTOM hiz pad SPI PAD HIZ GEN 0 spi hiz NGPIO

input spi hiz

375 BOTTOM vss gcs ngpio b6 pnl gcs NGPIO

376 BOTTOM spi pad0 spi ss 3 o NGPIO

output spi ss0

377 BOTTOM vss go ngpio b2 pnl go NGPIO

378 BOTTOM spi pad0 spi ss 2 o NGPIO

output spi ss0

379 BOTTOM vdd vc ngpio b4 pnl vc NGPIO

380 BOTTOM spi pad0 spi ss 1 o NGPIO

output spi ss0

381 BOTTOM vdd vop ngpio b1 pnl vop NGPIO

382 BOTTOM spi pad0 spi ss 0 o NGPIO

output spi ss0

383 BOTTOM vss gcs ngpio b5 pnl gcs NGPIO

384 BOTTOM oce pad oce reload o NGPIO

output oce reload

385 BOTTOM oce pad oce ss i NGPIO

input oce ss

386 BOTTOM hiz pad oce hiz NGPIO

input oce hiz

387 BOTTOM vdd vc ngpio b3 pnl vc NGPIO

388 BOTTOM oce pad oce sck i NGPIO

input oce sck

39

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

389 BOTTOM vss gcs ngpio b4 pnl gcs NGPIO

390 BOTTOM oce pad oce miso o NGPIO

output oce miso

391 BOTTOM vdd vc ngpio b2 pnl vc NGPIO

392 BOTTOM oce pad oce mosi i NGPIO

input oce mosi

393 BOTTOM vss gcs ngpio b3 pnl gcs NGPIO

394 BOTTOM i2c pad i2c sda pad NGPIO

inout i2c sda

395 BOTTOM vss go ngpio b1 pnl go NGPIO

396 BOTTOM hiz pad i2c hiz NGPIO

input i2c hiz

397 BOTTOM i2c pad i2c scl pad NGPIO

inout i2c scl

398 BOTTOM clk iopad0 pll fin sel iopad NGPIO

input pll fin sel

399 BOTTOM vss gcs ngpio b2 pnl gcs NGPIO

400 BOTTOM clk iopad0 lvds fout sel iopad NGPIO

input lvds fout sel

401 BOTTOM vdd vop ngpio b0 pnl vop NGPIO

402 BOTTOM pio pad pio data 7 io NGPIO

inout pio data

403 BOTTOM pio pad pio data 6 io NGPIO

inout pio data

404 BOTTOM pio pad pio data 5 io NGPIO

inout pio data

405 BOTTOM vdd vc ngpio b1 pnl vc NGPIO

406 BOTTOM hiz pad pio hiz NGPIO

inout pio hiz

407 BOTTOM pio pad pio data 4 io NGPIO

inout pio data

408 BOTTOM pio pad pio data 3 io NGPIO

inout pio data

40 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

409 BOTTOM vss gcs ngpio b1 pnl gcs NGPIO

410 BOTTOM pio pad pio data 2 io NGPIO

inout pio data

411 BOTTOM pio pad pio data 1 io NGPIO

inout pio data

412 BOTTOM vdd vc ngpio b0 pnl vc NGPIO

413 BOTTOM pio pad pio data 0 io NGPIO

inout pio data

414 BOTTOM vss gcs ngpio b0 pnl gcs NGPIO

415 BOTTOM hiz pad sdram hiz NGPIO

input sdram hiz

416 BOTTOM hiz pad link sdram hiz NGPIO

input link sdram hiz

417 BOTTOM hiz pad soft hiz en NGPIO

input soft hiz en

418 BOTTOM vss go ngpio b0 pnl go NGPIO

419 BOTTOM pnl filler std2sstl b1 pnl filler std2sstl BREAKER

420 BOTTOM pnl filler sstl 16g b0 pnl filler sstl 16g FILLER

421 BOTTOM pnl filler sstl 8g b0 pnl filler sstl 8g FILLER

422 BOTTOM pnl filler sstl 4g b0 pnl filler sstl 4g FILLER

423 BOTTOM vss go sstl b12 pnl sstl go SSTL

424 BOTTOM sdram iopad0 DQ 143 dq SSTL

inout sdram dq

425 BOTTOM sdram iopad0 DQ 142 dq SSTL

inout sdram dq

426 BOTTOM vss gcs sstl b26 pnl sstl gcs SSTL

427 BOTTOM sdram iopad0 DQ 141 dq SSTL

inout sdram dq

428 BOTTOM sdram iopad0 DQ 140 dq SSTL

inout sdram dq

41

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

429 BOTTOM vdd vq sstl b12 pnl sstl vq SSTL

430 BOTTOM sdram iopad0 DQ 139 dq SSTL

inout sdram dq

431 BOTTOM vss gcs sstl b25 pnl sstl gcs SSTL

432 BOTTOM sdram iopad0 DQ 138 dq SSTL

inout sdram dq

433 BOTTOM vdd vc sstl b12 pnl sstl vc SSTL

434 BOTTOM sdram iopad0 DQ 137 dq SSTL

inout sdram dq

435 BOTTOM vss gcs sstl b24 pnl sstl gcs SSTL

436 BOTTOM sdram iopad0 DQ 136 dq SSTL

inout sdram dq

437 BOTTOM sdram iopad0 DQM 17 dqm SSTL

output sdram dqm

438 BOTTOM sdram iopad0 DQS 17 dqs SSTL

inout sdram dqs

439 BOTTOM vss go sstl b11 pnl sstl go SSTL

440 BOTTOM sdram iopad0 DQ 135 dq SSTL

inout sdram dq

441 BOTTOM sdram iopad0 DQ 134 dq SSTL

inout sdram dq

442 BOTTOM vss gcs sstl b23 pnl sstl gcs SSTL

443 BOTTOM sdram iopad0 DQ 133 dq SSTL

inout sdram dq

444 BOTTOM vdd vq sstl b11 pnl sstl vq SSTL

445 BOTTOM sdram iopad0 DQ 132 dq SSTL

inout sdram dq

446 BOTTOM vss gcs sstl b22 pnl sstl gcs SSTL

447 BOTTOM sdram iopad0 DQ 131 dq SSTL

inout sdram dq

448 BOTTOM vss go sstl b10 pnl sstl go SSTL

42 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

449 BOTTOM sdram iopad0 CLK 2 clk SSTL

output sdram clk

450 BOTTOM vss gcs sstl b21 pnl sstl gcs SSTL

451 BOTTOM sdram iopad0 CLK 2 clk SSTL

output sdram clk

452 BOTTOM vdd vp sstl b5 pnl sstl vp SSTL

453 BOTTOM sdram iopad0 DQ 130 dq SSTL

inout sdram dq

454 BOTTOM sdram iopad0 DQ 129 dq SSTL

inout sdram dq

455 BOTTOM vss gcs sstl b20 pnl sstl gcs SSTL

456 BOTTOM sdram iopad0 DQ 128 dq SSTL

inout sdram dq

457 BOTTOM sdram iopad0 DQM 16 dqm SSTL

output sdram dqm

458 BOTTOM vdd vq sstl b10 pnl sstl vq SSTL

459 BOTTOM sdram iopad0 DQS 16 dqs SSTL

inout sdram dqs

460 BOTTOM vdd vc sstl b11 pnl sstl vc SSTL

461 BOTTOM sdram iopad0 DQ 127 dq SSTL

inout sdram dq

462 BOTTOM vss go sstl b9 pnl sstl go SSTL

463 BOTTOM sdram iopad0 DQ 126 dq SSTL

inout sdram dq

464 BOTTOM vss gcs sstl b19 pnl sstl gcs SSTL

465 BOTTOM sdram iopad0 DQ 125 dq SSTL

inout sdram dq

466 BOTTOM vdd vc sstl b10 pnl sstl vc SSTL

467 BOTTOM sdram iopad0 DQ 124 dq SSTL

inout sdram dq

468 BOTTOM sdram iopad0 DQ 123 dq SSTL

inout sdram dq

43

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

469 BOTTOM vss gcs sstl b18 pnl sstl gcs SSTL

470 BOTTOM sdram iopad0 DQ 122 dq SSTL

inout sdram dq

471 BOTTOM sdram iopad0 DQ 121 dq SSTL

inout sdram dq

472 BOTTOM vdd vq sstl b9 pnl sstl vq SSTL

473 BOTTOM sdram iopad0 DQ 120 dq SSTL

inout sdram dq

474 BOTTOM vss gcs sstl b17 pnl sstl gcs SSTL

475 BOTTOM sdram iopad0 DQM 15 dqm SSTL

output sdram dqm

476 BOTTOM sdram iopad0 DQS 15 dqs SSTL

inout sdram dqs

477 BOTTOM sdram iopad0 DQ 119 dq SSTL

inout sdram dq

478 BOTTOM vss go sstl b8 pnl sstl go SSTL

479 BOTTOM sdram iopad0 DQ 118 dq SSTL

inout sdram dq

480 BOTTOM vdd vp sstl b4 pnl sstl vp SSTL

481 BOTTOM sdram iopad0 DQ 117 dq SSTL

inout sdram dq

482 BOTTOM vss gcs sstl b16 pnl sstl gcs SSTL

483 BOTTOM sdram iopad0 DQ 116 dq SSTL

inout sdram dq

484 BOTTOM vdd vc sstl b9 pnl sstl vc SSTL

485 BOTTOM sdram iopad0 DQ 115 dq SSTL

inout sdram dq

486 BOTTOM vdd vq sstl b8 pnl sstl vq SSTL

487 BOTTOM sdram iopad0 DQ 114 dq SSTL

inout sdram dq

488 BOTTOM vss gcs sstl b15 pnl sstl gcs SSTL

44 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

489 BOTTOM sdram iopad0 DQ 113 dq SSTL

inout sdram dq

490 BOTTOM vss go sstl b7 pnl sstl go SSTL

491 BOTTOM sdram iopad0 DQ 112 dq SSTL

inout sdram dq

492 BOTTOM sdram iopad0 DQM 14 dqm SSTL

output sdram dqm

493 BOTTOM sstl vref b1 pnl sstl vref SSTL

494 BOTTOM sdram iopad0 DQS 14 dqs SSTL

inout sdram dqs

495 BOTTOM sdram iopad0 DQ 111 dq SSTL

inout sdram dq

496 BOTTOM sdram iopad0 DQ 110 dq SSTL

inout sdram dq

497 BOTTOM sdram iopad0 DQ 109 dq SSTL

inout sdram dq

498 BOTTOM vss gcs sstl b14 pnl sstl gcs SSTL

499 BOTTOM sdram iopad0 DQ 108 dq SSTL

inout sdram dq

500 BOTTOM vdd vq sstl b7 pnl sstl vq SSTL

501 BOTTOM sdram iopad0 DQ 107 dq SSTL

inout sdram dq

502 BOTTOM vdd vp sstl b3 pnl sstl vp SSTL

503 BOTTOM sdram iopad0 DQ 106 dq SSTL

inout sdram dq

504 BOTTOM sdram iopad0 DQ 105 dq SSTL

inout sdram dq

505 BOTTOM vss go sstl b6 pnl sstl go SSTL

506 BOTTOM sdram iopad0 DQ 104 dq SSTL

inout sdram dq

507 BOTTOM vss gcs sstl b13 pnl sstl gcs SSTL

508 BOTTOM sdram iopad0 DQM 13 dqm SSTL

output sdram dqm

45

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

509 BOTTOM vdd vc sstl b8 pnl sstl vc SSTL

510 BOTTOM sdram iopad0 DQS 13 dqs SSTL

inout sdram dqs

511 BOTTOM sdram iopad0 DQ 103 dq SSTL

inout sdram dq

512 BOTTOM vss gcs sstl b12 pnl sstl gcs SSTL

513 BOTTOM sdram iopad0 DQ 102 dq SSTL

inout sdram dq

514 BOTTOM vdd vq sstl b6 pnl sstl vq SSTL

515 BOTTOM sdram iopad0 DQ 101 dq SSTL

inout sdram dq

516 BOTTOM vdd vc sstl b7 pnl sstl vc SSTL

517 BOTTOM sdram iopad0 DQ 100 dq SSTL

inout sdram dq

518 BOTTOM sdram iopad0 DQ 99 dq SSTL

inout sdram dq

519 BOTTOM sdram iopad0 DQ 98 dq SSTL

inout sdram dq

520 BOTTOM sdram iopad0 DQ 97 dq SSTL

inout sdram dq

521 BOTTOM vss go sstl b5 pnl sstl go SSTL

522 BOTTOM sdram iopad0 DQ 96 dq SSTL

inout sdram dq

523 BOTTOM vss gcs sstl b11 pnl sstl gcs SSTL

524 BOTTOM sdram iopad0 DQM 12 dqm SSTL

output sdram dqm

525 BOTTOM vdd vc sstl b6 pnl sstl vc SSTL

526 BOTTOM sdram iopad0 DQS 12 dqs SSTL

inout sdram dqs

527 BOTTOM vss gcs sstl b10 pnl sstl gcs SSTL

528 BOTTOM sdram iopad0 DQ 95 dq SSTL

inout sdram dq

46 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

529 BOTTOM vdd vq sstl b5 pnl sstl vq SSTL

530 BOTTOM sdram iopad0 DQ 94 dq SSTL

inout sdram dq

531 BOTTOM vdd vp sstl b2 pnl sstl vp SSTL

532 BOTTOM sdram iopad0 DQ 93 dq SSTL

inout sdram dq

533 BOTTOM vss go sstl b4 pnl sstl go SSTL

534 BOTTOM sdram iopad0 DQ 92 dq SSTL

inout sdram dq

535 BOTTOM sdram iopad0 DQ 91 dq SSTL

inout sdram dq

536 BOTTOM vss gcs sstl b9 pnl sstl gcs SSTL

537 BOTTOM sdram iopad0 DQ 90 dq SSTL

inout sdram dq

538 BOTTOM vdd vc sstl b5 pnl sstl vc SSTL

539 BOTTOM sdram iopad0 DQ 89 dq SSTL

inout sdram dq

540 BOTTOM vss gcs sstl b8 pnl sstl gcs SSTL

541 BOTTOM sdram iopad0 DQ 88 dq SSTL

inout sdram dq

542 BOTTOM vdd vq sstl b4 pnl sstl vq SSTL

543 BOTTOM sdram iopad0 DQM 11 dqm SSTL

output sdram dqm

544 BOTTOM vdd vc sstl b4 pnl sstl vc SSTL

545 BOTTOM sdram iopad0 DQS 11 dqs SSTL

inout sdram dqs

546 BOTTOM sdram iopad0 DQ 87 dq SSTL

inout sdram dq

547 BOTTOM sdram iopad0 DQ 86 dq SSTL

inout sdram dq

548 BOTTOM sdram iopad0 DQ 85 dq SSTL

inout sdram dq

47

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

549 BOTTOM vss go sstl b3 pnl sstl go SSTL

550 BOTTOM sdram iopad0 DQ 84 dq SSTL

inout sdram dq

551 BOTTOM vss gcs sstl b7 pnl sstl gcs SSTL

552 BOTTOM sdram iopad0 DQ 83 dq SSTL

inout sdram dq

553 BOTTOM vdd vc sstl b3 pnl sstl vc SSTL

554 BOTTOM sdram iopad0 DQ 82 dq SSTL

inout sdram dq

555 BOTTOM vss gcs sstl b6 pnl sstl gcs SSTL

556 BOTTOM sdram iopad0 DQ 81 dq SSTL

inout sdram dq

557 BOTTOM vdd vq sstl b3 pnl sstl vq SSTL

558 BOTTOM sdram iopad0 DQ 80 dq SSTL

inout sdram dq

559 BOTTOM sdram iopad0 DQM 10 dqm SSTL

output sdram dqm

560 BOTTOM vss go sstl b2 pnl sstl go SSTL

561 BOTTOM sdram iopad0 DQS 10 dqs SSTL

inout sdram dqs

562 BOTTOM vdd vp sstl b1 pnl sstl vp SSTL

563 BOTTOM sdram iopad0 DQ 79 dq SSTL

inout sdram dq

564 BOTTOM sdram iopad0 DQ 78 dq SSTL

inout sdram dq

565 BOTTOM vss gcs sstl b5 pnl sstl gcs SSTL

566 BOTTOM sdram iopad0 DQ 77 dq SSTL

inout sdram dq

567 BOTTOM vdd vc sstl b2 pnl sstl vc SSTL

568 BOTTOM sdram iopad0 DQ 76 dq SSTL

inout sdram dq

48 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

569 BOTTOM vss gcs sstl b4 pnl sstl gcs SSTL

570 BOTTOM sdram iopad0 DQ 75 dq SSTL

inout sdram dq

571 BOTTOM vdd vq sstl b2 pnl sstl vq SSTL

572 BOTTOM sdram iopad0 DQ 74 dq SSTL

inout sdram dq

573 BOTTOM vdd vc sstl b1 pnl sstl vc SSTL

574 BOTTOM sdram iopad0 DQ 73 dq SSTL

inout sdram dq

575 BOTTOM sdram iopad0 DQ 72 dq SSTL

inout sdram dq

576 BOTTOM vss go sstl b1 pnl sstl go SSTL

577 BOTTOM sdram iopad0 DQM 9 dqm SSTL

output sdram dqm

578 BOTTOM sdram iopad0 DQS 9 dqs SSTL

inout sdram dqs

579 BOTTOM vss gcs sstl b3 pnl sstl gcs SSTL

580 BOTTOM sdram iopad0 DQ 71 dq SSTL

inout sdram dq

581 BOTTOM vdd vq sstl b1 pnl sstl vq SSTL

582 BOTTOM sdram iopad0 DQ 70 dq SSTL

inout sdram dq

583 BOTTOM sdram iopad0 DQ 69 dq SSTL

inout sdram dq

584 BOTTOM sdram iopad0 DQ 68 dq SSTL

inout sdram dq

585 BOTTOM vss go sstl b0 pnl sstl go SSTL

586 BOTTOM sdram iopad0 oe SSTL

output sdram oe

587 BOTTOM vdd vp sstl b0 pnl sstl vp SSTL

588 BOTTOM sdram iopad0 dir SSTL

output sdram dir

49

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

589 BOTTOM vss gcs sstl b2 pnl sstl gcs SSTL

590 BOTTOM sdram iopad0 DQ 67 dq SSTL

inout sdram dq

591 BOTTOM vdd vc sstl b0 pnl sstl vc SSTL

592 BOTTOM sdram iopad0 DQ 66 dq SSTL

inout sdram dq

593 BOTTOM vss gcs sstl b1 pnl sstl gcs SSTL

594 BOTTOM sdram iopad0 DQ 65 dq SSTL

inout sdram dq

595 BOTTOM vdd vq sstl b0 pnl sstl vq SSTL

596 BOTTOM sdram iopad0 DQ 64 dq SSTL

inout sdram dq

597 BOTTOM vss gcs sstl b0 pnl sstl gcs SSTL

598 BOTTOM sdram iopad0 DQM 8 dqm SSTL

output sdram dqm

599 BOTTOM sdram iopad0 DQS 8 dqs SSTL

inout sdram dqs

600 BOTTOM sstl vref b0 pnl sstl vref SSTL

601 BOTTOM sdram iopad0 CS 1 cs SSTL

output sdram cs

602 BOTTOM sdram iopad0 CS 0 cs SSTL

output sdram cs

CORNER RIGHT CORNER BR pnl iocrnr hs SSTL Corner

603 RIGHT sdram iopad0 cas SSTL

output sdram cas

604 RIGHT sdram iopad0 we SSTL

output sdram we

605 RIGHT vss go sstl r0 pnl sstl go SSTL

606 RIGHT sdram iopad0 ras SSTL

output sdram ras

607 RIGHT vdd vq sstl r0 pnl sstl vq SSTL

50 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

608 RIGHT sdram iopad0 BA 0 ba SSTL

output sdram ba

609 RIGHT vdd vp sstl r0 pnl sstl vp SSTL

610 RIGHT sdram iopad0 BA 1 ba SSTL

output sdram ba

611 RIGHT sdram iopad0 cke SSTL

output sdram cke

612 RIGHT vss gcs sstl r0 pnl sstl gcs SSTL

613 RIGHT sdram iopad0 ADDR 0 addr SSTL

output sdram a

614 RIGHT vdd vc sstl r0 pnl sstl vc SSTL

615 RIGHT sdram iopad0 ADDR 1 addr SSTL

output sdram a

616 RIGHT vss gcs sstl r1 pnl sstl gcs SSTL

617 RIGHT sdram iopad0 ADDR 2 addr SSTL

output sdram a

618 RIGHT sdram iopad0 ADDR 3 addr SSTL

output sdram a

619 RIGHT vss go sstl r1 pnl sstl go SSTL

620 RIGHT sdram iopad0 ADDR 4 addr SSTL

output sdram a

621 RIGHT vss gcs sstl r2 pnl sstl gcs SSTL

622 RIGHT sdram iopad0 ADDR 5 addr SSTL

output sdram a

623 RIGHT vdd vq sstl r1 pnl sstl vq SSTL

624 RIGHT sdram iopad0 ADDR 6 addr SSTL

output sdram a

625 RIGHT sdram iopad0 ADDR 7 addr SSTL

output sdram a

626 RIGHT vss gcs sstl r3 pnl sstl gcs SSTL

627 RIGHT sdram iopad0 ADDR 8 addr SSTL

output sdram a

51

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

628 RIGHT vdd vc sstl r1 pnl sstl vc SSTL

629 RIGHT sdram iopad0 ADDR 9 addr SSTL

output sdram a

630 RIGHT vss gcs sstl r4 pnl sstl gcs SSTL

631 RIGHT sdram iopad0 ADDR 10 addr SSTL

output sdram a

632 RIGHT vss go sstl r2 pnl sstl go SSTL

633 RIGHT sdram iopad0 ADDR 11 addr SSTL

output sdram a

634 RIGHT vdd vc sstl r2 pnl sstl vc SSTL

635 RIGHT sdram iopad0 ADDR 12 addr SSTL

output sdram a

636 RIGHT vdd vq sstl r2 pnl sstl vq SSTL

637 RIGHT sdram iopad0 DQ 63 dq SSTL

inout sdram dq

638 RIGHT vdd vp sstl r1 pnl sstl vp SSTL

639 RIGHT sdram iopad0 DQ 62 dq SSTL

inout sdram dq

640 RIGHT vss gcs sstl r5 pnl sstl gcs SSTL

641 RIGHT sdram iopad0 DQ 61 dq SSTL

inout sdram dq

642 RIGHT sdram iopad0 DQ 60 dq SSTL

inout sdram dq

643 RIGHT vdd vc sstl r3 pnl sstl vc SSTL

644 RIGHT sdram iopad0 DQ 59 dq SSTL

inout sdram dq

645 RIGHT vss gcs sstl r6 pnl sstl gcs SSTL

646 RIGHT sdram iopad0 DQ 58 dq SSTL

inout sdram dq

647 RIGHT vss go sstl r3 pnl sstl go SSTL

52 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

648 RIGHT sdram iopad0 DQ 57 dq SSTL

inout sdram dq

649 RIGHT vdd vc sstl r4 pnl sstl vc SSTL

650 RIGHT sdram iopad0 DQ 56 dq SSTL

inout sdram dq

651 RIGHT vdd vq sstl r3 pnl sstl vq SSTL

652 RIGHT sdram iopad0 DQM 7 dqm SSTL

output sdram dqm

653 RIGHT sdram iopad0 DQS 7 dqs SSTL

inout sdram dqs

654 RIGHT sdram iopad0 DQ 55 dq SSTL

inout sdram dq

655 RIGHT sdram iopad0 DQ 54 dq SSTL

inout sdram dq

656 RIGHT vss gcs sstl r7 pnl sstl gcs SSTL

657 RIGHT sdram iopad0 DQ 53 dq SSTL

inout sdram dq

658 RIGHT vdd vc sstl r5 pnl sstl vc SSTL

659 RIGHT sdram iopad0 DQ 52 dq SSTL

inout sdram dq

660 RIGHT vss gcs sstl r8 pnl sstl gcs SSTL

661 RIGHT sdram iopad0 DQ 51 dq SSTL

inout sdram dq

662 RIGHT vss go sstl r4 pnl sstl go SSTL

663 RIGHT sdram iopad0 DQ 50 dq SSTL

inout sdram dq

664 RIGHT vss gcs sstl r9 pnl sstl gcs SSTL

665 RIGHT sdram iopad0 DQ 49 dq SSTL

inout sdram dq

666 RIGHT sdram iopad0 DQ 48 dq SSTL

inout sdram dq

667 RIGHT vdd vq sstl r4 pnl sstl vq SSTL

53

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

668 RIGHT sdram iopad0 DQM 6 dqm SSTL

output sdram dqm

669 RIGHT vdd vp sstl r2 pnl sstl vp SSTL

670 RIGHT sdram iopad0 DQS 6 dqs SSTL

inout sdram dqs

671 RIGHT sdram iopad0 DQ 47 dq SSTL

inout sdram dq

672 RIGHT vss gcs sstl r10 pnl sstl gcs SSTL

673 RIGHT sdram iopad0 DQ 46 dq SSTL

inout sdram dq

674 RIGHT vss go sstl r5 pnl sstl go SSTL

675 RIGHT sdram iopad0 DQ 45 dq SSTL

inout sdram dq

676 RIGHT vdd vc sstl r6 pnl sstl vc SSTL

677 RIGHT sdram iopad0 DQ 44 dq SSTL

inout sdram dq

678 RIGHT vdd vq sstl r5 pnl sstl vq SSTL

679 RIGHT sdram iopad0 DQ 43 dq SSTL

inout sdram dq

680 RIGHT vss gcs sstl r11 pnl sstl gcs SSTL

681 RIGHT sdram iopad0 DQ 42 dq SSTL

inout sdram dq

682 RIGHT sdram iopad0 DQ 41 dq SSTL

inout sdram dq

683 RIGHT vdd vc sstl r7 pnl sstl vc SSTL

684 RIGHT sdram iopad0 DQ 40 dq SSTL

inout sdram dq

685 RIGHT sdram iopad0 DQM 5 dqm SSTL

output sdram dqm

686 RIGHT vss go sstl r6 pnl sstl go SSTL

687 RIGHT sdram iopad0 DQS 5 dqs SSTL

inout sdram dqs

54 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

688 RIGHT vdd vq sstl r6 pnl sstl vq SSTL

689 RIGHT sdram iopad0 DQ 39 dq SSTL

inout sdram dq

690 RIGHT sdram iopad0 DQ 38 dq SSTL

inout sdram dq

691 RIGHT sdram iopad0 DQ 37 dq SSTL

inout sdram dq

692 RIGHT vss gcs sstl r12 pnl sstl gcs SSTL

693 RIGHT sdram iopad0 CLK 1 clk SSTL

output sdram clk

694 RIGHT vss go sstl r7 pnl sstl go SSTL

695 RIGHT sdram iopad0 CLK 1 clk SSTL

output sdram clk

696 RIGHT vss gcs sstl r13 pnl sstl gcs SSTL

697 RIGHT sdram iopad0 DQ 36 dq SSTL

inout sdram dq

698 RIGHT vdd vq sstl r7 pnl sstl vq SSTL

699 RIGHT sdram iopad0 DQ 35 dq SSTL

inout sdram dq

700 RIGHT vdd vp sstl r3 pnl sstl vp SSTL

701 RIGHT sdram iopad0 DQ 34 dq SSTL

inout sdram dq

702 RIGHT vss gcs sstl r14 pnl sstl gcs SSTL

703 RIGHT sdram iopad0 DQ 33 dq SSTL

inout sdram dq

704 RIGHT vss go sstl r8 pnl sstl go SSTL

705 RIGHT sdram iopad0 DQ 32 dq SSTL

inout sdram dq

706 RIGHT sdram iopad0 DQM 4 dqm SSTL

output sdram dqm

707 RIGHT sstl vref r0 pnl sstl vref SSTL

55

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

708 RIGHT sdram iopad0 DQS 4 dqs SSTL

inout sdram dqs

709 RIGHT sdram iopad0 DQ 31 dq SSTL

inout sdram dq

710 RIGHT vdd vq sstl r8 pnl sstl vq SSTL

711 RIGHT sdram iopad0 DQ 30 dq SSTL

inout sdram dq

712 RIGHT vss gcs sstl r15 pnl sstl gcs SSTL

713 RIGHT sdram iopad0 CLK 0 clk SSTL

output sdram clk

714 RIGHT vss go sstl r9 pnl sstl go SSTL

715 RIGHT sdram iopad0 CLK 0 clk SSTL

output sdram clk

716 RIGHT vss gcs sstl r16 pnl sstl gcs SSTL

717 RIGHT sdram iopad0 DQ 29 dq SSTL

inout sdram dq

718 RIGHT sdram iopad0 DQ 28 dq SSTL

inout sdram dq

719 RIGHT vdd vq sstl r9 pnl sstl vq SSTL

720 RIGHT sdram iopad0 DQ 27 dq SSTL

inout sdram dq

721 RIGHT vdd vp sstl r4 pnl sstl vp SSTL

722 RIGHT sdram iopad0 DQ 26 dq SSTL

inout sdram dq

723 RIGHT vdd vc sstl r8 pnl sstl vc SSTL

724 RIGHT sdram iopad0 DQ 25 dq SSTL

inout sdram dq

725 RIGHT sdram iopad0 DQ 24 dq SSTL

inout sdram dq

726 RIGHT vss gcs sstl r17 pnl sstl gcs SSTL

727 RIGHT sdram iopad0 DQM 3 dqm SSTL

output sdram dqm

56 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

728 RIGHT vss go sstl r10 pnl sstl go SSTL

729 RIGHT sdram iopad0 DQS 3 dqs SSTL

inout sdram dqs

730 RIGHT vss gcs sstl r18 pnl sstl gcs SSTL

731 RIGHT sdram iopad0 DQ 23 dq SSTL

inout sdram dq

732 RIGHT sdram iopad0 DQ 22 dq SSTL

inout sdram dq

733 RIGHT sdram iopad0 DQ 21 dq SSTL

inout sdram dq

734 RIGHT sdram iopad0 DQ 20 dq SSTL

inout sdram dq

735 RIGHT vdd vq sstl r10 pnl sstl vq SSTL

736 RIGHT sdram iopad0 DQ 19 dq SSTL

inout sdram dq

737 RIGHT vss gcs sstl r19 pnl sstl gcs SSTL

738 RIGHT sdram iopad0 DQ 18 dq SSTL

inout sdram dq

739 RIGHT vdd vc sstl r9 pnl sstl vc SSTL

740 RIGHT sdram iopad0 DQ 17 dq SSTL

inout sdram dq

741 RIGHT vss gcs sstl r20 pnl sstl gcs SSTL

742 RIGHT sdram iopad0 DQ 16 dq SSTL

inout sdram dq

743 RIGHT vdd vc sstl r10 pnl sstl vc SSTL

744 RIGHT sdram iopad0 DQM 2 dqm SSTL

output sdram dqm

745 RIGHT vdd vp sstl r5 pnl sstl vp SSTL

746 RIGHT sdram iopad0 DQS 2 dqs SSTL

inout sdram dqs

747 RIGHT vss go sstl r11 pnl sstl go SSTL

57

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

748 RIGHT sdram iopad0 DQ 15 dq SSTL

inout sdram dq

749 RIGHT sdram iopad0 DQ 14 dq SSTL

inout sdram dq

750 RIGHT vss gcs sstl r21 pnl sstl gcs SSTL

751 RIGHT sdram iopad0 DQ 13 dq SSTL

inout sdram dq

752 RIGHT vdd vq sstl r11 pnl sstl vq SSTL

753 RIGHT sdram iopad0 DQ 12 dq SSTL

inout sdram dq

754 RIGHT vss gcs sstl r22 pnl sstl gcs SSTL

755 RIGHT sdram iopad0 DQ 11 dq SSTL

inout sdram dq

756 RIGHT vdd vc sstl r11 pnl sstl vc SSTL

757 RIGHT sdram iopad0 DQ 10 dq SSTL

inout sdram dq

758 RIGHT vss gcs sstl r23 pnl sstl gcs SSTL

759 RIGHT sdram iopad0 DQ 9 dq SSTL

inout sdram dq

760 RIGHT sdram iopad0 DQ 8 dq SSTL

inout sdram dq

761 RIGHT sdram iopad0 DQM 1 dqm SSTL

output sdram dqm

762 RIGHT sdram iopad0 DQS 1 dqs SSTL

inout sdram dqs

763 RIGHT vdd vc sstl r12 pnl sstl vc SSTL

764 RIGHT sdram iopad0 DQ 7 dq SSTL

inout sdram dq

765 RIGHT vss gcs sstl r24 pnl sstl gcs SSTL

766 RIGHT sdram iopad0 DQ 6 dq SSTL

inout sdram dq

767 RIGHT vss go sstl r12 pnl sstl go SSTL

58 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

768 RIGHT sdram iopad0 DQ 5 dq SSTL

inout sdram dq

769 RIGHT vdd vc sstl r13 pnl sstl vc SSTL

770 RIGHT sdram iopad0 DQ 4 dq SSTL

inout sdram dq

771 RIGHT vdd vq sstl r12 pnl sstl vq SSTL

772 RIGHT sdram iopad0 DQ 3 dq SSTL

inout sdram dq

773 RIGHT sdram iopad0 DQ 2 dq SSTL

inout sdram dq

774 RIGHT vdd vc sstl r14 pnl sstl vc SSTL

775 RIGHT sdram iopad0 DQ 1 dq SSTL

inout sdram dq

776 RIGHT vdd vp sstl r6 pnl sstl vp SSTL

777 RIGHT sdram iopad0 DQ 0 dq SSTL

inout sdram dq

778 RIGHT sdram iopad0 DQM 0 dqm SSTL

output sdram dqm

779 RIGHT vss gcs sstl r25 pnl sstl gcs SSTL

780 RIGHT sdram iopad0 DQS 0 dqs SSTL

inout sdram dqs

781 RIGHT vss go sstl r13 pnl sstl go SSTL

782 RIGHT link sdram iopad0 dq47 SSTL

inout sdram32 dq

783 RIGHT vdd vc sstl r15 pnl sstl vc SSTL

784 RIGHT link sdram iopad0 dq46 SSTL

inout sdram32 dq

785 RIGHT vdd vq sstl r13 pnl sstl vq SSTL

786 RIGHT link sdram iopad0 dq45 SSTL

inout sdram32 dq

787 RIGHT vss gcs sstl r26 pnl sstl gcs SSTL

59

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

788 RIGHT link sdram iopad0 dq44 SSTL

inout sdram32 dq

789 RIGHT link sdram iopad0 dq43 SSTL

inout sdram32 dq

790 RIGHT vss go sstl r14 pnl sstl go SSTL

791 RIGHT link sdram iopad0 dq42 SSTL

inout sdram32 dq

792 RIGHT link sdram iopad0 dq41 SSTL

inout sdram32 dq

793 RIGHT vdd vc sstl r16 pnl sstl vc SSTL

794 RIGHT link sdram iopad0 dq40 SSTL

inout sdram32 dq

795 RIGHT vdd vq sstl r14 pnl sstl vq SSTL

796 RIGHT link sdram iopad0 dq39 SSTL

inout sdram32 dq

797 RIGHT link sdram iopad0 dq38 SSTL

inout sdram32 dq

798 RIGHT link sdram iopad0 dq37 SSTL

inout sdram32 dq

799 RIGHT vss gcs sstl r27 pnl sstl gcs SSTL

800 RIGHT link sdram iopad0 dq36 SSTL

inout sdram32 dq

801 RIGHT vdd vp sstl r7 pnl sstl vp SSTL

802 RIGHT link sdram iopad0 dq35 SSTL

inout sdram32 dq

803 RIGHT vss gcs sstl r28 pnl sstl gcs SSTL

804 RIGHT link sdram iopad0 dq34 SSTL

inout sdram32 dq

805 RIGHT vss go sstl r15 pnl sstl go SSTL

806 RIGHT link sdram iopad0 dq33 SSTL

inout sdram32 dq

807 RIGHT vdd vc sstl r17 pnl sstl vc SSTL

60 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

808 RIGHT link sdram iopad0 dq32 SSTL

inout sdram32 dq

809 RIGHT vdd vq sstl r15 pnl sstl vq SSTL

810 RIGHT link sdram iopad0 dqm5 SSTL

output sdram32 dqm

811 RIGHT vss gcs sstl r29 pnl sstl gcs SSTL

812 RIGHT link sdram iopad0 dqm4 SSTL

output sdram32 dqm

813 RIGHT link sdram iopad0 dqs5 SSTL

inout sdram32 dqs

814 RIGHT sstl vref r1 pnl sstl vref SSTL

815 RIGHT link sdram iopad0 dqs4 SSTL

inout sdram32 dqs

816 RIGHT link sdram iopad0 oe SSTL

output sdram32 oe

817 RIGHT vss gcs sstl r30 pnl sstl gcs SSTL

818 RIGHT link sdram iopad0 dir SSTL

output sdram32 dir

819 RIGHT vdd vc sstl r18 pnl sstl vc SSTL

820 RIGHT link sdram iopad0 addr12 SSTL

output sdram32 a

821 RIGHT vss gcs sstl r31 pnl sstl gcs SSTL

822 RIGHT link sdram iopad0 clk2 SSTL

output sdram32 clk2

823 RIGHT vss go sstl r16 pnl sstl go SSTL

824 RIGHT link sdram iopad0 clk2 SSTL

output sdram32 clk2

825 RIGHT vss gcs sstl r32 pnl sstl gcs SSTL

826 RIGHT link sdram iopad0 addr11 SSTL

output sdram32 a

827 RIGHT vdd vq sstl r16 pnl sstl vq SSTL

61

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

828 RIGHT link sdram iopad0 addr10 SSTL

output sdram32 a

829 RIGHT link sdram iopad0 addr09 SSTL

output sdram32 a

830 RIGHT vdd vp sstl r8 pnl sstl vp SSTL

831 RIGHT link sdram iopad0 addr08 SSTL

output sdram32 a

832 RIGHT link sdram iopad0 addr07 SSTL

output sdram32 a

833 RIGHT vss gcs sstl r33 pnl sstl gcs SSTL

834 RIGHT link sdram iopad0 addr06 SSTL

output sdram32 a

835 RIGHT vdd vc sstl r19 pnl sstl vc SSTL

836 RIGHT link sdram iopad0 addr05 SSTL

output sdram32 a

837 RIGHT vss gcs sstl r34 pnl sstl gcs SSTL

838 RIGHT link sdram iopad0 addr04 SSTL

output sdram32 a

839 RIGHT link sdram iopad0 addr03 SSTL

output sdram32 a

840 RIGHT link sdram iopad0 addr02 SSTL

output sdram32 a

841 RIGHT link sdram iopad0 addr01 SSTL

output sdram32 a

842 RIGHT vss go sstl r17 pnl sstl go SSTL

843 RIGHT link sdram iopad0 addr00 SSTL

output sdram32 a

844 RIGHT vdd vc sstl r20 pnl sstl vc SSTL

845 RIGHT link sdram iopad0 bank0 SSTL

output sdram32 ba

846 RIGHT vdd vq sstl r17 pnl sstl vq SSTL

847 RIGHT link sdram iopad0 bank1 SSTL

output sdram32 ba

62 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

848 RIGHT vss gcs sstl r35 pnl sstl gcs SSTL

849 RIGHT link sdram iopad0 cs1 SSTL

output sdram32 cs

850 RIGHT vdd vc sstl r21 pnl sstl vc SSTL

851 RIGHT link sdram iopad0 cs0 SSTL

output sdram32 cs

852 RIGHT vdd vp sstl r9 pnl sstl vp SSTL

853 RIGHT link sdram iopad0 cke SSTL

output sdram32 cke

854 RIGHT vss gcs sstl r36 pnl sstl gcs SSTL

855 RIGHT link sdram iopad0 ras SSTL

output sdram32 ras

856 RIGHT link sdram iopad0 cas SSTL

output sdram32 cas

857 RIGHT vdd vc sstl r22 pnl sstl vc SSTL

858 RIGHT link sdram iopad0 we SSTL

output sdram32 we

859 RIGHT vss gcs sstl r37 pnl sstl gcs SSTL

860 RIGHT link sdram iopad0 dqm3 SSTL

output sdram32 dqm

861 RIGHT vss go sstl r18 pnl sstl go SSTL

862 RIGHT link sdram iopad0 dqm1 SSTL

output sdram32 dqm

863 RIGHT vdd vc sstl r23 pnl sstl vc SSTL

864 RIGHT link sdram iopad0 dqm2 SSTL

output sdram32 dqm

865 RIGHT vdd vq sstl r18 pnl sstl vq SSTL

866 RIGHT link sdram iopad0 dqm0 SSTL

output sdram32 dqm

867 RIGHT vss gcs sstl r38 pnl sstl gcs SSTL

63

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

868 RIGHT link sdram iopad0 dqs3 SSTL

inout sdram32 dqs

869 RIGHT link sdram iopad0 dqs2 SSTL

inout sdram32 dqs

870 RIGHT vss go sstl r19 pnl sstl go SSTL

871 RIGHT link sdram iopad0 clk SSTL

output sdram32 clk

872 RIGHT vss gcs sstl r39 pnl sstl gcs SSTL

873 RIGHT link sdram iopad0 clk SSTL

output sdram32 clk

874 RIGHT vss gcs sstl r40 pnl sstl gcs SSTL

875 RIGHT link sdram iopad0 dqs1 SSTL

inout sdram32 dqs

876 RIGHT vdd vq sstl r19 pnl sstl vq SSTL

877 RIGHT link sdram iopad0 dqs0 SSTL

inout sdram32 dqs

878 RIGHT vss go sstl r20 pnl sstl go SSTL

879 RIGHT link sdram iopad0 dq31 SSTL

inout sdram32 dq

880 RIGHT link sdram iopad0 dq30 SSTL

inout sdram32 dq

881 RIGHT vdd vq sstl r20 pnl sstl vq SSTL

882 RIGHT link sdram iopad0 dq29 SSTL

inout sdram32 dq

883 RIGHT vdd vp sstl r10 pnl sstl vp SSTL

884 RIGHT link sdram iopad0 dq28 SSTL

inout sdram32 dq

885 RIGHT link sdram iopad0 dq27 SSTL

inout sdram32 dq

886 RIGHT vss gcs sstl r41 pnl sstl gcs SSTL

887 RIGHT link sdram iopad0 dq26 SSTL

inout sdram32 dq

64 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

888 RIGHT vss go sstl r21 pnl sstl go SSTL

889 RIGHT link sdram iopad0 dq25 SSTL

inout sdram32 dq

890 RIGHT vdd vc sstl r24 pnl sstl vc SSTL

891 RIGHT link sdram iopad0 dq24 SSTL

inout sdram32 dq

892 RIGHT vdd vq sstl r21 pnl sstl vq SSTL

893 RIGHT link sdram iopad0 dq23 SSTL

inout sdram32 dq

894 RIGHT vss gcs sstl r42 pnl sstl gcs SSTL

895 RIGHT link sdram iopad0 dq22 SSTL

inout sdram32 dq

896 RIGHT link sdram iopad0 dq21 SSTL

inout sdram32 dq

897 RIGHT vss go sstl r22 pnl sstl go SSTL

898 RIGHT link sdram iopad0 dq20 SSTL

inout sdram32 dq

899 RIGHT link sdram iopad0 dq19 SSTL

inout sdram32 dq

900 RIGHT pnl filler sstl 4g r0 pnl filler sstl 4g FILLER

901 RIGHT pnl filler sstl 2g r0 pnl filler sstl 2g FILLER

CORNER TOP CORNER TR pnl iocrnr hs SSTL Corner

902 TOP pnl filler sstl 8g t0 pnl filler sstl 8g FILLER

903 TOP pnl filler sstl 4g t0 pnl filler sstl 4g FILLER

904 TOP pnl filler sstl 1g t0 pnl filler sstl 1g FILLER

905 TOP vss gcs sstl t5 pnl sstl gcs SSTL

906 TOP link sdram iopad0 dq18 SSTL

inout sdram32 dq

65

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

907 TOP vdd vc sstl t2 pnl sstl vc SSTL

908 TOP link sdram iopad0 dq17 SSTL

inout sdram32 dq

909 TOP link sdram iopad0 dq16 SSTL

inout sdram32 dq

910 TOP link sdram iopad0 dq15 SSTL

inout sdram32 dq

911 TOP vss gcs sstl t4 pnl sstl gcs SSTL

912 TOP link sdram iopad0 dq14 SSTL

inout sdram32 dq

913 TOP vdd vp sstl t0 pnl sstl vp SSTL

914 TOP link sdram iopad0 dq13 SSTL

inout sdram32 dq

915 TOP vss gcs sstl t3 pnl sstl gcs SSTL

916 TOP link sdram iopad0 dq12 SSTL

inout sdram32 dq

917 TOP vdd vc sstl t1 pnl sstl vc SSTL

918 TOP link sdram iopad0 dq11 SSTL

inout sdram32 dq

919 TOP vdd vq sstl t1 pnl sstl vq SSTL

920 TOP link sdram iopad0 dq10 SSTL

inout sdram32 dq

921 TOP vss gcs sstl t2 pnl sstl gcs SSTL

922 TOP link sdram iopad0 dq09 SSTL

inout sdram32 dq

923 TOP vss go sstl t1 pnl sstl go SSTL

924 TOP link sdram iopad0 dq08 SSTL

inout sdram32 dq

925 TOP link sdram iopad0 dq07 SSTL

inout sdram32 dq

926 TOP sstl vref t0 pnl sstl vref SSTL

66 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

927 TOP link sdram iopad0 dq06 SSTL

inout sdram32 dq

928 TOP link sdram iopad0 dq05 SSTL

inout sdram32 dq

929 TOP vss gcs sstl t1 pnl sstl gcs SSTL

930 TOP link sdram iopad0 dq04 SSTL

inout sdram32 dq

931 TOP vdd vc sstl t0 pnl sstl vc SSTL

932 TOP link sdram iopad0 dq03 SSTL

inout sdram32 dq

933 TOP vdd vq sstl t0 pnl sstl vq SSTL

934 TOP link sdram iopad0 dq02 SSTL

inout sdram32 dq

935 TOP vss gcs sstl t0 pnl sstl gcs SSTL

936 TOP link sdram iopad0 dq01 SSTL

inout sdram32 dq

937 TOP link sdram iopad0 dq00 SSTL

inout sdram32 dq

938 TOP vss go sstl t0 pnl sstl go SSTL

939 TOP pnl filler std2sstl t0 pnl filler std2sstl SSTL Breaker

940 TOP pnl filler lvds brk t0 pnl filler lvds brk 3gLVDS Breaker

941 TOP lvds vref t5 pnl vref lvds LVDS

942 TOP vss go lvds t10 pnl go lvds LVDS

943 TOP link iopad0 data s out iopad1 LVDS

output data s out

944 TOP vdd vop lvds t11 pnl vop lvds LVDS

945 TOP link iopad0 data p out1 iopad1 LVDS

output data p out1

946 TOP vss gcs lvds t19 pnl gcs lvds LVDS

67

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

947 TOP link iopad0 data p out1 iopad2 LVDS

output data p out1

948 TOP link iopad0 data p out1 iopad3 LVDS

output data p out1

949 TOP vss gcs lvds t18 pnl gcs lvds LVDS

950 TOP link iopad0 data s in iopad1 LVDS

input data s in

951 TOP vdd vop lvds t10 pnl vop lvds LVDS

952 TOP link iopad0 data p in1 iopad1 LVDS

input data p in1

953 TOP link iopad0 data p in1 iopad2 LVDS

input data p in1

954 TOP vdd vc lvds t4 pnl vc lvds LVDS

955 TOP link iopad0 data p in1 iopad3 LVDS

input data p in1

956 TOP vss go lvds t9 pnl go lvds LVDS

957 TOP link iopad0 data s out iopad2 LVDS

output data s out

958 TOP link iopad0 data p out2 iopad1 LVDS

output data p out2

959 TOP vss gcs lvds t17 pnl gcs lvds LVDS

960 TOP link iopad0 data p out2 iopad2 LVDS

output data p out2

961 TOP link iopad0 data p out2 iopad3 LVDS

output data p out2

962 TOP vss gcs lvds t16 pnl gcs lvds LVDS

963 TOP link iopad0 data s in iopad2 LVDS

input data s in

964 TOP link iopad0 data p in2 iopad1 LVDS

input data p in2

965 TOP vdd vop lvds t9 pnl vop lvds LVDS

966 TOP link iopad0 data p in2 iopad2 LVDS

input data p in2

68 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

967 TOP link iopad0 data p in2 iopad3 LVDS

input data p in2

968 TOP lvds vref t4 pnl lvds vref LVDS

969 TOP vss gcs lvds t15 pnl gcs lvds LVDS

970 TOP link iopad0 data s out iopad3 LVDS

output data s out

971 TOP vss go lvds t8 pnl go lvds LVDS

972 TOP link iopad0 data p out3 iopad1 LVDS

output data p out3

973 TOP vss gcs lvds t14 pnl gcs lvds LVDS

974 TOP link iopad0 data p out3 iopad2 LVDS

output data p out3

975 TOP link iopad0 data p out3 iopad3 LVDS

output data p out3

976 TOP vss gcs lvds t13 pnl gcs lvds LVDS

977 TOP link iopad0 data s in iopad3 LVDS

input data s in

978 TOP vss go lvds t7 pnl go lvds LVDS

979 TOP link iopad0 data p in3 iopad1 LVDS

input data p in3

980 TOP link iopad0 data p in3 iopad2 LVDS

input data p in3

981 TOP vdd vc lvds t3 pnl vc lvds LVDS

982 TOP link iopad0 data p in3 iopad3 LVDS

input data p in3

983 TOP vdd vop lvds t8 pnl vop lvds LVDS

984 TOP link iopad0 data s out iopad4 LVDS

output data s out

985 TOP link iopad0 data p out4 iopad1 LVDS

output data p out4

986 TOP vss gcs lvds t12 pnl gcs lvds LVDS

69

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

987 TOP link iopad0 data p out4 iopad2 LVDS

output data p out4

988 TOP link iopad0 data p out4 iopad3 LVDS

output data p out4

989 TOP vss gcs lvds t11 pnl gcs lvds LVDS

990 TOP link iopad0 data s in iopad4 LVDS

input data s in

991 TOP link iopad0 data p in4 iopad1 LVDS

input data p in4

992 TOP vss go lvds t6 pnl go lvds LVDS

993 TOP link iopad0 data p in4 iopad2 LVDS

input data p in4

994 TOP link iopad0 data p in4 iopad3 LVDS

input data p in4

995 TOP lvds vref t3 pnl lvds vref LVDS

996 TOP vss gcs lvds t10 pnl gcs lvds LVDS

997 TOP link iopad0 ext rl clk out pad1 LVDS

output ext rl clk out

998 TOP vdd vop lvds t7 pnl vop lvds LVDS

999 TOP link iopad0 ext rl clk out pad2 LVDS

output ext rl clk out

1000 TOP vss gcs lvds t9 pnl gcs lvds LVDS

1001 TOP link iopad0 ext rl clk out pad3 LVDS

output ext rl clk out

1002 TOP link iopad0 ext rl clk out pad4 LVDS

output ext rl clk out

1003 TOP vss gcs lvds t8 pnl gcs lvds LVDS

1004 TOP link iopad0 ext rl clk in pad1 LVDS

input ext rl clk in

1005 TOP vdd vop lvds t6 pnl vop lvds LVDS

1006 TOP link iopad0 ext rl clk in pad2 LVDS

input ext rl clk in

70 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

1007 TOP link iopad0 ext rl clk in pad3 LVDS

input ext rl clk in

1008 TOP vdd vc lvds t2 pnl vc lvds LVDS

1009 TOP link iopad0 ext rl clk in pad4 LVDS

input ext rl clk in

1010 TOP vss go lvds t5 pnl go lvds LVDS

1011 TOP link iopad0 event s out iopad1 LVDS

output event s out

1012 TOP link iopad0 event p out1 iopad1 LVDS

output event p out1

1013 TOP vss gcs lvds t7 pnl gcs lvds LVDS

1014 TOP link iopad0 event p out1 iopad2 LVDS

output event p out1

1015 TOP link iopad0 event p out1 iopad3 LVDS

output event p out1

1016 TOP vss gcs lvds t6 pnl gcs lvds LVDS

1017 TOP link iopad0 event s in iopad1 LVDS

input event s in

1018 TOP link iopad0 event p in1 iopad1 LVDS

input event p in1

1019 TOP vdd vop lvds t5 pnl vop lvds LVDS

1020 TOP link iopad0 event p in1 iopad2 LVDS

input event p in1

1021 TOP link iopad0 event p in1 iopad3 LVDS

input event p in1

1022 TOP lvds vref t2 pnl lvds vref LVDS

1023 TOP vss go lvds t4 pnl go lvds LVDS

1024 TOP link iopad0 event s out iopad2 LVDS

output event s out

1025 TOP vdd vop lvds t4 pnl vop lvds LVDS

1026 TOP link iopad0 event p out2 iopad1 LVDS

output event p out2

71

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

1027 TOP vss gcs lvds t5 pnl gcs lvds LVDS

1028 TOP link iopad0 event p out2 iopad2 LVDS

output event p out2

1029 TOP link iopad0 event p out2 iopad3 LVDS

output event p out2

1030 TOP vss gcs lvds t4 pnl gcs lvds LVDS

1031 TOP link iopad0 event s in iopad2 LVDS

input event s in

1032 TOP vdd vop lvds t3 pnl vop lvds LVDS

1033 TOP link iopad0 event p in2 iopad1 LVDS

input event p in2

1034 TOP link iopad0 event p in2 iopad2 LVDS

input event p in2

1035 TOP vdd vc lvds t1 pnl vc lvds LVDS

1036 TOP link iopad0 event p in2 iopad3 LVDS

input event p in2

1037 TOP vss go lvds t3 pnl go lvds LVDS

1038 TOP link iopad0 event s out iopad3 LVDS

output event s out

1039 TOP link iopad0 event p out3 iopad1 LVDS

output event p out3

1040 TOP vss gcs lvds t3 pnl gcs lvds LVDS

1041 TOP link iopad0 event p out3 iopad2 LVDS

output event p out3

1042 TOP link iopad0 event p out3 iopad3 LVDS

output event p out3

1043 TOP vss gcs lvds t2 pnl gcs lvds LVDS

1044 TOP link iopad0 event s in iopad3 LVDS

input event s in

1045 TOP link iopad0 event p in3 iopad1 LVDS

input event p in3

1046 TOP vdd vop lvds t2 pnl vop lvds LVDS

72 第 2章 PIN assignments

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

1047 TOP link iopad0 event p in3 iopad2 LVDS

input event p in3

1048 TOP link iopad0 event p in3 iopad3 LVDS

input event p in3

1049 TOP lvds vref t1 pnl lvds vref LVDS

1050 TOP vss go lvds t2 pnl go lvds LVDS

1051 TOP link iopad0 event s out iopad4 LVDS

output event s out

1052 TOP vdd vop lvds t1 pnl vop lvds LVDS

1053 TOP link iopad0 event p out4 iopad1 LVDS

output event p out4

1054 TOP vss gcs lvds t1 pnl gcs lvds LVDS

1055 TOP link iopad0 event p out4 iopad2 LVDS

output event p out4

1056 TOP link iopad0 event p out4 iopad3 LVDS

output event p out4

1057 TOP vss gcs lvds t0 pnl gcs lvds LVDS

1058 TOP link iopad0 event s in iopad4 LVDS

input event s in

1059 TOP vdd vop lvds t0 pnl vop lvds LVDS

1060 TOP link iopad0 event p in4 iopad1 LVDS

input event p in4

1061 TOP link iopad0 event p in4 iopad2 LVDS

input event p in4

1062 TOP vdd vc lvds t0 pnl vc lvds LVDS

1063 TOP link iopad0 event p in4 iopad3 LVDS

input event p in4

1064 TOP vss go lvds t1 pnl go lvds LVDS

1065 TOP clk iopad0 lvds FOUT LVDS

output FOUT

1066 TOP clk iopad0 lvds clk outer LVDS

output clk outer

73

Pin No. Side Name Physical Cell IOPAD Type

In/Out Remarks

1067 TOP clk iopad0 lvds clk in iopad LVDS

input clk in p,n

1068 TOP vss go lvds t0 pnl go lvds LVDS

1069 TOP lvds vref t0 pnl lvds vref LVDS

1070 TOP pnl filler lvds brk t1 pnl filler lvds brk 3gLVDS Breaker

1071 TOP pnl filler std2sstl t1 pnl filler std2sstl SSTL Breaker

1072 TOP vss go ngpio t0 pnl go ngpio NGPIO

1073 TOP hiz pad LINK PAD HIZ GEN 1 link hiz NGPIO

input link hiz

1074 TOP vss gcs ngpio t0 pnl gcs ngpio NGPIO

1075 TOP hiz pad LINK PAD HIZ GEN 2 link hiz NGPIO

input link hiz

1076 TOP pnl filler 8g t1 pnl filler 8g FILLER

1077 TOP pnl filler 4g t1 pnl filler 4g FILLER

1078 TOP pnl filler 2g t0 pnl filler 2g FILLER

Pull-up resistance and pull-down resistance of each cells are shown in the table below. (Cells which don’t

have resistors are not shown.)

Table 2.1: Pull-Up / Down Resistance value

Master Cell R[Ω] I[A] E[V] Pull-Up / Down

pnl it2pu8 82500 0.00004 3.3 Pull-Up

pnl it2pd8 55000 0.00006 3.3 Pull-Down

pnl tf12it0pu8 82500 0.00004 3.3 Pull-Up

pnl tf12it0pd8 55000 0.00006 3.3 Pull-Down

75

3

Instruction Set

3.1 Instructions compatible with MIPS ISA

Responsive Multithreaded Processor supports instructions in MIPS ISA. Supported MIPS compatible

instructions are shown below.

3.1.1 Load / Store Instruction

LB Load Byte
8bit Load MIPS I

31 26

100000

LB

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LB rt, offset(base)

Function :

GPR[rt] ← sign extend(MEM.BYTE[GPR[base] + sign extend(offset)])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Load a byte from memory as a 32-bit signed value.

76 第 3章 Instruction Set

LBU Load Byte Unsigned
8bit Unsigned Load MIPS I

31 26

100100

LBU

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LBU rt, offset(base)

Function :

GPR[rt] ← zero extend(MEM.BYTE[GPR[base] + sign extend(offset)])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Load a byte from memory as 32-bit unsigned value.

SB Store Byte
8bit Store MIPS I

31 26

101000

SB

25 21

base

20 16

rt

15 0

offset

Mnemonic:

SB rt, offset(base)

Function :

MEM.BYTE[GPR[base] + sign extend(offset)] ← GPR[rt]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

The least-significant byte is stored to memory as signed value.

3.1. Instructions compatible with MIPS ISA 77

LH Load Halfword
16bit Load MIPS I

31 26

100001

LH

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LH rt, offset(base)

Function :

GPR[rt] ← sign extend(MEM.HWORD[GPR[base] + sign extend(offset)])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Load half word from memory. Loaded value is sign-extended and placed into GPR[rt].

LHU Load Halfword Unsigned
16bit Unsigned Load MIPS I

31 26

100101

LHU

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LHU rt, offset(base)

Function :

GPR[rt] ← zero extend(MEM.HWORD[GPR[base] + sign extend(offset)])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Load a half word from memory. Loaded value is zero-extended and placed into GPR[rt].

78 第 3章 Instruction Set

SH Store Halfword
16bit Store MIPS I

31 26

101001

SH

25 21

base

20 16

rt

15 0

offset

Mnemonic:

SH rt, offset(base)

Function :

MEM.HWORD[GPR[base] + sign extend(offset)] ← GPR[rt]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

Store a half word.

LW Load Word
32bit Load MIPS I

31 26

100011

LW

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LW rt, offset(base)

Function :

GPR[rt] ← MEM.WORD[GPR[base] + sign extend(offset)]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Load a word from memory.

3.1. Instructions compatible with MIPS ISA 79

SW Store Word
32bit Load MIPS I

31 26

101011

SW

25 21

base

20 16

rt

15 0

offset

Mnemonic:

SW rt, offset(base)

Function :

MEM.WORD[GPR[base] + sign extend(offset)] ← GPR[rt]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

Store 1 word to memory.

LWL Load Word Left
32bit unaligned load left MIPS I

31 26

100010

LWL

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LWL rt, offset(base)

Function :

GPR[rt] ← merge(GPR[rt], MEM[GPR[base] + sign extend(offset)])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Load a word from an unaligned memory address. Using with LWR, unaligned 1 word can be

loaded to a GPR.

80 第 3章 Instruction Set

LWR Load Word Right
32bit unaligned load right MIPS I

31 26

100110

LWR

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LWR rt, offset(base)

Function :

GPR[rt] ← merge(MEM[GPR[base] + sign extend(offset)], GPR[rt])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Load a word from an analigned memory address. Using with LWL, unaligned 1 word can be

loaded to a GPR.

SWL Store Word Left
32bit unaligned store MIPS I

31 26

101010

SWL

25 21

base

20 16

rt

15 0

offset

Mnemonic:

SWL rt, offset(base)

Function :

MEM[GPR[base] + sign extend(offset)] ← GPR[rt]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Store the most-significant part of a word to an unaligned memory address.

3.1. Instructions compatible with MIPS ISA 81

SWR Store Word Right
32bit unaligned store MIPS I

31 26

101110

SWR

25 21

base

20 16

rt

15 0

offset

Mnemonic:

SWR rt, offset(base)

Function :

MEM[GPR[base] + sign extend(offset)] ← GPR[rt]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Store the least-significant part of a word to an unaligned memory address.

LL Load Linked Word
32-bit load for atomic read-modify-write MIPS II

31 26

110000

LL

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LL rt, offset(base)

Function :

GPR[rt] ← MEM.WORD[GPR[base] + sign extend(offset)]

LL bit ← 1

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Load for Atomic Read-Modify-Write

82 第 3章 Instruction Set

SC Store Conditional Word
32-bit store for atomic read-modify-write MIPS II

31 26

111000

SC

25 21

base

20 16

rt

15 0

offset

Mnemonic:

SC rt, offset(base)

Function :

if LL Bit = 1 then

MEM.WORD[GPR[base] + sign extend(offset)] ← GPR[rt]

GPR[rt] ← 1

else

GPR[rt] ← 0

endif

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Perform a store operation for an Atomic Read-Modify-Write. It returns 1 if Atomic Read-

Modify-Write succeeds, otherwise returns 0.

3.1. Instructions compatible with MIPS ISA 83

LWC1 Load Word to Floating Point
Load Word to a FP register MIPS I

31 26

110001

LWC1

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LWC1 ft, offset(base)

Function :

FPR[ft] ← MEM.WORD[GPR[base] + sign extend(offset)]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Perform a load operation from memory to a floating-point register.

SWC1 Store Word from Floating Point
Store Word from FP register MIPS I

31 26

111001

SWC1

25 21

base

20 16

rt

15 0

offset

Mnemonic:

SWC1 ft, offset(base)

Function :

MEM.WORD[GPR[base] + sign extend(offset)] ← FPR[ft]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

Perform a store operation to an memory from a floating-point register.

84 第 3章 Instruction Set

LDC1 Load Doubleword to Floating Point
Load operation for FP registers MIPS I

31 26

110101

LDC1

25 21

base

20 16

rt

15 0

offset

Mnemonic:

LDC1 ft, offset(base)

Function :

FPR[ft] ← MEM.DWORD[GPR[base] + sign extend(offset)]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Perform a load doubleword operation from memory to a FPR.

SDC1 Store Doubleword from Floating Point
64-bit store for FPRs MIPS I

31 26

111101

SDC1

25 21

base

20 16

rt

15 0

offset

Mnemonic:

SDC1 ft, offset(base)

Function :

MEM.DWORD[GPR[base] + sign extend(offset)] ← FPR[ft]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

Perform a 64-bit store operation to memory.

3.1. Instructions compatible with MIPS ISA 85

3.1.2 Computational Instructions

ADDI Add Immediate Word
Add Immediate MIPS I

31 26

001000

ADDI

25 21
rs

20 16

rt

15 0

immediate

Mnemonic:

ADDI rt, rs, immediate

Function :

GPR[rt] ← GPR[rs] + sign extend(immediate)

Exception :

Overflow

Overview :

Add a constant to a 32-bit register.

ADDIU Add Immediate Unsigned Word
Unsigned Add Immediate MIPS I

31 26

001001

ADDIU

25 21
rs

20 16

rt

15 0

immediate

Mnemonic:

ADDIU rt, rs, immediate

Function :

GPR[rt] ← GPR[rs] + sign extend(immediate)

Exception :

None

Overview :

Add a constant to a 32-bit register. No Integer Overflow exception occurs under any circum-

stances.

86 第 3章 Instruction Set

SLTI Set on Less Than Immediate
To record the result of a less-than comparison with a constant. MIPS I

31 26

001010

SLTI

25 21
rs

20 16

rt

15 0

immediate

Mnemonic:

SLTI rt, rs, immediate

Function :

if GPR[rs] < sign extend(immediate) then

GPR[rt] ← 1

else

GPR[rt] ← 0

endif

Exception :

None

Overview :

Compare register value to constant.

3.1. Instructions compatible with MIPS ISA 87

SLTIU Set on Less Than Immediate Unsigned
To record the result of an unsigned less-than comparison with a constant. MIPS I

31 26

001011

SLTIU

25 21
rs

20 16

rt

15 0

immediate

Mnemonic:

SLTIU rt, rs, immediate

Function :

if GPR[rs] < sign extend(immediate) then

GPR[rt] ← 1

else

GPR[rt] ← 0

endif

Exception :

None

Overview :

Compare register value and constant value as unsigned integers.

ANDI And Immediate
Logical AND Immediate MIPS I

31 26

001100

ANDI

25 21
rs

20 16

rt

15 0

immediate

Mnemonic:

ANDI rt, rs, immediate

Function :

GPR[rt] ← GPR[rs] and zero extend(immediate)

Exception :

None

Overview :

Perform a bitwise AND operation with a constant.

88 第 3章 Instruction Set

ORI Or Immediate
Logical OR Immediate MIPS I

31 26

001101

ORI

25 21
rs

20 16

rt

15 0

immediate

Mnemonic:

ORI rt, rs, immediate

Function :

GPR[rt] ← GPR[rs] or zero extend(immediate)

Exception :

None

Overview :

Perform a bitwise OR operation with a constant.

XORI Exclusive Or Immediate
Logical Exclusive OR Immediate. MIPS I

31 26

001110

XORI

25 21
rs

20 16

rt

15 0

immediate

Mnemonic:

XORI rt, rs, immediate

Function :

GPR[rt] ← GPR[rs] xor zero extend(immediate)

Exception :

None

Overview :

Perform a bitwise XOR with a constant.

3.1. Instructions compatible with MIPS ISA 89

LUI Load Upper Immediate
Load Upper Immediate MIPS I

31 26

001111

LUI

25 21

00000

0

20 16

rt

15 0

immediate

Mnemonic:

LUI rt, immediate

Function :

GPR[rt] ← { immediate, 0000000000000000 }

Exception :

None

Overview :

Load a constant value into the upper half of a word.

ADD Add Word
Add a word MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

100000

ADD

Mnemonic:

ADD rd, rs, rt

Function :

GPR[rd] ← GPR[rs] + GPR[rt]

Exception :

Overflow

Overview :

Peform an add operation.

90 第 3章 Instruction Set

ADDU Add Unsigned Word
Unsigned Add MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

100001

ADDU

Mnemonic:

ADDU rd, rs, rt

Function :

GPR[rd] ← GPR[rs] + GPR[rt]

Exception :

None

Overview :

Perform an add operation. No Integer Overflow occurs under any circumstances.

SUB Subtract Word
Subtraction MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

100010

SUB

Mnemonic:

SUB rd, rs, rt

Function :

GPR[rd] ← GPR[rs] − GPR[rt]

Exception :

Overflow

Overview :

Perform a subtract operation.

3.1. Instructions compatible with MIPS ISA 91

SUBU Subtract Unsigned Word
Unsigned Subtraction MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

100011

SUBU

Mnemonic:

SUBU rd, rs, rt

Function :

GPR[rd] ← GPR[rs] − GPR[rt]

Exception :

None

Overview :

Perform a subtract operation. No Integer Overflow occurs under any circumstances.

SLT Set on Less Than
Set on Less Than MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

101010

SLT

Mnemonic:

SLT rd, rs, rt

Function :

if GPR[rs] < GPR[rt] then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

None

Overview :

Compare register values and record the result.

92 第 3章 Instruction Set

SLTU Set on Less Than Unsigned
Unsigned Set on Less Than MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

101011

SLTU

Mnemonic:

SLTU rd, rs, rt

Function :

if GPR[rs] < GPR[rt] then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

None

Overview :

Compare register values as unsigned integers and record the result.

AND And
Logical AND MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

100100

AND

Mnemonic:

AND rd, rs, rt

Function :

GPR[rd] ← GPR[rs] and GPR[rt]

Exception :

None

Overview :

Perform a logical and operation.

3.1. Instructions compatible with MIPS ISA 93

OR Or
Logical OR MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

100101

OR

Mnemonic:

OR rd, rs, rt

Function :

GPR[rd] ← GPR[rs] or GPR[rt]

Exception :

None

Overview :

Perform a logical or operation.

XOR Exclusive Or
Logical Exclusive OR MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

100110

XOR

Mnemonic:

XOR rd, rs, rt

Function :

GPR[rd] ← GPR[rs] xor GPR[rt]

Exception :

None

Overview :

Perform a logical exclusive or operation.

94 第 3章 Instruction Set

NOR Not Or
Logical NOT OR MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

100111

NOR

Mnemonic:

NOR rd, rs, rt

Function :

GPR[rd] ← GPR[rs] nor GPR[rt]

Exception :

None

Overview :

Perform a logical NOR operation.

SLL Shift Word Left Logical
Logical Shift Left MIPS I

31 26

000000

SPECIAL

25 21

00000

0

20 16

rt

15 11

rd

10 6
sa

5 0

000000

SLL

Mnemonic:

SLL rd, rt, sa

Function :

GPR[rd] ← GPR[rt] << sa

Exception :

None

Overview :

Perform a logical shift-left operation.

3.1. Instructions compatible with MIPS ISA 95

SRL Shift Word Right Logical
Logical Shift Right MIPS I

31 26

000000

SPECIAL

25 21

00000

0

20 16

rt

15 11

rd

10 6
sa

5 0

000010

SRL

Mnemonic:

SRL rd, rt, sa

Function :

GPR[rd] ← GPR[rt] >> sa

Exception :

None

Overview :

Perform a logical shift-right operation.

SRA Shift Word Right Arithmetic
Arithmetic Shift Right MIPS I

31 26

000000

SPECIAL

25 21

00000

0

20 16

rt

15 11

rd

10 6
sa

5 0

000011

SRA

Mnemonic:

SRA rd, rt, sa

Function :

GPR[rd] ← GPR[rt] >> sa

Exception :

None

Overview :

Perform an arithmetic shift-right.

96 第 3章 Instruction Set

SLLV Shift Word Left Logical Variable
Arithmetic Shift Left MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

000100

SLLV

Mnemonic:

SLLV rd, rt, rs

Function :

GPR[rd] ← GPR[rt] << GPR[rs]

Exception :

None

Overview :

Perform an arithmetic shift-left.

SRLV Shift Word Right Logical Variable
Logical Shift Right Variable MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

000110

SRLV

Mnemonic:

SRLV rd, rt, rs

Function :

GPR[rd] ← GPR[rt] >> GPR[rs]

Exception :

None

Overview :

Perform a logical shift-right variable.

3.1. Instructions compatible with MIPS ISA 97

SRAV Shift Word Right Arithmetic Variable
Arithmetic Shift Right Variable MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

000111

SRAV

Mnemonic:

SRAV rd, rt, rs

Function :

GPR[rd] ← GPR[rt] >> GPR[rs]

Exception :

None

Overview :

Perform an arithmetic shift-right variable.

3.1.3 Jump / Branch Instructions

J Jump
Jump MIPS I

31 26

000010

J

25 0

instr index

Mnemonic:

J target

Function :

pc ← { pc[31:28], instr index, 00 }

Exception :

None

Overview :

Branch within the current 256MB aligned region.

98 第 3章 Instruction Set

JAL Jump and Link
To procedure call within the current 256MB aligned region. MIPS I

31 26

000011

JAL

25 0

instr index

Mnemonic:

JAL target

Function :

pc ← { pc[31:28], instr index, 00 }
GPR[31] ← pc + 8

Exception :

None

Overview :

Place the return address link in GPR 31. The return link is the address of the second instruction

following the branch, where execution would continue after a procedure call.

JR Jump Register
To branch to an instruction address in a register. MIPS I

31 26

000000

SPECIAL

25 21
rs

20 6

000000000000000

0

5 0

001000

JR

Mnemonic:

JR rs

Function :

pc ← GPR[rs]

Exception :

None

Overview :

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in

the branch delay slot, before jumping.

3.1. Instructions compatible with MIPS ISA 99

JALR Jump and Link Register
To procedure call to an instruction address in a register. MIPS I

31 26

000000

SPECIAL

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

001001

JALR

Mnemonic:

JALR rs (rd = 31 implied)

JALR rd, rs

Function :

pc ← GPR[rs]

GPR[rd] ← pc + 8

Exception :

None

Overview :

Place the return address link in GPR rd. The return link is the address of the second instruction

following the branch, where execution would continue after a procedure call.

BEQ Branch on Equal
To conditional branch. MIPS I

31 26

000100
BEQ

25 21
rs

20 16

rt

15 0

offset

Mnemonic:

BEQ rs, rt, offset

Function :

if GPR[rs] = GPR[rt] then

branch

Exception :

None

Overview :

Compare GPR[rs] and GPR[rt] then do a PC-relative conditional branch if equal.

100 第 3章 Instruction Set

BNE Branch on Not Equal
To conditional branch. MIPS I

31 26

000101

BNE

25 21
rs

20 16

rt

15 0

offset

Mnemonic:

BNE rs, rt, offset

Function :

if GPR[rs] ̸= GPR[rt] then

branch

Exception :

None

Overview :

Compare GPR[rs] and GPR[rt] then do a PC-relative conditional branch if not equal.

BLEZ Branch on Less Than or Equal to Zero
To conditional branch. MIPS I

31 26

000110

BLEZ

25 21
rs

20 16

00000

0

15 0

offset

Mnemonic:

BLEZ rs, offset

Function :

if GPR[rs] ≤ 0 then

branch

Exception :

None

Overview :

Test if a GPR is less than or equal to zero, then do a PC-relative conditional branch.

3.1. Instructions compatible with MIPS ISA 101

BGTZ Branch on Greater Than Zero
To conditional branch. MIPS I

31 26

000111

BGTZ

25 21
rs

20 16

00000

0

15 0

offset

Mnemonic:

BGTZ rs, offset

Function :

if GPR[rs] > 0 then

branch

Exception :

None

Overview :

Test if a GPR is greater than zero, then do a PC-relative conditional branch.

BEQL Branch on Equal Likely
To conditional branch. MIPS II

31 26

010100
BEQL

25 21
rs

20 16

rt

15 0

offset

Mnemonic:

BEQL rs, rt, offset

Function :

if GPR[rs] = GPR[rt] then

branch likely

Exception :

None

Overview :

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the

branch is taken.

102 第 3章 Instruction Set

BNEL Branch on Not Equal Likely
To conditional branch. MIPS II

31 26

010101

BNEL

25 21
rs

20 16

rt

15 0

offset

Mnemonic:

BNEL rs, rt, offset

Function :

if GPR[rs] ̸= GPR[rt] then

branch likely

Exception :

None

Overview :

To compare GPRs then do a PC-relative conditional branch; execute the delay slot only if the

branch is taken.

BLEZL Branch on Less Than or Equal to Zero Likely
To conditional branch. MIPS II

31 26

010110

BLEZL

25 21
rs

20 16

00000

0

15 0

offset

Mnemonic:

BLEZL rs, offset

Function :

if GPR[rs] ≤ 0 then

branch likely

Exception :

None

Overview :

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the

branch is taken.

3.1. Instructions compatible with MIPS ISA 103

BGTZL Branch on Greater Than to Zero Likely
To conditional branch. MIPS II

31 26

010111

BGTZL

25 21
rs

20 16

00000

0

15 0

offset

Mnemonic:

BGTZL rs, offset

Function :

if GPR[rs] > 0 then

branch likely

Exception :

None

Overview :

To test a GPR then do a PC-relative conditional branch; execute the delay slot only if the

branch is taken.

BLTZ Branch on Less Than Zero
To conditional branch. MIPS I

31 26

000001

REGIMM

25 21
rs

20 16

00000

BLTZ

15 0

offset

Mnemonic:

BLTZ rs, offset

Function :

if GPR[rs] < 0 then

branch

Exception :

None

Overview :

To test a GPR then do a PC-relative conditional branch.

104 第 3章 Instruction Set

BGEZ Branch on Greater Than or Equal to Zero
To conditional branch. MIPS I

31 26

000001

REGIMM

25 21
rs

20 16

00001

BGEZ

15 0

offset

Mnemonic:

BGEZ rs, offset

Function :

if GPR[rs] ≥ 0 then

branch

Exception :

None

Overview :

To test a GPR then do a PC-relative conditional branch.

BLTZAL Branch on Less Than Zero and Link
To conditional procedure call. MIPS I

31 26

000001

REGIMM

25 21
rs

20 16

10000

BLTZAL

15 0

offset

Mnemonic:

BLTZAL rs, offset

Function :

if GPR[rs] < 0 then

branch

GPR[31] ← pc + 8

Exception :

None

Overview :

To test a GPR then do a PC-relative conditional procedure call.

3.1. Instructions compatible with MIPS ISA 105

BGEZAL Branch on Greater Than or Equal to Zero and Link
To conditional procedure call. MIPS I

31 26

000001

REGIMM

25 21
rs

20 16

10001

BGEZAL

15 0

offset

Mnemonic:

BGEZAL rs, offset

Function :

if GPR[rs] ≥ 0 then

branch

GPR[31] ← pc + 8

Exception :

None

Overview :

To test a GPR then do a PC-relative conditional procedure call.

BLTZL Branch on Less Than Zero Likely
To conditional branch. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

00010

BLTZL

15 0

offset

Mnemonic:

BLTZL rs, offset

Function :

if GPR[rs] < 0 then

branch likely

Exception :

None

Overview :

To test a PC-relative conditional branch; execute the delay slot only if the branch is taken.

106 第 3章 Instruction Set

BGEZL Branch on Greater Than or Equal to Zero Likely
To conditional branch. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

00011

BGEZL

15 0

offset

Mnemonic:

BGEZL rs, offset

Function :

if GPR[rs] ≥ 0 then

branch likely

Exception :

None

Overview :

To test a PC-relative conditional branch; execute the delay slot only if the branch is taken.

BLTZALL Branch on Less Than Zero and Link Likely
To conditional procedure call. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

10010

BLTZALL

15 0

offset

Mnemonic:

BLTZALL rs, offset

Function :

if GPR[rs] < 0 then

branch likely

GPR[31] ← pc + 8

Exception :

None

Overview :

Place the return address link in GPR 31. The return link is the address of the second instruction

following the branch (not the branch itself), where execution would continue after a procedure

call.

3.1. Instructions compatible with MIPS ISA 107

BGEZALLBranch on Greater Than or Equal to Zero and Link Likely
To conditional procedure call. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

10011

BGEZALL

15 0

offset

Mnemonic:

BGEZALL rs, offset

Function :

if GPR[rs] ≥ 0 then

branch likely

GPR[31] ← pc + 8

Exception :

None

Overview :

Place the return address link in GPR 31. The return link is the address of the second instruction

following the branch (not the branch itself), where execution would continue after a procedure

call.

3.1.4 Floating-Point Instructions

MTC1 Move Word to Floating Point
Move a word to FPR MIPS I

31 26

010001

COP1

25 21

00100

MT

20 16

rt

15 11

fs

10 0

00000000000

0

Mnemonic:

MTC1 rt, fs

Function :

FPR[fs] ← GPR[rt]

Exception :

None

Overview :

Move a word to FPR from GPR.

108 第 3章 Instruction Set

MFC1 Move Word from Floating Point
Move a word from FPR MIPS I

31 26

010001

COP1

25 21

00000

MF

20 16

rt

15 11

fs

10 0

00000000000

0

Mnemonic:

MFC1 rt, fs

Function :

GPR[rt] ← FPR[fs]

Exception :

None

Overview :

Move a word from FPR to GPR.

ADD.fmt Floating Point Add
FP Add MIPS I

31 26

010001

COP1

25 21

fmt

20 16

ft

15 11

fs

10 6

fd

5 0

000000

ADD

Mnemonic:

ADD.S fd, fs, ft (fmt = 10000)

ADD.D fd, fs, ft (fmt = 10001)

Function :

FPR[fd] ← FPR[fs] + FPR[ft]

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Floating Point Overflow

Floating Point Underflow

Overview :

Perform an add operation.

3.1. Instructions compatible with MIPS ISA 109

SUB.fmt Floating Point Subtract
FP Sub MIPS I

31 26

010001

COP1

25 21

fmt

20 16

ft

15 11

fs

10 6

fd

5 0

000001

SUB

Mnemonic:

SUB.S fd, fs, ft (fmt = 10000)

SUB.D fd, fs, ft (fmt = 10001)

Function :

FPR[fd] ← FPR[fs] − FPR[ft]

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Floating Point Overflow

Floating Point Underflow

Overview :

Perform a subtract operation.

110 第 3章 Instruction Set

MUL.fmt Floating Point Multiply
To multiply floating-point values. MIPS I

31 26

010001

COP1

25 21

fmt

20 16

ft

15 11

fs

10 6

fd

5 0

000010

MUL

Mnemonic:

MUL.S fd, fs, ft (fmt = 10000)

MUL.D fd, fs, ft (fmt = 10001)

Function :

FPR[fd] ← FPR[fs] × FPR[ft]

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Floating Point Overflow

Floating Point Underflow

Overview :

Perform a multiply operation.

3.1. Instructions compatible with MIPS ISA 111

DIV.fmt Floating Point Divide
To divide a floating-point value. MIPS I

31 26

010001

COP1

25 21

fmt

20 16

ft

15 11

fs

10 6

fd

5 0

000011

DIV

Mnemonic:

DIV.S fd, fs, ft (fmt = 10000)

DIV.D fd, fs, ft (fmt = 10001)

Function :

FPR[fd] ← FPR[fs] / FPR[ft]

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Floating Point Overflow

Floating Point Underflow

Floating Point Divide By 0

Overview :

Perform a divide operation.

112 第 3章 Instruction Set

ABS.fmt Floating Point Absolute Value
To compute the absolute value of FP value. MIPS I

31 26

010001

COP1

25 21

fmt

20 16

00000

0

15 11

fs

10 6

fd

5 0

000101

ABS

Mnemonic:

ABS.S fd, fs (fmt = 10000)

ABS.D fd, fs (fmt = 10001)

Function :

FPR[fd] ← abs(FPR[fs])

Exception :

Floating Point Invalid Operation

Overview :

The absolute value of the value in FPR fs is placed in FPR fd. The operand and result are

values in format fmt.

3.1. Instructions compatible with MIPS ISA 113

NEG.fmt Floating Point Negate
To negate an FP value. MIPS I

31 26

010001

COP1

25 21

fmt

20 16

00000

0

15 11

fs

10 6

fd

5 0

000111

NEG

Mnemonic:

NEG.S fd, fs (fmt = 10000)

NEG.D fd, fs (fmt = 10001)

Function :

FPR[fd] ← −(FPR[fs])

Exception :

Floating Point Invalid Operation

Overview :

The value in FPR fs is negated and placed into FPR fd. The value is negated by changing the

sign bit value. The operand and result are values in format fmt.

114 第 3章 Instruction Set

MOV.fmt Floating Point Move
To move an FP value between FPRs. MIPS I

31 26

010001

COP1

25 21

fmt

20 16

00000

0

15 11

fs

10 6

fd

5 0

000110

MOV

Mnemonic:

MOV.S fd, fs (fmt = 10000)

MOV.D fd, fs (fmt = 10001)

Function :

FPR[fd] ← FPR[fs]

Exception :

None

Overview :

The value in FPR fs is placed into FPR fd. The source and destination are values in format

fmt.

3.1. Instructions compatible with MIPS ISA 115

CVT.S.fmt Floating Point Convert to Single Floating Point
To convert an FP or fixed-point value to single FP. MIPS I

31 26

010001

COP1

25 21

fmt

20 16

00000

0

15 11

fs

10 6

fd

5 0

100000

CVT.S

Mnemonic:

CVT.S.D fd, fs (fmt = 10001)

CVT.S.W fd, fs (fmt = 10100)

Function :

FPR[fd] ← convert and round(FPR[fs])

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Floating Point Overflow

Floating Point Underflow

Overview :

The value in FPR fs in format fmt is converted to a value in single floating-point format rounded

according to the current rounding mode in FCSR. The result is placed in FPR fd.

116 第 3章 Instruction Set

CVT.D.fmt Floating Point Convert to Double Floating Point
To convert an FP or fixed-point value to double FP. MIPS I

31 26

010001

COP1

25 21

fmt

20 16

00000

0

15 11

fs

10 6

fd

5 0

100001

CVT.D

Mnemonic:

CVT.D.S fd, fs (fmt = 10000)

CVT.D.W fd, fs (fmt = 10100)

Function :

FPR[fd] ← convert and round(FPR[fs])

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Overview :

The value in FPR fs in format fmt is converted to a value in double floating-point format rounded

according to the current rounding mode in FCSR. The result is placed in FPR fd.

3.1. Instructions compatible with MIPS ISA 117

ROUND.W.fmt Floating Point Round to Word Fixed Point
To convert an FP value to 32-bit fixed-point, rounding to nearest. MIPS II

31 26

010001

COP1

25 21

fmt

20 16

00000

0

15 11

fs

10 6

fd

5 0

001100

ROUND.W

Mnemonic:

ROUND.W.S fd, fs (fmt = 10000)

ROUND.W.D fd, fs (fmt = 10001)

Function :

FPR[fd] ← convert and round(FPR[fs])

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Floating Point Overflow

Overview :

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point format

rounding to nearest/even (rounding mode 0). The result is placed in FPR fd.

118 第 3章 Instruction Set

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point
To convert an FP value to 32-bit fixed-point, rounding toward zero. MIPS II

31 26

010001

COP1

25 21

fmt

20 16

00000

0

15 11

fs

10 6

fd

5 0

001101

TRUNC.W

Mnemonic:

TRUNC.W.S fd, fs (fmt = 10000)

TRUNC.W.D fd, fs (fmt = 10001)

Function :

FPR[fd] ← convert and round(FPR[fs])

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Floating Point Overflow

Overview :

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point format

using rounding toward zero (rounding mode 1)). The result is placed in FPR fd.

3.1. Instructions compatible with MIPS ISA 119

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point
To convert an FP value to 32-bit fixed-point, rounding up. MIPS II

31 26

010001

COP1

25 21

fmt

20 16

00000

0

15 11

fs

10 6

fd

5 0

001110

CEIL.W

Mnemonic:

CEIL.W.S fd, fs (fmt = 10000)

CEIL.W.D fd, fs (fmt = 10001)

Function :

FPR[fd] ← convert and round(FPR[fs])

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Floating Point Overflow

Overview :

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point format

rounding toward +∞ (rounding mode 2). The result is placed in FPR fd.

120 第 3章 Instruction Set

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point
To convert an FP value to 32-bit fixed-point, rounding down. MIPS II

31 26

010001

COP1

25 21

fmt

20 16

00000

0

15 11

fs

10 6

fd

5 0

001111

FLOOR.W

Mnemonic:

FLOOR.W.S fd, fs (fmt = 10000)

FLOOR.W.D fd, fs (fmt = 10001)

Function :

FPR[fd] ← convert and round(FPR[fs])

Exception :

Floating Point Invalid Operation

Floating Point Inexact

Floating Point Overflow

Overview :

The value in FPR fs in format fmt, is converted to a value in 32-bit word fixed-point format

rounding toward –∞ (rounding mode 3). The result is placed in FPR fd.

3.1. Instructions compatible with MIPS ISA 121

3.1.5 Miscellaneous Instructions

SYSCALL System Call
To system call. MIPS I

31 26

000000

SPECIAL

25 6

00000000000000000000

0

5 0

001100

SYSCALL

Mnemonic:

SYSCALL

Function :

exception(system call)

Exception :

System Call

Overview :

Cause a System Call exception.

BREAK Breakpoint
Breakpoint MIPS I

31 26

000000

SPECIAL

25 6

00000000000000000000

0

5 0

001101

BREAK

Mnemonic:

BREAK

Function :

exception(breakpoint)

Exception :

Break Point

Overview :

Cause a breakpoint exception.

122 第 3章 Instruction Set

TGE Trap if Greater or Equal
To compare GPRs and do a conditional Trap. MIPS II

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110000

TGE

Mnemonic:

TGE rs, rt

Function :

if GPR[rs] ≥ GPR[rt] then

exception(trap)

Exception :

Trap

Overview :

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is greater than or

equal to GPR rt then take a Trap exception.

TGEU Trap if Greater or Equal Unsigned
To compare GPRs and do a conditional Trap. MIPS II

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110001

TGEU

Mnemonic:

TGEU rs, rt

Function :

if GPR[rs] ≥ GPR[rt] then

exception(trap)

Exception :

Trap

Overview :

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is greater than or

equal to GPR rt then take a Trap exception.

3.1. Instructions compatible with MIPS ISA 123

TLT Trap if Less Than
To compare GPRs and do a conditional Trap. MIPS II

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110010

TLT

Mnemonic:

TLT rs, rt

Function :

if GPR[rs] < GPR[rt] then

exception(trap)

Exception :

Trap

Overview :

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is less than GPR rt

then take a Trap exception.

TLTU Trap if Less Than Unsigned
To compare GPRs and do a conditional Trap. MIPS II

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110011

TLTU

Mnemonic:

TLTU rs, rt

Function :

if GPR[rs] < GPR[rt] then

exception(trap)

Exception :

Trap

Overview :

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR

rt then take a Trap exception.

124 第 3章 Instruction Set

TEQ Trap if Equal
To compare GPRs and do a conditional Trap. MIPS II

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110100
TEQ

Mnemonic:

TEQ rs, rt

Function :

if GPR[rs] = GPR[rt] then

exception(trap)

Exception :

Trap

Overview :

Compare the contents of GPR[rs] and GPR[rt] as signed integers; if GPR[rs] is equal to GPR[rt]

then take a Trap exception.

TNE Trap if Not Equal
To conditional trap. MIPS II

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110110

TNE

Mnemonic:

TEQ rs, rt

Function :

if GPR[rs] ̸= GPR[rt] then

exception(trap)

Exception :

Trap

Overview :

If GPR[rs] is not equal to GPR[rt], then take a Trap exception.

3.1. Instructions compatible with MIPS ISA 125

TGEI Trap if Greater or Equal Immediate
To conditional trap. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

01000

TGEI

15 0

immediate

Mnemonic:

TGEI rs, immediate

Function :

if GPR[rs] ≥ sign extend(immediate) then

exception(trap)

Exception :

Trap

Overview :

If GPR[rs] is greather or equal to immediate value, then take a Trap exception.

TGEIU Trap if Greater or Equal Immediate Unsigned
To conditional trap. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

01001

TGEIU

15 0

immediate

Mnemonic:

TGEIU rs, immediate

Function :

if GPR[rs] ≥ sign extend(immediate) then

exception(trap)

Exception :

Trap

Overview :

If GPR[rs] is greater or equal to immediate value, then take a Trap exception. Values are treated

as unsigned.

126 第 3章 Instruction Set

TLTI Trap if Less Than Immediate
To conditional trap. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

01010

TLTI

15 0

immediate

Mnemonic:

TLTI rs, immediate

Function :

if GPR[rs] < sign extend(immediate) then

exception(trap)

Exception :

Trap

Overview :

If GPR[rs] is less than immediate valeu, then take a Trap exception.

TLTIU Trap if Less Than Immediate Unsigned
To conditional trap. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

01010

TLTIU

15 0

immediate

Mnemonic:

TLTIU rs, immediate

Function :

if GPR[rs] < sign extend(immediate) then

exception(trap)

Exception :

Trap

Overview :

If GPR[rs] is less than immediate value, then take a Trap exception. Values are treated as

unsigned.

3.1. Instructions compatible with MIPS ISA 127

TEQI Trap if Equal Immediate
To conditional trap. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

01100
TEQI

15 0

immediate

Mnemonic:

TEQI rs, immediate

Function :

if GPR[rs] = sign extend(immediate) then

exception(trap)

Exception :

Trap

Overview :

If GPR[rs] is equal to immediate value, then take a Trap exception.

TNEI Trap if Not Equal Immediate
To conditional trap. MIPS II

31 26

000001

REGIMM

25 21
rs

20 16

01110

TNEI

15 0

immediate

Mnemonic:

TNEI rs, immediate

Function :

if GPR[rs] ̸= sign extend(immediate) then

exception(trap)

Exception :

Trap

Overview :

If GPR[rs] is not equal to immediate value, then take a Trap exception.

128 第 3章 Instruction Set

3.2 Instructions which are not compatible with MIPS ISA

Responsive Multithreaded Processor instructions which aren’t compatible with MIPS ISA is shown below.

3.2.1 Computational Instructions

DADDI Doubleword Add Immediate
64bit Add Immediate MIPS III modified

31 26

011000

DADDI

25 21
rs

20 16

rt

15 0

immediate

Mnemonic:

DADDI rt, rs, immediate

Function :

FPR[rt] ← FPR[rs] + sign extension(immediate)

Exception :

Overflow

Overview :

Add 64-bit integers. In Responsive Multithreaded Processor, this operation is executed on floating

point registers.

3.2. Instructions which are not compatible with MIPS ISA 129

DADDIU Doubleword Add Immediate Unsigned
64bit Add Immediate MIPS III modified

31 26

011001

DADDIU

25 21
rs

20 16

rt

15 0

immediate

Mnemonic:

DADDIU rt, rs, immediate

Function :

FPR[rt] ← FPR[rs] + sign extension(immediate)

Exception :

None

Overview :

Add 64-bit integers. This instruction doesn’t trap on overflow. In Responsive Multithreaded

Processor, this operation is executed on floating point registers.

DADD Doubleword Add
64bit Addition MIPS III modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

101100

DADD

Mnemonic:

DADD rd, rs, rt

Function :

FPR[rd] ← FPR[rs] + FPR[rt]

Exception :

Overflow

Overview :

Add 64-bit integers. In Responsive Multithreaded Processor, this operations is executed on

floating point registers.

130 第 3章 Instruction Set

DADDU Doubleword Add Unsigned
64bit Addition MIPS III modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

101101

DADDU

Mnemonic:

DADDU rd, rs, rt

Function :

FPR[rd] ← FPR[rs] + FPR[rt]

Exception :

None

Overview :

Add 64-bit integers. This instruction doesn’t trap on overflow. In Responsive Multithreaded

Processor, this operation is executed on floating point registers.

DSUB Doubleword Subtract
64bit Subtraction MIPS III modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

101110

DSUB

Mnemonic:

DSUB rd, rs, rt

Function :

FPR[rd] ← FPR[rs] − FPR[rt]

Exception :

Overflow

Overview :

Perform a subtraction. In Responsive Multithreaded Processor, this operations is executed on

floating point registers.

3.2. Instructions which are not compatible with MIPS ISA 131

DSUBU Doubleword Subtract Unsigned
64bit Subtraction MIPS III modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

101111

DSUBU

Mnemonic:

DSUBU rd, rs, rt

Function :

FPR[rd] ← FPR[rs] − FPR[rt]

Exception :

None

Overview :

Perform a subtraction. This instruction doesn’t trap on overflow. In Responsive Multithreaded

Processor, this operation is executed on floating point registers.

DSLL Doubleword Shift Left Logical
64bit Shift Left Logical MIPS III modified

31 26

000000

SPECIAL

25 21

00000

0

20 16

rt

15 11

rd

10 6
sa

5 0

111000

DSLL

Mnemonic:

DSLL rd, rt, sa

Function :

FPR[rd] ← FPR[rt] ≪ sa

Exception :

None

Overview :

Perform a logical shift-left. In Responsive Multithreaded Processor, this operation is executed

on floating point registers.

132 第 3章 Instruction Set

DSRL Doubleword Shift Right Logical
64bit Shift Right Logical MIPS III modified

31 26

000000

SPECIAL

25 21

00000

0

20 16

rt

15 11

rd

10 6
sa

5 0

111010

DSRL

Mnemonic:

DSRL rd, rt, sa

Function :

FPR[rd] ← FPR[rt] ≫ sa

Exception :

None

Overview :

Perform a logical shift-right. In Responsive Multithreaded Processor, this operation is executed

on floating point registers.

DSRA Doubleword Shift Right Arithmetic
64bit Shift Right Arithmetic MIPS III modified

31 26

000000

SPECIAL

25 21

00000

0

20 16

rt

15 11

rd

10 6
sa

5 0

111011

DSRA

Mnemonic:

DSRA rd, rt, sa

Function :

FPR[rd] ← FPR[rt] ≫ sa

Exception :

None

Overview :

Perform a arithmetic shift-right. In Responsive Multithreaded Processor, this operation is exe-

cuted on floating point registers.

3.2. Instructions which are not compatible with MIPS ISA 133

DSLL32 Doubleword Shift Left Logical plus 32
64bit Shift Left Logical MIPS III modified

31 26

000000

SPECIAL

25 21

00000

0

20 16

rt

15 11

rd

10 6
sa

5 0

111100

DSLL32

Mnemonic:

DSLL32 rd, rt, sa

Function :

FPR[rd] ← FPR[rt] ≪ (sa + 32)

Exception :

None

Overview :

Perform a logical shift-left. In Responsive Multithreaded Processor, this operation is executed

on floating point registers.

DSRL32 Doubleword Shift Right Logical plus 32
64bit Shift Right Logical MIPS III modified

31 26

000000

SPECIAL

25 21

00000

0

20 16

rt

15 11

rd

10 6
sa

5 0

111110

DSRL32

Mnemonic:

DSRL32 rd, rt, sa

Function :

FPR[rd] ← FPR[rt] ≫ (sa + 32)

Exception :

None

Overview :

Perform a logical shift-right. In Responsive Multithreaded Processor, this operation is executed

on floating point registers.

134 第 3章 Instruction Set

DSRA32 Doubleword Shift Right Arithmetic plus 32
64bit Shift Right Arithmetic MIPS III modified

31 26

000000

SPECIAL

25 21

00000

0

20 16

rt

15 11

rd

10 6
sa

5 0

111111

DSRA32

Mnemonic:

DSRA32 rd, rt, sa

Function :

FPR[rd] ← FPR[rt] ≫ (sa + 32)

Exception :

None

Overview :

Perform a arithmetic shift-right. In Responsive Multithreaded Processor, this operation is exe-

cuted on floating point registers.

DSLLV Doubleword Shift Left Logical Variable
64bit Shift Left Logical MIPS III modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

010100

DSLLV

Mnemonic:

DSLLV rd, rt, rs

Function :

FPR[rd] ← FPR[rt] ≪ FPR[rs]

Exception :

None

Overview :

Perform a logical shift-left. In Responsive Multithreaded Processor, this operation is executed

on floating point registers.

3.2. Instructions which are not compatible with MIPS ISA 135

DSRLV Doubleword Shift Right Logical Variable
64bit Shift Right Logical MIPS III modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

010110

DSRLV

Mnemonic:

DSRLV rd, rt, rs

Function :

FPR[rd] ← FPR[rt] ≫ FPR[rs]

Exception :

None

Overview :

Perform a logical shift-right. In Responsive Multithreaded Processor, this operation is executed

on floating point registers.

DSRAV Doubleword Shift Right Arithmetic Variable
64bit Shift Right Arithmetic MIPS III modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

010111

DSRAV

Mnemonic:

DSRAV rd, rt, rs

Function :

FPR[rd] ← FPR[rt] ≫ FPR[rs]

Exception :

None

Overview :

Perform a arithmetic shift-right. In Responsive Multithreaded Processor, this operation is exe-

cuted on floating point registers.

136 第 3章 Instruction Set

MULT Multiply Word
Multiply signed integers MIPS I modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

011000

MULT

Mnemonic:

MULT rd, rs, rt

Function :

GPR[rd] ← GPR[rs] × GPR[rt]

Exception :

None

Overview :

The 32-bit word in GPR[rt] is multiplied by the 32-bit value in GPR[rs]]. In Responsive Multi-

threaded Processor, this instruction has 3 operands, and the low-order 32-bit word of the result

is placed into GPR[rd].

MULTU Multiply Word Unsigned
Multiply unsigned integers MIPS I modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

011001

MULTU

Mnemonic:

MULTU rd, rs, rt

Function :

GPR[rd] ← GPR[rs] × GPR[rt]

Exception :

None

Overview :

Perform a unsigned multiplication. In Responsive Multithreaded Processor, this instruction has

3 operands, and the low-order 32-bit word of the result is placed into GPR[rd].

3.2. Instructions which are not compatible with MIPS ISA 137

DIV Divide Word
Signed division MIPS I modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

011010

DIV

Mnemonic:

DIV rd, rs, rt

Function :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

Exception :

Divide by Zero

Overview :

Perform a signed division. In Responsive Multithreaded Processor, this instruction has 3

operands, and the quotient is placed into GPR[rd].

DIVU Divide Word Unsigned
Unsigned division MIPS I modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

011011

DIVU

Mnemonic:

DIVU rd, rs, rt

Function :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

Exception :

Divide by Zero

Overview :

Perform a unsigned division. In Responsive Multithreaded Processor, this instruction has 3

operands, and the quotient is placed into GPR[rd].

138 第 3章 Instruction Set

DMULT Doubleword Multiply
Signed 64-bit Multiplication MIPS III modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

011100

DMULT

Mnemonic:

DMULT rd, rs, rt

Function :

FPR[rd] ← FPR[rs] × FPR[rt]

Exception :

None

Overview :

Perform a multiplication. In Responsive Multithreaded Processor, this instruction has 3

operands, and the low-order 64-bit word of the result is placed into FPR[rd].

DMULTU Doubleword Multiply Unsigned
Unsigned 64-bit Multiplication MIPS III modified

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

011101

DMULTU

Mnemonic:

DMULTU rd, rs, rt

Function :

FPR[rd] ← FPR[rs] × FPR[rt]

Exception :

None

Overview :

Perform a unsigned multiprication. In Responsive Multithreaded Processor, this instruction has

3 operands, and the low-order 64-bit word of the result is placed into FPR[rd].

3.2. Instructions which are not compatible with MIPS ISA 139

3.2.2 Floating-Point Instructions

C.cond.fmt Floating-Point Compare
Floating-Point Compare MIPS I modified

31 26

010001

COP1

25 21

fmt

20 16

ft

15 11

fs

10 6

00000

0

5 4

11

FC

3 0

cond

Mnemonic:

C.cond.S fs, ft (fmt = 10000)

C.cond.D fs, ft (fmt = 10001)

Function :

FPR[7] ← FPR[fs] conpare cond FPR[ft]

Exception :

Floating Point Invalid

Overview :

浮動小数点の比較を行う．Responsive Multithreaded Processorではステータスレジスタではなく，

浮動小数点レジスタに結果が格納される．比較条件 (cond)には, eq, le, lt, ult, f, sf, un, ueq, seq,

ngt, ngl, ngle, ole, ule, olt, nge のどれか指定する.

140 第 3章 Instruction Set

BC1T Branch on FP True
Branch on FP True MIPS I modified

31 26

010001

COP1

25 21

01000

BC

20 18

000

9

17

0

nd

16

1

tf

15 0

offset

Mnemonic:

BC1T offset

Function :

if FPR[7] = 1 then

branch

Exception :

None

Overview :

If FPR[7] is true (value ’1’), then branch to effective target address. In Responsive Multithreaded

Processor, this instruction tests FPR[7], not status register.

BC1F Branch on FP False
Branch on FP False MIPS I modified

31 26

010001

COP1

25 21

01000

BC

20 18

000

9

17

0

nd

16

0

tf

15 0

offset

Mnemonic:

BC1F offset

Function :

if FPR[7] = 0 then

branch

Exception :

None

Overview :

If FPR[7] is false (value ’0’), then branch to effective target address. In Responsive Multithreaded

Processor, this instruction tests FPR[7], not status register.

3.2. Instructions which are not compatible with MIPS ISA 141

BC1TL Branch on FP True Likely
Branch on FP True Likely MIPS II modified

31 26

010001

COP1

25 21

01000

BC

20 18

000

9

17

1

nd

16

1

tf

15 0

offset

Mnemonic:

BC1TL offset

Function :

if FPR[7] = 1 then

branch likely

Exception :

None

Overview :

If FPR[7] is true (value ’1’), then branch to effective target address. In Responsive Multithreaded

Processor, this instruction tests FPR[7], not status register.

BC1FL Branch on FP False Likely
Branch on FP False Likely MIPS II modified

31 26

010001

COP1

25 21

01000

BC

20 18

000

9

17

1

nd

16

0

tf

15 0

offset

Mnemonic:

BC1FL offset

Function :

if FPR[7] = 0 then

branch likely

Exception :

None

Overview :

If FPR[7] is false (value ’0’), then branch to effective target address. In Responsive Multithreaded

Processor, this instruction tests FPR[7], not status register.

142 第 3章 Instruction Set

3.2.3 Other Instructions

SYNC Synchronize Operation
To order instruction executions MIPS II modified

31 26

000000

SPECIAL

25 6

000000000000000

0

5 0

001111

SYNC

Mnemonic:

SYNC

Function :

synchronize operation order()

Exception :

None

Overview :

In Responsive Multithreaded Processor, instructions are executed Out-of-Order. SYNC guaran-

tees instruction execution order before and after its execution. In other words, instructions after

SYNC cannot be executed before SYNC. In addition, SYNC cannot be executed speculatively,

it can be used to control speculative execution.

3.2.4 Unsupported MIPS II Instructions

Responsive Multithreaded Processoris basically MIPS II ISA compatible, but some of the MIPS II instruc-

tions are not supported. The unsupported MIPS II instructions are shown below.

Mnemonic Description

LWC2 Load Word to Coprocessor-2 MIPS I

LWC3 Load Word to Coprocessor-3 MIPS I

SWC2 Store Word to Coprocessor-2 MIPS I

SWC3 Store Word to Coprocessor-3 MIPS I

LDC2 Load Doubleword to Coprocessor-2 MIPS II

LDC3 Load Doubleword to Coprocessor-3 MIPS II

SDC2 Store Doubleword to Coprocessor-2 MIPS II

SDC3 Store Doubleword to Coprocessor-3 MIPS II

MFHI Move From HI MIPS I

MTHI Move To HI MIPS I

MFLO Move From LO MIPI I

MTLO Move To LO MIPS I

CTC1 Move Control Word To Floating-Point MIPS I

CFC1 Move Control Word From Floating-Point MIPS I

SQRT.fmt Floating-Point Square Root MIPS II

3.3. Responsive Multithreaded Processor Specific Instructions 143

3.3 Responsive Multithreaded Processor Specific Instructions

Responsive Multithreaded Processor specific instructions are shown below.

3.3.1 Load / Store Instruction

IOLB Load Byte for I/O
Load Instruction for I/O RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110000

IOLB

Mnemonic:

IOLB rt, rs

Function :

GPR[rt] ← sign extend(MEM.BYTE[GPR[rs]])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Load a Byte from specified address. Because this instruction is not speculative execution, it is

used for modules whose status changes after load like I/O devices.

144 第 3章 Instruction Set

IOLH Load Half Word for I/O
Load Instruction for I/O RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110001

IOLH

Mnemonic:

IOLH rt, rs

Function :

GPR[rt] ← sign extend(MEM.HWORD[GPR[rs]])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Load a Half Word from specified address. Because this instruction is not speculative execution,

it is used for modules whose status changes after load like I/O devices.

3.3. Responsive Multithreaded Processor Specific Instructions 145

IOLW Load Word for I/O
Load Instruction for I/O RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110010

IOLW

Mnemonic:

IOLW rt, rs

Function :

GPR[rt] ← sign extend(MEM.WORD[GPR[rs]])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Load a Word from specified address. Because this instruction is not speculative execution, it is

used for modules whose status changes after load like I/O devices.

LBUC Uncache Load Byte
Uncache Load Instruction RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

011100

LBUC

Mnemonic:

LBUC rt, rs

Function :

GPR[rt] ← sign extend(MEM.BYTE[GPR[rs]])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Uncached load a Byte from specified address.

146 第 3章 Instruction Set

LBUUC Load Byte Unsigned
Uncache Load Instruction RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110110

LBUUC

Mnemonic:

LBUC rt, rs

Function :

GPR[rt] ← zero extend(MEM.BYTE[GPR[rs]])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Uncached load a Byte from specified address.

LHUC Uncache Load Half Word
Uncache Load Instruction RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

101111

LHUC

Mnemonic:

LHUC rt, rs

Function :

GPR[rt] ← sign extend(MEM.HWORD[GPR[rs]])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Uncached load a Half Word from specified address.

3.3. Responsive Multithreaded Processor Specific Instructions 147

LHUUC Uncache Load Half Word Unsigned
Uncache Load Instruction RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110100

LHUUC

Mnemonic:

LHUUC rt, rs

Function :

GPR[rt] ← zero extend(MEM.HWORD[GPR[rs]])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Uncached load a Half Word from specified address.

LWUC Uncache Load Word
Uncache Load Instruction RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

011110

LWUC

Mnemonic:

LWUC rt, rs

Function :

GPR[rt] ← sign extend(MEM.WORD[GPR[rs]])

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Uncached load a Word from specified address.

148 第 3章 Instruction Set

SBUC Uncache Store Byte
Uncache Store Instruction RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

011101

SBUC

Mnemonic:

SBUC rt, rs

Function :

MEM.BYTE[GPR[base] + sign extend(offset)] ← GPR[rt]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Overview :

Uncached store a Byte to specified address.

SHUC Uncache Store Half Word
Uncache Store Instruction RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

111000

SHUC

Mnemonic:

SHUC rt, rs

Function :

MEM.HWORD[GPR[base] + sign extend(offset)] ← GPR[rt]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

Uncached store a Half Word to specified address.

3.3. Responsive Multithreaded Processor Specific Instructions 149

SWUC Uncache Store Word
Uncache Store Instruction RESPII

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

011111

SWUC

Mnemonic:

SWUC rt, rs

Function :

MEM.WORD[GPR[base] + sign extend(offset)] ← GPR[rt]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

Uncached store a Word to specified address.

LWC1UC Uncache Load Word to Floating Point
Uncache Load Word to a FP register MIPS I

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

110011

LWC1UC

Mnemonic:

LWC1UC rs, ft

Function :

FPR[ft] ← MEM.WORD[GPR[rs]]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Perform a load operation from memory to a floating-point register.

150 第 3章 Instruction Set

SWC1UC Uncache Store Word from Floating Point
Uncache Store Word from FP register MIPS I

31 26

010000

COP0

25 21
rs

20 16

rt

15 6

0000000000

0

5 0

111010

SWC1UC

Mnemonic:

SWC1UC rs, ft

Function :

MEM.WORD[GPR[rs]] ← FPR[ft]

Exception :

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

Perform a store operation to an memory from a floating-point register.

3.3.2 Arithmetic Instructions

DAND Doubleword And
64bit Logical AND RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

100100

AND

Mnemonic:

DAND rd, rs, rt

Function :

FPR[rd] ← FPR[rs] and FPR[rt]

Exception :

None

Overview :

Perform a 64-bit logical AND operation on FPRs.

3.3. Responsive Multithreaded Processor Specific Instructions 151

DOR Doubleword Or
64bit Logical OR RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

100101

OR

Mnemonic:

DOR rd, rs, rt

Function :

FPR[rd] ← FPR[rs] or FPR[rt]

Exception :

None

Overview :

Perform a 64-bit logical OR operation on FPRs.

DXOR Doubleword Exclusive Or
64bit logical Exclusive OR RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

100110

XOR

Mnemonic:

DXOR rd, rs, rt

Function :

FPR[rd] ← FPR[rs] xor FPR[rt]

Exception :

None

Overview :

Perform a 64-bit logical XOR operation on FPRs.

152 第 3章 Instruction Set

DNOR Doubleword Not Or
64bit logical NOT OR RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

100111

NOR

Mnemonic:

DNOR rd, rs, rt

Function :

FPR[rd] ← FPR[rs] nor FPR[rt]

Exception :

None

Overview :

Perform a 64-bit logical NOT OR on FPRs.

MULTH Multiply Word on High Bit
Signed Multiplication RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

011000

MULT

Mnemonic:

MULTH rd, rs, rt

Function :

GPR[rd] ← GPR[rs] × GPR[rt]

Exception :

None

Overview :

Perform a multiplication. The high-order 32-bit of the result is placed into GPR[rd].

3.3. Responsive Multithreaded Processor Specific Instructions 153

MULTUH Multiply Word Unsigned on High Bit
Unsigned Multiplication RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

011001

MULTU

Mnemonic:

MULTUH rd, rs, rt

Function :

GPR[rd] ← GPR[rs] × GPR[rt]

Exception :

None

Overview :

Perform a unsigned multiplication. The high-order 32-bit of the result is placed into GPR[rd].

DMULTH Doubleword Multiply on High Bit
Signed 64-bit Multiplication RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

011100

DMULT

Mnemonic:

DMULTH rd, rs, rt

Function :

FPR[rd] ← FPR[rs] × FPR[rt]

Exception :

None

Overview :

Perform a multiplication on FPR. The high-order 64-bit of the result is placed into destination

register.

154 第 3章 Instruction Set

DMULTUH Doubleword Multiply Unsigned on High Bit
Unsigned 64-bit Multiply RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

011101

DMULTU

Mnemonic:

DMULTUH rd, rs, rt

Function :

FPR[rd] ← FPR[rs] × FPR[rt]

Exception :

None

Overview :

Perform a unsigned multiply operation on FPRs. The high-order 64-bit of the result is placed

into destination register.

REM Reminder Word
Signed Reminder RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

011010

DIV

Mnemonic:

REM rd, rs, rt

Function :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

Exception :

Divide by Zero

Overview :

Perform a divide operation. The reminder of the division is placed into destination register.

3.3. Responsive Multithreaded Processor Specific Instructions 155

REMU Reminder Word Unsigned
Unsigned Reminder RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

011011

DIVU

Mnemonic:

REMU rd, rs, rt

Function :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

Exception :

Divide by Zero

Overview :

Perform a unsigned divide operation. The reminder of the operation is placed into destination

register.

DSLT Doubleword Set on Less Than
Signed 64-bit compare RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

101010

SLT

Mnemonic:

DSLT rd, rs, rt

Function :

if FPR[rs] < FPR[rt] then

FPR[rd] ← 1

else

FPR[rd] ← 0

endif

Exception :

None

Overview :

Perform a compare operation on Floating-Point registers.

156 第 3章 Instruction Set

DSLTU Doubleword Set on Less Than Unsigned
Unsigned 64-bit comparison RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

101011

SLTU

Mnemonic:

DSLTU rd, rs, rt

Function :

if FPR[rs] < FPR[rt] then

FPR[rd] ← 1

else

FPR[rd] ← 0

endif

Exception :

None

Overview :

Perform a unsigned compare operation on FPRs.

RTL Rotate Left
Rotate Left RESPII

31 26

000000

SPECIAL

25 21

00001

1

20 16

rt

15 11

rd

10 6
sa

5 0

000000

SLL

Mnemonic:

RTL rd, rt, sa

Function :

GPR[rd] ← GPR[rt] <<< sa

Exception :

None

Overview :

Perform a left rotate operation.

3.3. Responsive Multithreaded Processor Specific Instructions 157

RTR Rotate Right
Rotate Right RESPII

31 26

000000

SPECIAL

25 21

00001

1

20 16

rt

15 11

rd

10 6
sa

5 0

000010

SRL

Mnemonic:

RTR rd, rt, sa

Function :

GPR[rd] ← GPR[rt] >>> sa

Exception :

None

Overview :

Perform a right rotate operation.

RTLV Rotate Left Variable
Rotate Left Variable RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

000100

SLLV

Mnemonic:

RTLV rd, rt, rs

Function :

GPR[rd] ← GPR[rt] <<< GPR[rs]

Exception :

None

Overview :

Perform a left rotate operation.

158 第 3章 Instruction Set

RTRV Rotate Right Variable
Rotate Right Variable RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

000110

SRLV

Mnemonic:

RTRV rd, rt, rs

Function :

GPR[rd] ← GPR[rt] >>> GPR[rs]

Exception :

None

Overview :

Perform a right rotate operation.

DRTL Doubleword Rotate Left
64bit Rotate Left RESPII

31 26

000000

SPECIAL

25 21

00001

1

20 16

rt

15 11

rd

10 6
sa

5 0

111000

DSLL

Mnemonic:

DRTL rd, rt, sa

Function :

FPR[rd] ← FPR[rt] <<< sa

Exception :

None

Overview :

Perform a 64-bit left rotate operation on FPRs.

3.3. Responsive Multithreaded Processor Specific Instructions 159

DRTR Doubleword Rotate Right
64bit Rotate Right RESPII

31 26

000000

SPECIAL

25 21

00001

1

20 16

rt

15 11

rd

10 6
sa

5 0

111010

DSRL

Mnemonic:

DRTR rd, rt, sa

Function :

FPR[rd] ← FPR[rt] >>> sa

Exception :

None

Overview :

Perform a right rotate operation on FPRs.

DRTL32 Doubleword Rotate Left plus 32
64bit Rotate Left RESPII

31 26

000000

SPECIAL

25 21

00001

1

20 16

rt

15 11

rd

10 6
sa

5 0

111100

DSLL32

Mnemonic:

DRTL rd, rt, sa

Function :

FPR[rd] ← FPR[rt] <<< (sa + 32)

Exception :

None

Overview :

Perform a left rotate operation on FPRs.

160 第 3章 Instruction Set

DRTR32 Doubleword Rotate Right plus 32
64bit Rotate Right RESPII

31 26

000000

SPECIAL

25 21

00001

1

20 16

rt

15 11

rd

10 6
sa

5 0

111110

DSRL32

Mnemonic:

DRTR32 rd, rt, sa

Function :

FPR[rd] ← FPR[rt] >>> (sa + 32)

Exception :

None

Overview :

Perform a right rotate operation on FPRs.

DRTLV Doubleword Rotate Left Variable
64bit Rotate Left Variable RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

010100

DSLLV

Mnemonic:

DRTLV rd, rt, rs

Function :

FPR[rd] ← FPR[rt] <<< FPR[rs]

Exception :

None

Overview :

Perform a left rotate operation on FPRs.

3.3. Responsive Multithreaded Processor Specific Instructions 161

DRTRV Doubleword Rotate Right Variable
64bit Rotate Right RESPII

31 26

000000

SPECIAL

25 21
rs

20 16

rt

15 11

rd

10 6

00001

1

5 0

010110

DSRLV

Mnemonic:

DRTRV rd, rt, rs

Function :

FPR[rd] ← FPR[rt] >>> FPR[rs]

Exception :

None

Overview :

Perform a right rotate operation on FPRs.

3.3.3 Data Transfer Instructions

MTC1H Move Word to Floating Point on High bit
Data transfer between registers. RESPII

31 26

010001

COP1

25 21

00100

MT

20 16

rt

15 11

fs

10 6

00001

1

5 0

000000

0

Mnemonic:

MTC1H rt, fs

Function :

FPR[fs] ← {GPR[rt], 032}

Exception :

None

Overview :

Transfer a GPR value to high-order 32-bit of a floating-point register.

162 第 3章 Instruction Set

MFC1H Move Word from Floating Point on High bit
Data transfer between registers RESPII

31 26

010001

COP1

25 21

00000

MF

20 16

rt

15 11

fs

10 6

00001

1

5 0

000000

0

Mnemonic:

MFC1H rt, fs

Function :

GPR[rt] ← high 32bit(FPR[fs])

Exception :

None

Overview :

Transfer high-order 32-bit of a floating-point register to GPR[rt].

3.3.4 System Control Instruction

MFC0 Move from System Control Register
Move from System Control Register SYSTEM (Privilege Instruction)

31 26

010000

COP0

25 21

00000

MF

20 16

rt

15 11

rd

10 6

00000

0

5 0

000000

CTRL

Mnemonic:

MFC0 rt, rd

Function :

GPR[rt] ← SYSTEM[GPR[rd]]

Exception :

Coprocessor Unusable

Overview :

Move a word from system control register to GPR. The Address of the system control register

is contained to GPR[rd].

3.3. Responsive Multithreaded Processor Specific Instructions 163

MTC0 Move to System Control Register
Move to System Control Register SYSTEM (Privilege Instruction)

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11

rd

10 6

00000

0

5 0

000000

CTRL

Mnemonic:

MTC0 rt, rd

Function :

SYSTEM[GPR[rd]] ← GPR[rt]

Exception :

Coprocessor Unusable

Overview :

Move a word to system control register from GPR. The Address of the system control register

is contained to GPR[rd].

MFIMM Move from Instruction MMU Control Register
Move from IMMU Control Register SYSTEM (Privilege Instruction)

31 26

010000

COP0

25 21

00000

MF

20 16

rt

15 11

rd

10 6

00000

0

5 0

000010

IMMU

Mnemonic:

MFIMM rt, rd

Function :

GPR[rt] ← IMMU[GPR[rd]]

Exception :

Coprocessor Unusable

Overview :

Move a word from IMMU control register to GPR. The Address of the control register is con-

tained to GPR[rd].

164 第 3章 Instruction Set

MTIMM Move to Instruction MMU Control Register
Move to IMMU Control Register SYSTEM (Privilege Instruction)

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11

rd

10 6

00000

0

5 0

000010

IMMU

Mnemonic:

MTIMM rt, rd

Function :

IMMU[GPR[rd]] ← GPR[rt]

Exception :

Coprocessor Unusable

Overview :

Move a word to IMMU control register from GPR. The Address of the control register is con-

tained to GPR[rd].

MFDMM Move from Data MMU Control Register
Move from DMMU Control Register SYSTEM

31 26

010000

COP0

25 21

00000

MF

20 16

rt

15 11

rd

10 6

00000

0

5 0

000011

DMMU

Mnemonic:

MFDMM rt, rd

Function :

GPR[rt] ← DMMU[GPR[rd]]

Exception :

Coprocessor Unusable

Overview :

Move a word from DMMU control register to GPR. The Address of the control register is

contained to GPR[rd].

3.3. Responsive Multithreaded Processor Specific Instructions 165

MTDMM Move to Data MMU Control Register
Move to DMMU Control Register SYSTEM (Privilege Instruction)

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11

rd

10 6

00000

0

5 0

000011

DMMU

Mnemonic:

MTDMM rt, rd

Function :

DMMU[GPR[rd]] ← GPR[rt]

Exception :

Coprocessor Unusable

Overview :

Move a word to DMMU control register from GPR. The Address of the control register is

contained to GPR[rd].

ERET Exception Return
Exception Return SYSTEM

31 26

010000

COP0

25 6

00000000000000000000

0

5 0

011000

ERET

Mnemonic:

ERET

Function :

Exception Return

Exception :

None

Overview :

Return from Exception.

166 第 3章 Instruction Set

3.3.5 Thread Control Instructio

MKTH Make Thread
Make Thread THREAD

31 26

011101

THREAD

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

000001

MKTH

Mnemonic:

MKTH rd, rs, rt

Function :

make thread(GPR[rs], GPR[rt])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Make a thread. The Thread ID to make is contained in GPR[rs] and the start address of it

is contained in GPR[rt]. If succeed in making the thread, GPR[rd] is set to one. It gets zero

otherwise.

3.3. Responsive Multithreaded Processor Specific Instructions 167

DELTH Delete Thread
Delete Thread THREAD

31 26

011101

THREAD

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

000010

DELTH

Mnemonic:

DELTH rd, rs

Function :

delete thread(GPR[rs])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Delete a thread. The Thread ID to delete is contained in GPR[rs]. If succeed in deleting the

thread, GPR[rd] is set to one. It gets zero otherwise.

168 第 3章 Instruction Set

CHGPR Change Priority
Change Priority THREAD

31 26

011101

THREAD

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

000011

CHGPR

Mnemonic:

CHGPR rd, rs, rt

Function :

change priority(GPR[rs] ,GPR[rd])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Change the priority of a thread. The Thread ID to change the priority is contained in GPR[rs]

and the new priority is contained in GPR[rt]. If succeed in changing the priority, GPR[rd] is set

to one. It gets zero otherwise.

3.3. Responsive Multithreaded Processor Specific Instructions 169

CHGST Change Status
Change Status THREAD

31 26

011101

THREAD

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

000100

CHGST

Mnemonic:

CHGST rd, rs, rt

Function :

change status(GPR[rs], GPR[rt])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Change the status of a thread. The Thread ID to change the status is contained in GPR[rs]

and the new status is contained in GPR[rt]. If succeed in changing the status, GPR[rd] is set

to one. It gets zero otherwise.

170 第 3章 Instruction Set

RUNTH Run Thread
Run Thread THREAD

31 26

011101

THREAD

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

000101

RUNTH

Mnemonic:

RUNTH rd, rs

Function :

run thread(GPR[rs])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Run a thread. The Thread ID to run is contained in GPR[rs]. If succeed in running the thread,

GPR[rd] is set to one. It gets zero otherwise.

3.3. Responsive Multithreaded Processor Specific Instructions 171

STOPTH Stop Thread
Stop Thread THREAD

31 26

011101

THREAD

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

000110

STOPTH

Mnemonic:

STOPTH rd, rs

Function :

stop thread(GPR[rs])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Stop a thread. The Thread ID to stop is contained in GPR[rs]. If succeed in stopping the

thread, GPR[rd] is set to one. It gets zero otherwise.

172 第 3章 Instruction Set

STOPSLF Stop Myself
Stop Myself THREAD

31 26

011101

THREAD

25 16

0000000000

0

15 11

rd

10 6

00000

0

5 0

000111

STOPSLF

Mnemonic:

STOPSLF rd

Function :

stop myself()

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Stop a thread oneself. If succeed in stopping the thread, GPR[rd] is set to one. It gets zero

otherwise.

3.3. Responsive Multithreaded Processor Specific Instructions 173

BKUPTH Backup Thread
Backup Thread THREAD

31 26

011101

THREAD

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

001000

BKUPTH

Mnemonic:

BKUPTH rd, rs

Function :

backup thread(GPR[rs])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Backup a thread to the context cache. The Thread ID to backup is contained in GPR[rs]. If

succeed in backup the thread, GPR[rd] is set to one. It gets zero otherwise.

174 第 3章 Instruction Set

BKUPSLF Backup Myself
Backup Myself THREAD

31 26

011101

THREAD

25 16

0000000000

0

15 11

rd

10 6

00000

0

5 0

001001

BKUPSLF

Mnemonic:

BKUPSLF rd

Function :

backup myself()

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Backup oneself to the context cache. If succeed in backup the thread, GPR[rd] is set to one. It

gets zero otherwise.

3.3. Responsive Multithreaded Processor Specific Instructions 175

RSTRTH Restore Thread
Restore Thread THREAD

31 26

011101

THREAD

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

001010

RSTRTH

Mnemonic:

RSTRTH rd, rs

Function :

restore thread(GPR[rs])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Restore a cached thread from the context cache. The Thread ID to restore is contained in

GPR[rs]. If succeed in restoring the thread, GPR[rd] is set to one. It gets zero otherwise.

176 第 3章 Instruction Set

SWAPTH Swap Thread
Swap Thread THREAD

31 26

011101

THREAD

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

001011

SWAPTH

Mnemonic:

SWAPTH rd, rs, rt

Function :

swap thread(GPR[rs], GPR[rt])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Swap an active thread for a cached thread. The Thread ID to backup is contained in GPR[rs]

and the Thread ID to restore is contained in GPR[rt]. If succeed in swapping the threads,

GPR[rd] is set to one. It gets zero otherwise.

3.3. Responsive Multithreaded Processor Specific Instructions 177

SWAPSLF Swap Myself
Swap Myself THREAD

31 26

011101

THREAD

25 21

00000

0

20 16

rt

15 11

rd

10 6

00000

0

5 0

001100

SWAPSLF

Mnemonic:

SWAPSLF rd, rt

Function :

swap myself(GPR[rt])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Swap oneself for a cached thread. The Thread ID to restore is contained in GPR[rt]. If succeed

in swapping the threads, GPR[rd] is set to one. It gets zero otherwise.

178 第 3章 Instruction Set

CPTHTOA Copy Thread to Active Thread
Copy Thread to Active Thread THREAD

31 26

011101

THREAD

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

001101

CPTHTOA

Mnemonic:

CPTHTOA rd, rs, rt

Function :

copy to active(GPR[rs], GPR[rt])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Copy a thread to an active thread. The Thread ID of the copy source active thread is contained

in GPR[rs]. and the Thread ID of the copy destination active thread is contained in GPR[rt].

If succeed in copying the threads, GPR[rd] is set to one. It gets zero otherwise.

3.3. Responsive Multithreaded Processor Specific Instructions 179

CPTHTOM Copy Thread to Cache Thread (Memory)
Copy Thread to Cache Thread (Memory) THREAD

31 26

011101

THREAD

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

001110

CPTHTOM

Mnemonic:

CPTHTOM rd, rs, rt

Function :

copy to meory(GPR[rs], GPR[rt])

if success thread operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

Overview :

Copy a thread as a cached thread. The Thread ID of the copy source active thread is contained

in GPR[rs]. and the Thread ID of the copy destination cached thread is contained in GPR[rt].

If succeed in copying the threads, GPR[rd] is set to one. It gets zero otherwise.

180 第 3章 Instruction Set

GETTT Get Thread Table
Get Thread Table THREAD

31 26

011101

THREAD

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

001111

GETTT

Mnemonic:

GETTT rd, rs

Function :

GPR[rd] ← ThreadTable of GPR[rs]

Exception :

Overview :

Get the value of a Thread Table. The Thread ID to get the Thread Table is contained in

GPR[rs]. The value of the thread table is placed into GPR[rd].

GETTID Get Thread ID
Get Thread ID THREAD

31 26

011101

THREAD

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

010000

GETTID

Mnemonic:

GETTID rd, rs

Function :

GPR[rd] ← ThreadID of GPR[rs]

Exception :

Overview :

Get a thread’s ID which is contained in a logical core whose cid is equal to GPR[rs]. (cid must be

in 0 to 7, hardware only decode lower 3bit of GRP[rs].) The Thread ID is placed into GPR[rd].

If there isn’t valid thread in the context, 0xffff ffff is placed into GPR[rd]. (software cannot

distinguish there is active thread which tid is 0xffff ffff with there is no active thread.)

3.3. Responsive Multithreaded Processor Specific Instructions 181

GETOTID Get Own Thread ID
Get Own Thread ID THREAD

31 26

011101

THREAD

25 16

0000000000

0

15 11

rd

10 6

00000

0

5 0

010001

GETOTID

Mnemonic:

GETOTID rd

Function :

GPR[rd] ← Own ThreadID

Exception :

Overview :

Get Own Thread ID. The Thread ID is placed into GPR[rd].

GETMTID Get Cache Thread ID (Get Memory Thread ID)
Get Thread ID THREAD

31 26

011101

THREAD

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

010010

GETMTID

Mnemonic:

GETMTID rd, rs

Function :

GPR[rd] ← ThreadID of GPR[rs]

Exception :

Overview :

Get a thread’s id which is contained in a context cache entry whose cid is equal to GPR[rs].

(cid must be in 0 to 32, hardware only decode lower 5bit of GRP[rs].) The thread’s id is placed

into GPR[rd]. If there isn’t valid thread in the entry, 0xffff ffff is placed into GPR[rd]. (software

cannot distinguish that there is active thread which thread id is 0xffff ffffk with that there is no

valid thread.)

If the 8 bit is equal to 1, the thread is in active thread and the 0 - 2 bit represents context ID, and if the

6 bit is equal to 0, the thread is in context cache and the 0 - 4 bit represents context ID.

182 第 3章 Instruction Set

GETCNUM Get Context ID Number
Get Context ID THREAD

31 26

011101

THREAD

25 21
rs

20 16

00000

0

15 11

rd

10 6

00000

0

5 0

010011

GETCNUM

Mnemonic:

GETCNUM rd, rs

Function :

GPR[rd] ← ContextID of GPR[rs]

Exception :

Overview :

Get a Context ID from the Thread ID. The Thread ID to get the Context ID is contained in

GPR[rs]. The Context ID is placed into GPR[rd].

3.3. Responsive Multithreaded Processor Specific Instructions 183

3.3.6 SIMD Arithmetic Instruction

SADD.size SIMD Add
SIMD Add SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

100000

ADD

Mnemonic:

SADD.8 rd, rs, rt (size = 01)

SADD.16 rd, rs, rt (size = 10)

SADD.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] + FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD Add by using FPR.

SADD.8: Add two packed 8-bit vaules.

SADD.16: Add two packed 16-bit vaules.

SADD.32: Add two packed 32-bit vaules.

184 第 3章 Instruction Set

SADD.size.sc SIMD Add Scalar
SIMD Add SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

110000

ADD.sc

Mnemonic:

SADD.8.sc rd, rs, rt (size = 01)

SADD.16.sc rd, rs, rt (size = 10)

SADD.32.sc rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] + FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD Add by using FPR. This instruction copies the value of least significant

field to each field within FPR[rt] and operates.

SADD.8.sc: Add two packed 8-bit vaules.

SADD.16.sc: Add two packed 16-bit vaules.

SADD.32.sc: Add two packed 32-bit vaules.

3.3. Responsive Multithreaded Processor Specific Instructions 185

SSUB.size SIMD Subtract
SIMD Subtract SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

100010

SUB

Mnemonic:

SSUB.8 rd, rs, rt (size = 01)

SSUB.16 rd, rs, rt (size = 10)

SSUB.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] − FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD subtract by using FPR.

SSUB.8: Subtract two packed 8-bit vaules.

SSUB.16: Subtract two packed 16-bit vaules.

SSUB.32: Subtract two packed 32-bit vaules.

186 第 3章 Instruction Set

SSUB.size.sc SIMD Subtract Scalar
SIMD Subtract SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

110010

SUB.sc

Mnemonic:

SSUB.8.sc rd, rs, rt (size = 01)

SSUB.16.sc rd, rs, rt (size = 10)

SSUB.32.sc rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] − FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD subtract by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SSUB.8.sc: Subtract two packed 8-bit vaules.

SSUB.16.sc: Subtract two packed 16-bit vaules.

SSUB.32.sc: Subtract two packed 32-bit vaules.

3.3. Responsive Multithreaded Processor Specific Instructions 187

SMULT.size SIMD Multiply
Signed SIMD Multiply SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

011000

MULT

Mnemonic:

SMULT.8 rd, rs, rt (size = 01)

SMULT.16 rd, rs, rt (size = 10)

SMULT.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] × FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD Multiply by using FPR.

SMULT.8: Multiply two packed 8-bit vaules.

SMULT.16: Multiply two packed 16-bit vaules.

SMULT.32: Multiply two packed 32-bit vaules.

188 第 3章 Instruction Set

SMULT.size.sc SIMD Multiply Scalar
Singned SIMD Multiply SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

101000

MULT.sc

Mnemonic:

SMULT.8.sc rd, rs, rt (size = 01)

SMULT.16.sc rd, rs, rt (size = 10)

SMULT.32.sc rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] × FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD Multiply by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SMULT.8.sc: Multiply two packed 8-bit vaules.

SMULT.16.sc: Multiply two packed 16-bit vaules.

SMULT.32.sc: Multiply two packed 32-bit vaules.

3.3. Responsive Multithreaded Processor Specific Instructions 189

SMULTU.size SIMD Multiply Unsigned
Unsigned SIMD Multiply SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

011001

MULTU

Mnemonic:

SMULTU.8 rd, rs, rt (size = 01)

SMULTU.16 rd, rs, rt (size = 10)

SMULTU.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] × FPR[rt]

Exception :

None

Overview :

64-bit integer Unsigned SIMD Multiply by using FPR.

SMULT.8: Multiply two packed 8-bit vaules.

SMULT.16: Multiply two packed 16-bit vaules.

SMULT.32: Multiply two packed 32-bit vaules.

190 第 3章 Instruction Set

SMULTU.size.sc SIMD Multiply Unsigned Scalar
Unsigned SIMD Multiply SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

101001

MULTU.sc

Mnemonic:

SMULTU.8.sc rd, rs, rt (size = 01)

SMULTU.16.sc rd, rs, rt (size = 10)

SMULTU.32.sc rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] × FPR[rt]

Exception :

None

Overview :

64-bit integer Unsigned SIMD Multiply by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SMULT.8.sc: Multiply two packed 8-bit vaules.

SMULT.16.sc: Multiply two packed 16-bit vaules.

SMULT.32.sc: Multiply two packed 32-bit vaules.

3.3. Responsive Multithreaded Processor Specific Instructions 191

SAND.size.sc SIMD And Scalar
SIMD Logical AND SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

100100

AND.sc

Mnemonic:

SAND.8.sc rd, rs, rt (size = 01)

SAND.16.sc rd, rs, rt (size = 10)

SAND.32.sc rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] and FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD Logical AND by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SAND.8.sc: Logical AND operation of two packed 8-bit vaules.

SAND.16.sc: Logical AND operation of two packed 16-bit vaules.

SAND.32.sc: Logical AND operation of two packed 32-bit vaules.

192 第 3章 Instruction Set

SOR.size.sc SIMD Or Scalar
SIMD Logical OR SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

100101

OR.sc

Mnemonic:

SOR.8.sc rd, rs, rt (size = 01)

SOR.16.sc rd, rs, rt (size = 01)

SOR.32.sc rd, rs, rt (size = 01)

Function :

FPR[rd] ← FPR[rs] or FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD Logical OR by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SOR.8.sc: Logical OR operation of two packed 8-bit vaules.

SOR.16.sc: Logical OR operation of two packed 16-bit vaules.

SOR.32.sc: Logical OR operation of two packed 32-bit vaules.

3.3. Responsive Multithreaded Processor Specific Instructions 193

SXOR.size.sc SIMD Exclusive Or Scalar
SIMD Logical Exclusive OR SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

100110

XOR.sc

Mnemonic:

SXOR.8.sc rd, rs, rt (size = 01)

SXOR.16.sc rd, rs, rt (size = 10)

SXOR.32.sc rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] xor FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD Logical Exclusive OR by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SXOR.8.sc Logical Exclusive OR operation of two packed 8-bit vaules.

SXOR.16.sc Logical Exclusive OR operation of two packed 16-bit vaules.

SXOR.32.sc Logical Exclusive OR operation of two packed 32-bit vaules.

194 第 3章 Instruction Set

SNOR.size.sc SIMD Not Or Scalar
SIMD Logical NOT OR SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

100111

NOR.sc

Mnemonic:

SNOR.8.sc rd, rs, rt (size = 01)

SNOR.16.sc rd, rs, rt (size = 10)

SNOR.32.sc rd, rs, rt (size = 11)

Function :

FPR[rd] ← FPR[rs] nor FPR[rt]

Exception :

None

Overview :

64-bit integer SIMD Logical NOT OR by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SNOR.8.sc Logical NOT OR operation of two packed 8-bit vaules.

SNOR.16.sc Logical NOT OR operation of two packed 16-bit vaules.

SNOR.32.sc Logical NOT OR operation of two packed 32-bit vaules.

3.3. Responsive Multithreaded Processor Specific Instructions 195

SSLT.size SIMD Set on Less Than
SIMD Set on Less Than SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

101010

SLT

Mnemonic:

SSLT.8 rd, rs, rt (size = 01)

SSLT.16 rd, rs, rt (size = 10)

SSLT.32 rd, rs, rt (size = 11)

Function :

if FPR[rs] < FPR[rt] then

FPR[rd] ← 1

else

FPR[rd] ← 0

endif

Exception :

None

Overview :

SIMD Compare by using FPR.

SSLT.8: Compare two packed 8-bit vaules.

SSLT.16: Compare two packed 16-bit vaules.

SSLT.32: Compare two packed 32-bit vaules.

196 第 3章 Instruction Set

SSLT.size.sc SIMD Set on Less Than Scalar
SIMD Set on Less Than SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

011010

SLT.sc

Mnemonic:

SSLT.8.sc rd, rs, rt (size = 01)

SSLT.16.sc rd, rs, rt (size = 10)

SSLT.32.sc rd, rs, rt (size = 11)

Function :

if FPR[rs] < FPR[rt] then

FPR[rd] ← 1

else

FPR[rd] ← 0

endif

Exception :

None

Overview :

SIMD Compare by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SSLT.8.sc: Compare two packed 8-bit vaules.

SSLT.16.sc: Compare two packed 16-bit vaules.

SSLT.32.sc: Compare two packed 32-bit vaules.

3.3. Responsive Multithreaded Processor Specific Instructions 197

SSLTU.size SIMD Set on Less Than Unsigned
Unsigned SIMD Set on Less Than SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

101011

SLTU

Mnemonic:

SSLTU.8 rd, rs, rt (size = 01)

SSLTU.16 rd, rs, rt (size = 10)

SSLTU.32 rd, rs, rt (size = 11)

Function :

if FPR[rs] < FPR[rt] then

FPR[rd] ← 1

else

FPR[rd] ← 0

endif

Exception :

None

Overview :

SIMD Compare as unsigned values by using FPR.

SSLTU.8: Compare two packed 8-bit vaules.

SSLTU.16: Compare two packed 16-bit vaules.

SSLTU.32: Compare two packed 32-bit vaules.

198 第 3章 Instruction Set

SSLTU.size.sc SIMD Set on Less Than Unsigned Scalar
Unsigned SIMD Set on Less Than SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

011011

SLTU.sc

Mnemonic:

SSLTU.8.sc rd, rs, rt (size = 01)

SSLTU.16.sc rd, rs, rt (size = 10)

SSLTU.32.sc rd, rs, rt (size = 11)

Function :

if FPR[rs] < FPR[rt] then

FPR[rd] ← 1

else

FPR[rd] ← 0

endif

Exception :

None

Overview :

SIMD Compare as unsigned values by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SSLTU.8.sc: Compare two packed 8-bit vaules.

SSLTU.16.sc: Compare two packed 16-bit vaules.

SSLTU.32.sc: Compare two packed 32-bit vaules.

3.3. Responsive Multithreaded Processor Specific Instructions 199

SSLLV.size SIMD Shift Left Logical Variable
SIMD Shift Left Logical SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

000100

SLLV

Mnemonic:

SSLLV.8 rd, rt, rs (size = 01)

SSLLV.16 rd, rt, rs (size = 10)

SSLLV.32 rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] ≪ FPR[rs]

Exception :

None

Overview :

SIMD Shift Left Logical by using FPR.

SSLLV.8: Shift Left Logical packed 8-bit vaule within FPR[rt].

SSLLV.16.sc: Shift Left Logical packed 16-bit vaule within FPR[rt].

SSLLV.32.sc: Shift Left Logical packed 32-bit vaule within FPR[rt].

200 第 3章 Instruction Set

SSLLV.size.sc SIMD Shift Left Logical Variable Scalar
SIMD Shift Left Logical SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

010100

SLLV.sc

Mnemonic:

SSLLV.8.sc rd, rt, rs (size = 01)

SSLLV.16.sc rd, rt, rs (size = 10)

SSLLV.32.sc rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] ≪ FPR[rs]

Exception :

None

Overview :

SIMD Shift Left Logical by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SSLLV.8.sc: Shift Left Logical packed 8-bit vaule within FPR[rt].

SSLLV.16.sc: Shift Left Logical packed 16-bit vaule within FPR[rt].

SSLLV.32.sc: Shift Left Logical packed 32-bit vaule within FPR[rt].

3.3. Responsive Multithreaded Processor Specific Instructions 201

SSRLV.size SIMD Shift Right Logical Variable
SIMD Shift Right Logical SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

000110

SRLV

Mnemonic:

SSRLV.8 rd, rt, rs (size = 01)

SSRLV.16 rd, rt, rs (size = 10)

SSRLV.32 rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] ≫ FPR[rs]

Exception :

None

Overview :

SIMD Shift Right Logical by using FPR.

SSRLV.8.sc: Shift Right Logical packed 8-bit vaule within FPR[rt].

SSRLV.16.sc: Shift Right Logical packed 16-bit vaule within FPR[rt].

SSRLV.32.sc: Shift Right Logical packed 32-bit vaule within FPR[rt].

202 第 3章 Instruction Set

SSRLV.size.sc SIMD Shift Right Logical Variable Scalar
SIMD Shift Right Logical SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

010110

SRLV.sc

Mnemonic:

SSRLV.8.sc rd, rt, rs (size = 01)

SSRLV.16.sc rd, rt, rs (size = 10)

SSRLV.32.sc rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] ≫ FPR[rs]

Exception :

None

Overview :

SIMD Shift Right Logical by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SSRLV.8.sc: Shift Right Logical packed 8-bit vaule within FPR[rt].

SSRLV.16.sc: Shift Right Logical packed 16-bit vaule within FPR[rt].

SSRLV.32.sc: Shift Right Logical packed 32-bit vaule within FPR[rt].

3.3. Responsive Multithreaded Processor Specific Instructions 203

SSRAV.size SIMD Shift Right Arithmetic Variable
SIMD Shift Right Arithmetic SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

000111

SRAV

Mnemonic:

SSRAV.8 rd, rt, rs (size = 01)

SSRAV.16 rd, rt, rs (size = 10)

SSRAV.32 rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] ≫ FPR[rs]

Exception :

None

Overview :

SIMD Shift Right Arithmetic by using FPR.

SSRAV.8.sc: Shift Right Arithmetic packed 8-bit vaule within FPR[rt].

SSRAV.16.sc: Shift Right Arithmetic packed 16-bit vaule within FPR[rt].

SSRAV.32.sc: Shift Right Arithmetic packed 32-bit vaule within FPR[rt].

204 第 3章 Instruction Set

SSRAV.size.sc SIMD Shift Right Arithmetic Variable Scalar
SIMD Shift Right Arithmetic SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

010111

SRAV.sc

Mnemonic:

SSRAV.8.sc rd, rt, rs (size = 01)

SSRAV.16.sc rd, rt, rs (size = 10)

SSRAV.32.sc rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] ≫ FPR[rs]

Exception :

None

Overview :

SIMD Shift Right Arithmetic by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SSRAV.8.sc: Shift Right Arithmetic packed 8-bit vaule within FPR[rt].

SSRAV.16.sc: Shift Right Arithmetic packed 16-bit vaule within FPR[rt].

SSRAV.32.sc: Shift Right Arithmetic packed 32-bit vaule within FPR[rt].

3.3. Responsive Multithreaded Processor Specific Instructions 205

SRTLV.size SIMD Rotate Left Variable
SIMD Rotate Left SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

000000

RTL

Mnemonic:

SRTLV.8 rd, rt, rs (size = 01)

SRTLV.16 rd, rt, rs (size = 10)

SRTLV.32 rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] <<< FPR[rs]

Exception :

None

Overview :

SIMD Rotate Left by using FPR.

SRTLV.8.sc: Rotate Left packed 8-bit vaule within FPR[rt].

SRTLV.16.sc: Rotate Left packed 16-bit vaule within FPR[rt].

SRTLV.32.sc: Rotate Left packed 32-bit vaule within FPR[rt].

206 第 3章 Instruction Set

SRTLV.size.sc SIMD Rotate Left Variable Scalar
SIMD Rotate Left SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

010000

RTL.sc

Mnemonic:

SRTLV.8.sc rd, rt, rs (size = 01)

SRTLV.16.sc rd, rt, rs (size = 10)

SRTLV.32.sc rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] <<< FPR[rs]

Exception :

None

Overview :

SIMD Rotate Left by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SRTLV.8.sc: Rotate Left packed 8-bit vaule within FPR[rt].

SRTLV.16.sc: Rotate Left packed 16-bit vaule within FPR[rt].

SRTLV.32.sc: Rotate Left packed 32-bit vaule within FPR[rt].

3.3. Responsive Multithreaded Processor Specific Instructions 207

SRTRV.size SIMD Rotate Right Variable
SIMD Rotate Right SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

000010

RTR

Mnemonic:

SRTRV.8 rd, rt, rs (size = 01)

SRTRV.16 rd, rt, rs (size = 10)

SRTRV.32 rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] >>> FPR[rs]

Exception :

None

Overview :

SIMD Rotate Right by using FPR.

SRTRV.8.sc: Rotate Right packed 8-bit vaule within FPR[rt].

SRTRV.16.sc: Rotate Right packed 16-bit vaule within FPR[rt].

SRTRV.32.sc: Rotate Right packed 32-bit vaule within FPR[rt].

208 第 3章 Instruction Set

SRTRV.size.sc SIMD Rotate Right Variable Scalar
SIMD Rotate Right SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

010010

RTR.sc

Mnemonic:

SRTRV.8.sc rd, rt, rs (size = 01)

SRTRV.16.sc rd, rt, rs (size = 10)

SRTRV.32.sc rd, rt, rs (size = 11)

Function :

FPR[rd] ← FPR[rt] >>> FPR[rs]

Exception :

None

Overview :

SIMD Rotate Right by using FPR.

This instruction copies the value of least significant field to each field within FPR[rt] and oper-

ates.

SRTRV.8.sc: Rotate Right packed 8-bit vaule within FPR[rt].

SRTRV.16: Rotate Right packed 16-bit vaule within FPR[rt].

SRTRV.32: Rotate Right packed 32-bit vaule within FPR[rt].

3.3. Responsive Multithreaded Processor Specific Instructions 209

PCK Pack Data
Pack Data SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

111000

PCK

Mnemonic:

PCK.8 rd, rs, rt (size = 01)

PCK.16 rd, rs, rt (size = 10)

PCK.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← pack(FPR[rs], FPR[rt])

Exception :

None

Overview :

Pack data in FPR[rs] and FPR[rd] to FPR[rd]. It splits the data into fields with specified size

and coordinates lower half values in each field.

210 第 3章 Instruction Set

PCKH Pack Data on High Bit
Pack Data SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

111001

PCKH

Mnemonic:

PCKH.8 rd, rs, rt (size = 01)

PCKH.16 rd, rs, rt (size = 10)

PCKH.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← packh(FPR[rs], FPR[rt])

Exception :

None

Overview :

Pack data in FPR[rs] and FPR[rd] to FPR[rd]. It splits the data into fields with specified size

and coordinates upper half values in each field.

3.3. Responsive Multithreaded Processor Specific Instructions 211

CAT1 Concatenate Data Type1
Concatenate Data SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

111010

CAT1

Mnemonic:

CAT1.8 rd, rs, rt (size = 01)

CAT1.16 rd, rs, rt (size = 10)

CAT1.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← cat1(FPR[rs], FPR[rt])

Exception :

None

Overview :

Concatenate data in FPR[rs] and FPR[rd] to FPR[rd]. It splits the data into fields with specified

size and concatinates them.

CAT1.8: FPR[rs].byte3, FPR[rt].byte3, FPR[rs].byte2, FPR[rt].byte2, ...

CAT1.16: FPR[rs].half1, FPR[rt].half1, FPR[rs].half0, FPR[rt].half0

CAT1.32: FPR[rs].word0, FPR[rt].word0

212 第 3章 Instruction Set

CAT1H Concatenate Data Type1 on High Bit
Concatenate Data SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

111011

CAT1H

Mnemonic:

CAT1H.8 rd, rs, rt (size = 01)

CAT1H.16 rd, rs, rt (size = 10)

CAT1H.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← cat1h(FPR[rs], FPR[rt])

Exception :

None

Overview :

Concatenate data in FPR[rs] and FPR[rd] to FPR[rd]. It splits the data into fields with specified

size and concatinates them.

CAT1H.8: FPR[rs].byte7, FPR[rt].byte7, FPR[rs].byte6, FPR[rt].byte6, ...

CAT1H.16: FPR[rs].half3, FPR[rt].half3, FPR[rs].half2, FPR[rt].half2

CAT1H.32: FPR[rs].word1, FPR[rt].word1

3.3. Responsive Multithreaded Processor Specific Instructions 213

CAT2 Concatenate Data Type2
Concatenate Data SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

111100

CAT2

Mnemonic:

CAT2.8 rd, rs, rt (size = 01)

CAT2.16 rd, rs, rt (size = 10)

CAT2.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← cat2(FPR[rs], FPR[rt])

Exception :

None

Overview :

Concatenate lower word in FPR[rs] and FPR[rd] to FPR[rd].

CAT2H Concatenate Data Type2 on High Bit
Concatenate Data SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

111101

CAT2H

Mnemonic:

CAT2H.8 rd, rs, rt (size = 01)

CAT2H.16 rd, rs, rt (size = 10)

CAT2H.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← cat2h(FPR[rs], FPR[rt])

Exception :

None

Overview :

Concatenate higher word in FPR[rs] and FPR[rd] to FPR[rd].

214 第 3章 Instruction Set

CAT3 Concatenate Data Type3
Concatenate Data SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

111110

CAT3

Mnemonic:

CAT3.8 rd, rs, rt (size = 01)

CAT3.16 rd, rs, rt (size = 10)

CAT3.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← cat3(FPR[rs], FPR[rt])

Exception :

None

Overview :

Concatenate data in FPR[rs] and FPR[rd] to FPR[rd]. It splits the data into fields with specified

size and concatinates them.

CAT3.8: FPR[rs].byte6, FPR[rs].byte4, ..., FPR[rt].byte6, FPR[rt].byte4, ...

CAT3.16: FPR[rs].half2, FPR[rs].half2, FPR[rt].half0, FPR[rt].half0

CAT3.32: FPR[rs].word0, FPR[rt].word0

3.3. Responsive Multithreaded Processor Specific Instructions 215

CAT3H Concatenate Data Type3 on High Bit
Concatenate Data SIMD

31 26

011100

SIMD

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7 6

size

5 0

111111

CAT3H

Mnemonic:

CAT3H.8 rd, rs, rt (size = 01)

CAT3H.16 rd, rs, rt (size = 10)

CAT3H.32 rd, rs, rt (size = 11)

Function :

FPR[rd] ← cat3h(FPR[rs], FPR[rt])

Exception :

None

Overview :

Concatenate data in FPR[rs] and FPR[rd] to FPR[rd]. It splits the data into fields with specified

size and concatinates them.

CAT3H.8: FPR[rs].byte7, FPR[rs].byte5, ..., FPR[rt].byte7, FPR[rt].byte5, ...

CAT3H.16: FPR[rs].half3, FPR[rs].half3, FPR[rt].half1, FPR[rt].half1

CAT3H.32: FPR[rs].word1, FPR[rt].word1

216 第 3章 Instruction Set

3.3.7 同期命令

RGPSH Read Shared(General Purpose Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00000

MF

20 16

rt

15 11
ss

10 6

00000

0

5 0

100000

GPSHR

Mnemonic:

RGPSH rt, ss

Function :

GPR[rt] ← SHARE[ss]

Exception :

None

Overview :

共有レジスタから GPR に値を読み込む．

WGPSH Write Shared(General Purpose Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11

sd

10 6

00000

0

5 0

100000

GPSHR

Mnemonic:

WGPSH rt, sd

Function :

SHARE[sd] ← GPR[rt]

Exception :

None

Overview :

GPR から共有レジスタに値を書き込む．

3.3. Responsive Multithreaded Processor Specific Instructions 217

RFPSH Read Shared(Floating-Point Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00000

MF

20 16

rt

15 11
ss

10 6

00000

0

5 0

100100

FPSHR

Mnemonic:

RFPSH rt, ss

Function :

FPR[rt] ← SHARE[ss]

Exception :

None

Overview :

共有レジスタから FPR に値を読み込む．

WFPSH Write Shared(Floating-Point Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11

sd

10 6

00000

0

5 0

100100

FPSHR

Mnemonic:

WFPSH rt, sd

Function :

SHARE[sd] ← FPR[rt]

Exception :

None

Overview :

FPR から共有レジスタに値を書き込む．

218 第 3章 Instruction Set

RGPEX Read Exclusive(General Purpose Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00000

MF

20 16

rt

15 11
ss

10 6

00000

0

5 0

100001

GPLOCK

Mnemonic:

RGPEX rt, ss

Function :

GPR[rt] ← SHARE[ss]

Exception :

None

Overview :

共有レジスタから GPR に ロックを確保しつつ値を読み込む．

WGPEX Write Exclusive(General Purpose Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11

sd

10 6

00000

0

5 0

100001

GPLOCK

Mnemonic:

WGPEX rt, sd

Function :

SHARE[sd] ← GPR[rt]

Exception :

None

Overview :

GPR から共有レジスタに ロックを解放しつつ値を書き込む．

3.3. Responsive Multithreaded Processor Specific Instructions 219

RFPEX Read Exclusive(Floating-Point Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00000

MF

20 16

rt

15 11
ss

10 6

00000

0

5 0

100101

FPLOCK

Mnemonic:

RFPEX rt, ss

Function :

FPR[rt] ← SHARE[ss]

Exception :

None

Overview :

共有レジスタから FPR にロックを確保しつつ値を読み込む．

WFPEX Write Exclusive(Floating-Point Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11

sd

10 6

00000

0

5 0

100101

FPLOCK

Mnemonic:

WFPEX rt, sd

Function :

SHARE[sd] ← FPR[rt]

Exception :

None

Overview :

FPR から共有レジスタにロックを解放しつつ値を書き込む．

220 第 3章 Instruction Set

GPCO Read Consumer(General Purpose Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00000

MF

20 16

rt

15 11
ss

10 6

tid

5 0

100010

GPPRCO

Mnemonic:

GPCO rt, ss, tid

Function :

GPR[rt] ← SHARE[ss]

Exception :

None

Overview :

共有レジスタから GPR にロックを解放しつつ値を読み込む．tid GPPR (FPPR) によりロック

を確保したスレッドの IDを指定する．

GPPR Write Producer(General Purpose Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11
ss

10 6

tid

5 0

100010

GPPRCO

Mnemonic:

GPPR rt, sd, tid

Function :

SHARE[sd] ← GPR[rt]

Exception :

None

Overview :

GPR から共有レジスタにロックを確保しつつ値を書き込む．tidにはロックを与えるスレッドの

IDを指定する．

3.3. Responsive Multithreaded Processor Specific Instructions 221

FPCO Read Consumer(Floating-Point Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00000

MF

20 16

rt

15 11
ss

10 6

tid

5 0

100110

FPPRCO

Mnemonic:

FPCO rt, ss, tid

Function :

FPR[rt] ← SHARE[ss]

Exception :

None

Overview :

共有レジスタから FPR にロックを解放しつつ値を読み込む．tid GPPR (FPPR) によりロック

を確保したスレッドの IDを指定する．

FPPR Write Producer(Floating-Point Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11
ss

10 6

tid

5 0

100110

FPPRCO

Mnemonic:

FPPR rt, sd, tid

Function :

SHARE[sd] ← FPR[rt]

Exception :

None

Overview :

FPR から共有レジスタにロックを確保しつつ値を書き込む．tidにはロックを与えるスレッドの

IDを指定する．

222 第 3章 Instruction Set

BAR Barrier
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

00100

MT

20 16

rt

15 11

sd

10 6

00000

0

5 0

100011

BARRIER

Mnemonic:

BAR rt, sd

Function :

SHARE[sd] ← SHARE[sd] + 1

Exception :

None

Overview :

共有レジスタを使用してバリア同期を行う. rt には到着を待つスレッド数を指定する.

PBAR Pre Barrier
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

000000

MF

20 16

00000

0

15 11

sd

10 6

00000

0

5 0

100011

BARRIER

Mnemonic:

PBAR sd

Function :

—–

Exception :

None

Overview :

バリア同期を行うグループを指定する.

3.3. Responsive Multithreaded Processor Specific Instructions 223

SEMLOCK Semaphore Lock(General Purpose Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

001000

MF

20 16

rt

15 11
ss

10 6

00000

0

5 0

101001

Mnemonic:

SEMLOCK rt, ss

Function :

get binary semaphore lock(GPR[ss])

if succeed in getting lock then

GPR[rt] ← 1

else

stop thread execution

endif

Exception :

None

Overview :

バイナリセマフォレジスタのロックを確保する.

224 第 3章 Instruction Set

SEMREL Semaphore Release(General Purpose Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

001000

MF

20 16

rt

15 11
ss

10 6

00000

0

5 0

101010

Mnemonic:

SEMREL rt, ss

Function :

release binary semaphore lock(GPR[ss])

if succeed in releasing lock then

GPR[rt] ← 1

else

GPR[rt] ← 0

endif

Exception :

None

Overview :

確保したセマフォレジスタのロックを開放する.

3.3. Responsive Multithreaded Processor Specific Instructions 225

SEMTRY Semaphore Try(General Purpose Register)
Synchronization Instruction SYNC

31 26

010000

COP0

25 21

001000

MF

20 16

rt

15 11
ss

10 6

00000

0

5 0

101011

Mnemonic:

SEMTRY rt, ss

Function :

get lock binary semaphore(GPR[ss])

if succeed in getting lock then

GPR[rt] ← 1

else

GPR[rt] ← 0

endif

Exception :

None

Overview :

セマフォレジスタを用いてロックを確保する.

226 第 3章 Instruction Set

3.3.8 Integer Vector Instructions

VADD Vector Add
Vector Add VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

100000

ADD

Mnemonic:

VADD.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VADD.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VADD.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VADD.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] + VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Vector Add. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted of VGPR[rt].

When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 227

VSUB Vector Subtract
Vector Subtract VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 9

00

0

8

s1

7

s0

6
s

5 0

100010

SUB

Mnemonic:

VSUB.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VSUB.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VSUB.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VSUB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VSUB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VSUB.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] − VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Vector Subtract. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted of

VGPR[rt]. When s1 is 1, execute operations by scalar register (SGPR[rs]) insted of VGPR[rs].

When sync is 1, suppress the speculative execution.

228 第 3章 Instruction Set

VMULT Vector Multiply
Vector Multiply VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

011000

MULT

Mnemonic:

VMULT.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULT.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULT.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULT.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Signed Vector Multiply. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. Whens sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 229

VMULTU Vector Multiply Unsigned
Vector Multiply VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

011001

MULTU

Mnemonic:

VMULTU.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULTU.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULTU.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULTU.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Unsigned Vector Multiply. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When sync is 1, suppress the speculative execution.

230 第 3章 Instruction Set

VMULTH Vector Multiply on High Bit
Vector Multiply VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

010000

MULTH

Mnemonic:

VMULTH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULTH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULTH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULTH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Signed Vector Multiply. Upper word bit (63-32bit) of execution result is stored in VGPR[rd].

When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync

is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 231

VMULTUH Vector Multiply Unsigned on High Bit
Vector Multiply VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

010001

MULTUH

Mnemonic:

VMULTUH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULTUH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULTUH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULTUH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Unsigned Vector Multiply. Upper word bit (63-32bit) of execution result is stored in VGPR[rd].

When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync

is 1, suppress the speculative execution.

232 第 3章 Instruction Set

VDIV Vector Divide
Vector Divide VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 9

00

0

8

s1

7

s0

6
s

5 0

011010

DIV

Mnemonic:

VDIV.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIV.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIV.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIV.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIV.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIV.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Signed Vector Divide. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of

VGPR[rt]. When s1 is 1, execute oeprations by scalar register (SGPR[rs]) insted of VGPR[rs].

When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 233

VDIVU Vector Divide Unsigned
Vector Divede VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 9

00

0

8

s1

7

s0

6
s

5 0

011011

DIVU

Mnemonic:

VDIVU.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIVU.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIVU.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIVU.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIVU.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIVU.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Unsiged Vector Divide. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of

VGPR[rt]. When s1 is 1, execute oeprations by scalar register (SGPR[rs]) insted of VGPR[rs].

When sync is 1, suppress the speculative execution.

234 第 3章 Instruction Set

VREM Vector Reminder
Vector Reminder VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 9

00

0

8

s1

7

s0

6
s

5 0

010010

REM

Mnemonic:

VREM.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VREM.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VREM.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VREM.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VREM.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VREM.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Signed Vector Reminder. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s1 is 1, execute oeprations by scalar register (SGPR[rs]) insted of VGPR[rs].

When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 235

VREMU Vector Reminder Unsigned
Vector Reminder VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 9

00

0

8

s1

7

s0

6
s

5 0

010011

REMU

Mnemonic:

VREMU.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VREMU.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VREMU.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VREMU.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VREMU.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VREMU.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Unsigned Vector Reminder. When s0 is 1, execute oeprations by scalar register (SGPR[rt])

insted of VGPR[rt]. When s1 is 1, execute oeprations by scalar register (SGPR[rs]) insted of

VGPR[rs]. When sync is 1, suppress the speculative execution.

236 第 3章 Instruction Set

VMADD Vector Multiply and Add
Vector Multiply and Add VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

100001

MADD

Mnemonic:

VMADD.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMADD.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMADD.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMADD.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt] + VGPR[rd]

Exception :

Vector Integer Exception

Overview :

Vector Multiply and Add. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 237

VMSUB Vector Multiply and Subtract
Vector Multiply and Subtract VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

100011

MSUB

Mnemonic:

VMSUB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMSUB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMSUB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMSUB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt] − VGPR[rd]

Exception :

Vector Integer Exception

Overview :

Vector Multiply and Subtract. When s0 is 1, execute oeprations by scalar register (SGPR[rt])

insted of VGPR[rt]. When sync is 1, suppress the speculative execution.

238 第 3章 Instruction Set

VACC Vector Accumulate
Vector Accumulate VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

001010

ACC

Mnemonic:

VACC rd, rs (sync(s) = 0)

VACC.sy rd, rs (sync(s) = 1)

Function :

SGPR[rd] ←
∑

VGPR[rs]

Exception :

Vector Integer Exception

Overview :

Vector Accumulate. Add all elements of a vector. When sync is 1, suppress the speculative

execution.

3.3. Responsive Multithreaded Processor Specific Instructions 239

VMAC Vector Multiply and Accumulate
Vector Multiply and Accumulate VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

001011

MAC

Mnemonic:

VMAC.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMAC.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMAC.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMAC.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

SGPR[rd] ←
∑

VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Vector Multiply and Accumulate. Multiply 2 elements of vector and Add all results of them.

When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync

is 1, suppress the speculative execution.

240 第 3章 Instruction Set

VAND Vector And
ベクトル論理積 VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

100100

AND

Mnemonic:

VAND.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VAND.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VAND.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VAND.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] and VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Vector And. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt].

When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 241

VOR Vector Or
ベクトル論理和 VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

100101

OR

Mnemonic:

VOR rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VOR.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VOR.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VOR.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] or VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Vector Or. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt].

When sync is 1, suppress the speculative execution.

242 第 3章 Instruction Set

VXOR Vector Exclusive Or
Vector Exclusive Or VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

100110

XOR

Mnemonic:

VXOR.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VXOR.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VXOR.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VXOR.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] xor VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Vector Exclusive Or. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of

VGPR[rt]. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 243

VNOR Vector Not Or
Vector Not Or VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

100111

NOR

Mnemonic:

VNOR.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VNOR.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VNOR.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VNOR.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] nor VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Vector Not Or. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of

VGPR[rt]. When sync is 1, suppress the speculative execution.

244 第 3章 Instruction Set

VSLLV Vector Shift Left Logical Variable
Vector Shift Left Logical Variable VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

000100

SLLV

Mnemonic:

VSLLV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSLLV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSLLV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSLLV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] ≪ VGPR[rs]

Exception :

Vector Integer Exception

Overview :

Vector Shift Left Logical Variable. When s0 is 1, execute oeprations by scalar register (SGPR[rt])

insted of VGPR[rt]. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 245

VSRLV Vector Shift Right Logical Variable
Vector Shift Right Logical Variable VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

000110

SRLV

Mnemonic:

VSRLV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSRLV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSRLV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSRLV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] ≫ VGPR[rs]

Exception :

Vector Integer Exception

Overview :

Vector Shift Right Logical Variable. When s0 is 1, execute oeprations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress the speculative execution.

246 第 3章 Instruction Set

VSRAV Vector Shift Right Arithmetic Variable
Vector Shift Right Arithmetic Variable VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

000111

SRAV

Mnemonic:

VSRAV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSRAV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSRAV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSRAV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] ≫ VGPR[rs]

Exception :

Vector Integer Exception

Overview :

Vector Shift Right Arithmetic Variable. When s0 is 1, execute oeprations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 247

VRTLV Vector Rotate Left Variable
Vector Rotate Left Variable VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

000000

SRTLV

Mnemonic:

VRTLV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VRTLV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VRTLV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VRTLV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] <<< VGPR[rs]

Exception :

Vector Integer Exception

Overview :

Vector Rotate Left Variable. When s0 is 1, execute oeprations by scalar register (SGPR[rt])

insted of VGPR[rt]. When sync is 1, suppress the speculative execution.

248 第 3章 Instruction Set

VRTRV Vector Rotate Right Variable
Vector Rotate Right Variable VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

000010

SRTRV

Mnemonic:

VRTRV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VRTRV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VRTRV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VRTRV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] >>> VGPR[rs]

Exception :

Vector Integer Exception

Overview :

Vector Rotate Right Variable. When s0 is 1, execute oeprations by scalar register (SGPR[rt])

insted of VGPR[rt]. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 249

VCMP Vector Compare
Vector Compare VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101000

CMP

Mnemonic:

VCMP.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

Vector Compare. Set 1 or 0 to VGPR[rd] depend on cond. When s0 is 1, execute oeprations

by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress the speculative

execution. When set up, specifiy eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

250 第 3章 Instruction Set

VCMPU Vector Compare Unsigned
Vector Compare VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101001

CMPU

Mnemonic:

VCMPU.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPU.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPU.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPU.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VREG[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

Vector Compare Unsigned. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy eq(=),

gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

3.3. Responsive Multithreaded Processor Specific Instructions 251

VCMPTS Vector Compare to Scalar Register
Vector Copare VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101010

CMPTS

Mnemonic:

VCMPTS.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

Vector Compare to Scalar Register. Results of each elements are store in each bit of scalar

register. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt].

When sync is 1, suppress the speculative execution. When set up, specifiy eq(=), gt(>), lt(<),

ne(̸=), le(≤) or ge(≥) to cond.

252 第 3章 Instruction Set

VCMPUTS Vector Compare Unsigned to Scalar Register
Vector Compare VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101011

CMPUTS

Mnemonic:

VCMPUTS.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPUTS.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPUTS.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPUTS.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

Vector Compare Unsigned to Scalar Register. Results of each elements are stored in each bit

of scalar register. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of

VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy eq(=),

gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

3.3. Responsive Multithreaded Processor Specific Instructions 253

VIRSH Vector Register Shift
Vector Register Shift VECTOR (After MRMTP2)

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

010100

RSH

Mnemonic:

VIRSH rd, rs, rt (sync(s) = 0)

VIRSH.sy rd, rs, rt (sync(s) = 1)

Function :

VREG[rd][i] ← VREG[rs][i−SREG[rt]]

Exception :

Vector Integer Exception

Overview :

Vector Register Shift. Shift elements of vector with SREG[rt]. Shift value is available also

negative number. If elements number of source register is negative number or over vector

length, set 0 to destination register. When sync is 1, suppress the speculative execution.

254 第 3章 Instruction Set

VIRROT Vector Register Rotation
Vector Register Rotation VECTOR (After MRMTP2)

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

010101

RROT

Mnemonic:

VIRROT rd, rs, rt (sync(s) = 0)

VIRROT.sy rd, rs, rt (sync(s) = 1)

Function :

VREG[rd][i] ← VREG[rs][(i−SREG[rt]) mod LENGTH]

Exception :

Vector Integer Exception

Overview :

Vector Register Rotation. Rotate elements of vector with SREG[rt]. Rotate value is available

also negative number. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 255

VIRPK Vector Register Packing
Vector Register Packing VECTOR (After MRMTP2)

31 26

011110

VINT

25 21
rs

20 16

00000

0

15 11

rd

10 9

00

0

8

si

7

b

6
s

5 0

010110

RPK

Mnemonic:

VIRPK rd, rs (sync(s) = 0, high(h) = 0, byte(b) = 0)

VIRPK.sy rd, rs (sync(s) = 1, high(h) = 0, byte(b) = 0)

VIRPK.b rd, rs (sync(s) = 0, high(h) = 0, byte(b) = 1)

VIRPK.b.sy rd, rs (sync(s) = 1, high(h) = 0, byte(b) = 1)

VIRPK.h rd, rs (sync(s) = 0, high(h) = 1, byte(b) = 0)

VIRPK.h.sy rd, rs (sync(s) = 1, high(h) = 1, byte(b) = 0)

VIRPK.b.h rd, rs (sync(s) = 0, high(h) = 1, byte(b) = 1)

VIRPK.b.h.sy rd, rs (sync(s) = 1, high(h) = 1, byte(b) = 1)

Function :

VREG[rd][i/2] ← { VREG[rs][i]15...0, VREG[rs][i+1]15...0} (high = 0, byte = 0)

VREG[rd][i/2] ← { VREG[rs][i]31...16, VREG[rs][i+1]31...16} (high = 1, byte = 0)

VREG[rd][i/2]← { VREG[rs][i]23...16, VREG[rs][i+1]23...16, VREG[rs][i]7...0, VREG[rs][i+1]7...0}
(high = 0, byte = 1)

VREG[rd][i/2] ← { VREG[rs][i]31...24, VREG[rs][i+1]31...24, VREG[rs][i]15...8,

VREG[rs][i+1]15...8} (high = 1, byte = 1)

Exception :

Vector Integer Exception

Overview :

Vector Register Packing. Pack elements of vector i and i + 1 to destination register i. Result

of this instruction, length of destination register become a half. When sync is 1, suppress the

speculative execution.

256 第 3章 Instruction Set

VIRUPK Vector Register Unpacking
Vector Register Unpacking VECTOR (After MRMTP2)

31 26

011110

VINT

25 21
rs

20 16

00000

0

15 11

rd

10 9

00

0

8

h

7

b

6
s

5 0

010111

RUPK

Mnemonic:

VIRUPK rd, rs (sync(s) = 0, signed(si) = 0, byte(b) = 0)

VIRUPK.sy rd, rs (sync(s) = 1, signed(si) = 0, byte(b) = 0)

VIRUPK.b rd, rs (sync(s) = 0, signed(si) = 0, byte(b) = 1)

VIRUPK.b.sy rd, rs (sync(s) = 1, signed(si) = 0, byte(b) = 1)

VIRUPK.s rd, rs (sync(s) = 0, signed(si) = 1, byte(b) = 0)

VIRUPK.s.sy rd, rs (sync(s) = 1, signed(si) = 1, byte(b) = 0)

VIRUPK.b.s rd, rs (sync(s) = 0, signed(si) = 1, byte(b) = 1)

VIRUPK.b.s.sy rd, rs (sync(s) = 1, signed(si) = 1, byte(b) = 1)

Function :

VREG[rd][i*2] ← zero ext(VREG[rs][i]31...16),

VREG[rd][i*2+1] ← zero ext(VREG[rs][i]15...0) (signed = 0, byte = 0)

VREG[rd][i*2] ← sign ext(VREG[rs][i]31...16),

VREG[rd][i*2+1] ← sign ext(VREG[rs][i]15...0) (signed = 1, byte = 0)

VREG[rd][i*2] ← { zero ext(VREG[rs][i]31...24), zero ext(VREG[rs][i]15...8)},
VREG[rd][i*2+1] ← { zero ext(VREG[rs][i]23...16), zero ext(VREG[rs][i]7...0)} (signed = 0,

byte = 1)

VREG[rd][i*2] ← { sign ext(VREG[rs][i]31...24), sign ext(VREG[rs][i]15...8)},
VREG[rd][i*2+1] ← { sign ext(VREG[rs][i]23...16), sign ext(VREG[rs][i]7...0)} (signed = 1,

byte = 1)

Exception :

Vector Integer Exception

Overview :

Vector Register Unpacking. Unpack an element of vector i to destination register 2 * i and 2 *

i + 1. Result of this instruction, length of destination register become a double. When sync is

1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 257

VIMFC Move from Vector Integer Control Register
Control Register Read VECTOR

31 26

011110

VINT

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110000

MFC

Mnemonic:

VIMFC rd, rs (sync(s) = 0)

VIMFC.sy rd, rs (sync(s) = 1)

Function :

GPR[rd] ← VICTRL[rs]

Exception :

Overview :

Move from Vector Integer Control Register. Save the value from control register which is assigned

by rs to GPR. When sync is 1, suppress the speculative execution.

VIMTC Move to Vector Integer Control Register
Control Register Write VECTOR

31 26

011110

VINT

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110001

MTC

Mnemonic:

VIMTC rd, rs (sync(s) = 0)

VIMTC.sy rd, rs (sync(s) = 1)

Function :

VICTRL[rd] ← GPR[rs]

Exception :

Overview :

Move to Vector Integer Control Register. Save the value from GPR to control register which is

assigned by rd. When sync is 1, suppress the speculative execution.

258 第 3章 Instruction Set

VIMFS Move from Vector Integer Scalar Register
Integer Scalar Register Read VECTOR

31 26

011110

VINT

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110010

MFS

Mnemonic:

VIMFS rd, rs (sync(s) = 0)

VIMFS.sy rd, rs (sync(s) = 1)

Function :

GPR[rd] ← SGPR[rs]

Exception :

Vector Integer Exception

Overview :

Move from Vector Integer Scalar Register. Save the value from integer scalar register which is

assigned by rs to GPR. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 259

VIMTS Move to Vector Integer Scalar Register
Integer Scalar Register Write VECTOR

31 26

011110

VINT

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110011

MTS

Mnemonic:

VIMTS rd, rs (sync(s) = 0)

VIMTS.sy rd, rs (sync(s) = 1)

Function :

SGPR[rd] ← GPR[rs]

Exception :

Vector Integer Exception

Overview :

Move to Vector Integer Scalar Register. Save the value from GPR to integer scalar register

which is assigned by rd. When sync is 1, suppress the speculative execution.

260 第 3章 Instruction Set

VIMFV Move from Vector Integer Vector Register
Integer Vector Register Read VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

110100

MFV

Mnemonic:

VIMFV rd, rs, rt (sync(s) = 0)

VIMFV.sy rd, rs, rt (sync(s) = 1)

Function :

SGPR[rd] ← VGPR[rs][rt]

Exception :

Vector Integer Exception

Overview :

Move from Vector Integer Vector Register. Save the value from rt th element of vector register

which is assigned by rs to integer scalar register. When sync is 1, suppress the speculative

execution.

3.3. Responsive Multithreaded Processor Specific Instructions 261

VIMTV Move to Vector Integer Vector Register
Integer Vector Register Write VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

110101

MTV

Mnemonic:

VIMTV rd, rs, rt (sync(s) = 0)

VIMTV.sy rd, rs, rt (sync(s) = 1)

Function :

VGPR[rd][rt] ← SGPR[rs]

Exception :

Vector Integer Exception

Overview :

Move to Vector Integer Vector Register. Save the value from integer scalar register from rt th

element of vector register which is assigned by rs. When sync is 1, suppress the speculative

execution.

262 第 3章 Instruction Set

VIMTM Move to Vector Integer Mask Register
Integer Vector Mask Register Write VECTOR

31 26

011110

VINT

25 21
rs

20 9

000000000000

0

8

s1

7

s0

6
s

5 0

011110

MTM

Mnemonic:

VIMTM.lo rs (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VIMTM.hi rs (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VIMTM.lo.sy rs (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VIMTM.hi.sy rs (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VICTRL[Mask Regieter] ← SGPR[rs]

Exception :

Vector Integer Exception

Overview :

Move to Vector Integer Mask Register. Save the value from integer scalar register which is

assigned by rs to mask register. When s0 is 1, save the value to lower half of mask register.

When s1 is 1, save the value to upper half of mask register. When sync is 1, suppress the

speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 263

VIRSV Vector Integer Register Reserve
Vector Integer Register Reserve VECTOR

31 26

011110

VINT

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110110

RSV

Mnemonic:

VIRSV rd, rs (sync(s) = 0)

VIRSV.sy rd, rs (sync(s) = 1)

Function :

reserve vector register(GPR[rs])

if success reserve operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

None

Overview :

Vector Integer Register Reserve. Set the value which assign construction of register reserve

to GPR[rs]. When reservation is success, set 1 to GPR[rd], otherwise set 0. When sync is 1,

suppress the speculative execution.

264 第 3章 Instruction Set

VIRLS Vector Integer Register Release
Vector Integer Register Release VECTOR

31 26

011110

VINT

25 16

0000000000

15 11

rd

10 7

0000

0

6
s

5 0

110111

RLS

Mnemonic:

VIRLS rd (sync(s) = 0)

VIRLS.sy rd (sync(s) = 1)

Function :

release vector register()

if success release operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

None

Overview :

Vector Integer Register Release. When release is success, set 1 to GPR[rd], otherwise set 0.

When sync is 1, suppress the speculative execution.

i

3.3. Responsive Multithreaded Processor Specific Instructions 265

VIDCI Vector Integer Define Compound Instruction
Vector Integer Define Compound Instruction VECTOR

31 26

011110

VINT

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

101110

DCI

Mnemonic:

VIDCI rd, rs (sync(s) = 0)

VIDCI.sy rd, rs (sync(s) = 1)

Function :

VICPD[rd] ← GPR[rs]

Exception :

Vector Integer Exception

Overview :

Vector Integer Define Compound Instruction. Store instruction in GPR[rs] to entry which

is assigned by rd of compound instruction buffer When sync is 1, suppress the speculative

execution.

266 第 3章 Instruction Set

VIECI Vector Integer Execute Compound Instruction
Vector Integer Execute Compound Instruction VECTOR

31 26

011110

VINT

25 21
rs

20 16

rt

15 11

rd

10 6
no

5 0

101111

ECI

Mnemonic:

VIECI rd, rs, rt, no

Function :

VGPR[rd] ← VGPR[rs] op VGPR[rt]

Exception :

Vector Integer Exception

Overview :

Vector Integer Execute Compound Instruction. Execute instructions on compound instruction

buffer from the address which is assigned by no.

3.3. Responsive Multithreaded Processor Specific Instructions 267

VILW Vector Integer Load Word
Vector Integer Load Word VECTOR

31 26

011110

VINT

25 21

base

20 16

rt

15 7

000000000

0

6
s

5 0

111010

LW

Mnemonic:

VILW rt, base (sync(s) = 0)

VILW.sy rt, base (sync(s) = 1)

Function :

VGPR[rt] ← MEM.WORD[GPR[base]]

Exception :

Vector Integer Exception

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

Vector Integer Load Word. Load from memory to vector integer register. When sync is 1,

suppress the speculative execution.

268 第 3章 Instruction Set

VISW Vector Integer Store Word
Vector Integer Store Word VECTOR

31 26

011110

VINT

25 21

base

20 16

rt

15 7

000000000

0

6
s

5 0

111110

SW

Mnemonic:

VISW rt, base (sync(s) = 0)

VISW.sy rt, base (sync(s) = 1)

Function :

MEM.WORD[GPR[base]] ← VGPR[rt]

Exception :

Vector Integer Exception

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

Vectro Integer Store Word. Store from vector integer register to memory. When sync is 1,

suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 269

VADD.QB Vector Add Quad Byte
Vector Add Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100000

ADD

Mnemonic:

VADD.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VADD.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VADD.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VADD.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VADD.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VADD.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VADD.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VADD.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] + VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Add. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

270 第 3章 Instruction Set

VSUB.QB Vector Subtract Quad Byte
Vector Subtract Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

s1

7

s0

6
s

5 0

100010

SUB

Mnemonic:

VSUB.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.QB.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 0)

VSUB.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.QB.sv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 0)

VSUB.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.QB.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 1)

VSUB.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 1)

VSUB.QB.sv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] - VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Subtract. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 271

VMULT.QB Vector Multiply Quad Byte
Vector Multiply Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

011000

MULT

Mnemonic:

VMULT.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULT.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULT.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULT.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULT.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULT.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULT.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULT.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Multiply. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

272 第 3章 Instruction Set

VMULTU.QB Vector Multiply Unsigned
Vector Multiply Unsigned VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

9

s2

8

0

7

s0

6
s

5 0

011001

MULTU

Mnemonic:

VMULTU.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTU.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTU.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTU.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTU.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTU.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTU.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTU.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Multiply Unsigned. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 273

VMULTH.QB Vector Multiply Quad Byte on High Bit
Vector Multiply Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

010000

MULTH

Mnemonic:

VMULTH.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTH.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTH.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTH.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTH.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTH.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTH.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTH.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Multiply. Store upper half of results of execution to VGPR[rd]. When s0 is

1, execute operations by scalar register (SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute

operations by lower half of VGPR[rt]. When sync is 1, suppress the speculative execution.

274 第 3章 Instruction Set

VMULTUH.QB Vector Multiply Unsigned Quad Byte on High Bit
Vector Multiply Unsigned Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

010001

MULTUH

Mnemonic:

VMULTUH.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTUH.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Multiply Unsigned. Store upper half of results of execution to VGPR[rd].

When s0 is 1, execute operations by scalar register (SGPR[rt]) insted of VGPR[rt]. When s2

is 1, execute operations by lower half of VGPR[rt]. When sync is 1, suppress the speculative

execution.

3.3. Responsive Multithreaded Processor Specific Instructions 275

VMADD.QB Vector Multiply and Add Quad Byte
Vector Multiply and Add Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100001

MADD

Mnemonic:

VMADD.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMADD.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMADD.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMADD.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMADD.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMADD.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMADD.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMADD.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt] + VGPR[rd]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Multiply and Add. When s0 is 1, execute operations by scalar register (SGPR[rt])

insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is

1, suppress the speculative execution.

276 第 3章 Instruction Set

VMSUB.QB Vector Multiply and Subtract Quad Byte
Vector Multiply and Subtract Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100011

MSUB

Mnemonic:

VMSUB.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMSUB.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMSUB.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMSUB.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMSUB.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMSUB.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMSUB.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMSUB.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt] - VGPR[rd]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Multiply and Subtract. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 277

VACC.QB Vector Accumulate Quad Byte
Vector Accumulate Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

001010

ACC

Mnemonic:

VACC.QB rd, rs (sync(s) = 0)

VACC.QB.sy rd, rs (sync(s) = 1)

Function :

SGPR[rd] ←
∑

VGPR[rs]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Accumulate. Add all elements of vector. When sync is 1, suppress the speculative

execution.

278 第 3章 Instruction Set

VMAC.QB Vector Multiply and Accumulate Quad Byte
Vector Multiply and Accumulate Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

001011

MAC

Mnemonic:

VMAC.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMAC.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMAC.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMAC.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMAC.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMAC.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMAC.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMAC.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

SGPR[rd] ←
∑

VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Multiply and Accumulate. Multiply elements of 2 vector and add all elements of

these result. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted of VGPR[rt].

When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1, suppress the

speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 279

VAND.QB Vector And Quad Byte
Vector And Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100100

AND

Mnemonic:

VAND.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VAND.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VAND.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VAND.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VAND.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VAND.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VAND.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VAND.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] and VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector And. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

280 第 3章 Instruction Set

VOR.QB Vector Or Quad Byte
Vector Or Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100101

OR

Mnemonic:

VOR.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VOR.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VOR.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VOR.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VOR.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VOR.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VOR.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VOR.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] or VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Or. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 281

VXOR.QB Vector Exclusive Or Quad Byte
Vector Exclusive Or Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100110

XOR

Mnemonic:

VXOR.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VXOR.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VXOR.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VXOR.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VXOR.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VXOR.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VXOR.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VXOR.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] xor VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Exclusive Or. When s0 is 1, execute operations by scalar register (SGPR[rt])

insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is

1, suppress the speculative execution.

282 第 3章 Instruction Set

VNOR.QB Vector Not Or Paried HalfWord
Vector Not Or Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100111

NOR

Mnemonic:

VNOR.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VNOR.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VNOR.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VNOR.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VNOR.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VNOR.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VNOR.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VNOR.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] nor VGPR[rt]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Not Or. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 283

VSLLV.QB Vector Shift Left Logical Variable Quad Byte
Vector Shift Left Logical Variable Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000100

SLLV

Mnemonic:

VSLLV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSLLV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSLLV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSLLV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSLLV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSLLV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSLLV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSLLV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

8 bit * 4 Vector Shift Left Logical Variable. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Not Or. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

284 第 3章 Instruction Set

VSRLV.QB Vector Shift Right Logical Variable Quad Byte
Vector Shift Right Logical Variable Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000110

SRLV

Mnemonic:

VSRLV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRLV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRLV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRLV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRLV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRLV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRLV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRLV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

8 bit * 4 Vector Shift Right Logical Variable. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Not Or. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 285

VSRAV.QB Vector Shift Right Arithmetic Variable Quad Byte
Vector Shift Right Arithmetic Variable Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000111

SRAV

Mnemonic:

VSRAV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRAV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRAV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRAV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRAV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRAV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRAV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRAV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

8 bit * 4 Vector Shift Right Arithmetic Variable. When s0 is 1, execute operations by scalar

register (SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of

VGPR[rt]. When sync is 1, suppress the speculative execution.

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Not Or. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

286 第 3章 Instruction Set

VRTLV.QB Vector Rotate Left Variable Quad Byte
Vector Rotate Left Variable Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000000

SRTLV

Mnemonic:

VRTLV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTLV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTLV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTLV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTLV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTLV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTLV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTLV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] <<< VGPR[rs]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Rotate Left Variable. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 287

VRTRV.QB Vector Rotate Right Variable Quad Byte
Vector Rotate Right Variable Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000010

SRTRV

Mnemonic:

VRTRV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTRV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTRV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTRV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTRV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTRV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTRV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTRV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] >>> VGPR[rs]

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Rotate Right Variable. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

288 第 3章 Instruction Set

VCMP.QB Vector Compare Quad Byte
Vector Compare Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101000

CMP

Mnemonic:

VCMP.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Compare. Set 1 or 0 to VGPR[rd] depend on cond. When s0 is 1, execute

oeprations by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress the

speculative execution. When set up, specifiy eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

3.3. Responsive Multithreaded Processor Specific Instructions 289

VSCMP.QB Vector Compare Quad Byte
Vector Compare Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

001100

SCMP

Mnemonic:

VSCMP.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMP.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMP.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMP.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Compare. Execute oepration using lower half of VGPR[rt]. Set 1 or 0 to

VGPR[rd] depend on cond. When s0 is 1, execute oeprations by scalar register (SGPR[rt])

insted of VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy

eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

290 第 3章 Instruction Set

VCMPU.QB Vector Compare Unsigned Quad Byte
Vector Compare Unsigned Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101001

CMPU

Mnemonic:

VCMPU.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPU.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPU.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPU.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Compare Unsigned. Set 1 or 0 to VGPR[rd] depend on cond. When s0 is 1,

execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress

the speculative execution. When set up, specifiy eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to
cond.

3.3. Responsive Multithreaded Processor Specific Instructions 291

VSCMPU.QB Vector Compare Unsigned Quad Byte
Vector Compare Unsigned Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

001101

SCMPU

Mnemonic:

VSCMPU.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPU.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPU.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPU.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Compare Unsigned. Execute oepration using lower half of VGPR[rt]. Set 1 or

0 to VGPR[rd] depend on cond. When s0 is 1, execute oeprations by scalar register (SGPR[rt])

insted of VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy

eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

292 第 3章 Instruction Set

VCMPTS.QB Vector Compare to Scalar Register Quad Byte
Vector Compare to Scalar Register Quad Byte VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101010

CMPTS

Mnemonic:

VCMPTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Compare to Scalar Register. Results of each elements are store in each bit

of scalar register. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of

VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy eq(=),

gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

3.3. Responsive Multithreaded Processor Specific Instructions 293

VSCMPTS.QB Vector Compare Quad Byte to Scalar Register
Vector Compare Quad Byte to Scalar Register VECTOR

31 26

VINT.QB

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

001110

SCMPTS

Mnemonic:

VSCMPTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Compare to Scalar Register. Execute oepration using lower half of VGPR[rt].

Results of each elements are store in each bit of scalar register. When s0 is 1, execute oeprations

by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress the speculative

execution. When set up, specifiy eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

294 第 3章 Instruction Set

VCMPUTS.QBVector Compare Unsigned Quad Byte to Scalar Register
Vector Compare Unsigned Quad Byte to Scalar Register VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101011

CMPUTS

Mnemonic:

VCMPUTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPUTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPUTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPUTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Compare Unsigned to Scalar Register. Results of each elements are store in

each bit of scalar register. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy eq(=),

gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

3.3. Responsive Multithreaded Processor Specific Instructions 295

VSCMPUTS.QBVector Compare Unsigned Quad Byte to Scalar Register
Vector Compare Unsigned Quad Byte to Scalar Register VECTOR

31 26

111110
VINT.QB

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

001111

SCMPUTS

Mnemonic:

VSCMPUTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPUTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPUTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPUTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

8 bit * 4 Vector Compare Unsigned to Scalar Register. Execute oepration using lower half

of VGPR[rt]. Results of each elements are store in each bit of scalar register. When s0 is 1,

execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress

the speculative execution. When set up, specifiy eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to
cond.

296 第 3章 Instruction Set

VADD.PH Vector Add Paired HalfWord
Vector Add Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100000

ADD

Mnemonic:

VADD.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VADD.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VADD.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VADD.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VADD.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VADD.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VADD.PH.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VADD.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] + VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Add. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 297

VSUB.PH Vector Subtract Paired HalfWord
Vector Subtract Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

s1

7

s0

6
s

5 0

100010

SUB

Mnemonic:

VSUB.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PH.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 0)

VSUB.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PH.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PH.sv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 0)

VSUB.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PH.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 1)

VSUB.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 1)

VSUB.PH.sv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] - VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Subtract. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

298 第 3章 Instruction Set

VMULT.PH Vector Multiply Paired HalfWord
Vector Multiply Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

011000

MULT

Mnemonic:

VMULT.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULT.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULT.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULT.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULT.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULT.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULT.PH.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULT.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Multiply. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 299

VMULTU.PH Vector Multiply Unsigned
Vector Multiply Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

9

s2

8

0

7

s0

6
s

5 0

011001

MULTU

Mnemonic:

VMULTU.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTU.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTU.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTU.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTU.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTU.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTU.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTU.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Multiply Unsigned. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

300 第 3章 Instruction Set

VMULTH.PH Vector Multiply Paired HalfWord on High Bit
Vector Multiply Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

010000

MULRH

Mnemonic:

VMULTH.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTH.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTH.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTH.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTH.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTH.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTH.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTH.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Multiply Signed. Store upper half of results of execution to VGPR[rd]. When s0

is 1, execute operations by scalar register (SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute

operations by lower half of VGPR[rt]. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 301

VMULTUH.PHVector Multiply Unsigned Paired HalfWord on High Bit
Vector Multiply Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

010001

MULTUH

Mnemonic:

VMULTUH.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTUH.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Multiply Unsigned. Store upper half of results of execution to VGPR[rd].

When s0 is 1, execute operations by scalar register (SGPR[rt]) insted of VGPR[rt]. When s2

is 1, execute operations by lower half of VGPR[rt]. When sync is 1, suppress the speculative

execution.

302 第 3章 Instruction Set

VMADD.PH Vector Multiply and Add Paired HalfWord
Vector Multiply and Add Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100001

MADD

Mnemonic:

VMADD.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMADD.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMADD.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMADD.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMADD.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMADD.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMADD.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMADD.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt] + VGPR[rd]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Multiply and Add. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 303

VMSUB.PH Vector Multiply and Subtract Paired HalfWord
Vector Multiply and Subtract Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100011

MSUB

Mnemonic:

VMSUB.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMSUB.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] × VGPR[rt] - VGPR[rd]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Multiply and Subtract. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

304 第 3章 Instruction Set

VACC.PH Vector Accumulate Paired HalfWord
Vector Accumulate Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10 6

00000

0

5 0

001010

ACC

Mnemonic:

VACC.PH rd, rs (sync(s) = 0)

VACC.PH.sy rd, rs (sync(s) = 1)

Function :

SGPR[rd] ←
∑

VGPR[rs]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Accumulate. Add all elements of vector. When sync is 1, suppress the

speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 305

VMAC.PH Vector Multiply and Accumulate Paired HalfWord
Vector Multiply and Accumulate Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

001011

MAC

Mnemonic:

VMAC.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMAC.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMAC.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMAC.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMAC.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMAC.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMAC.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMAC.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

SGPR[rd] ←
∑

VGPR[rs] × VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Multiply and Accumulate. Multiply elements of 2 vector and add all elements of

these result. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted of VGPR[rt].

When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1, suppress the

speculative execution.

306 第 3章 Instruction Set

VAND.PH Vector And Paired HalfWord
Vector And Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100100

AND

Mnemonic:

VAND.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VAND.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VAND.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VAND.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VAND.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VAND.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VAND.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VAND.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] and VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector And. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 307

VOR.PH Vector Or Paired HalfWord
Vector Or Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100101

OR

Mnemonic:

VOR.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VOR.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VOR.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VOR.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VOR.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VOR.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VOR.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VOR.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] or VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Or. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

308 第 3章 Instruction Set

VXOR.PH Vector Exclusive Or Paired HalfWord
Vector Exclusive Or Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100110

XOR

Mnemonic:

VXOR.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VXOR.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VXOR.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VXOR.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VXOR.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VXOR.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VXOR.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VXOR.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] xor VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Exclusive Or. When s0 is 1, execute operations by scalar register (SGPR[rt])

insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is

1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 309

VNOR.PH Vector Not Or Paried HalfWord
Vector Not Or Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

100111

NOR

Mnemonic:

VNOR.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VNOR.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VNOR.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VNOR.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VNOR.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VNOR.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VNOR.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VNOR.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rs] nor VGPR[rt]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Not Or. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

310 第 3章 Instruction Set

VSLLV.PH Vector Shift Left Logical Variable Paired HalfWord
Vector Shift Left Logical Variable Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000100

SLLV

Mnemonic:

VSLLV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSLLV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSLLV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSLLV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSLLV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSLLV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSLLV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSLLV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

16 bit * 2 Vector Shift Left Logical Variable. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Not Or. When s0 is 1, execute operations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt]. When sync is 1,

suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 311

VSRLV.PH Vector Shift Right Logical Variable Paired HalfWord
Vector Shift Right Logical Variable Paried HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000110

SRLV

Mnemonic:

VSRLV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRLV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRLV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRLV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRLV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRLV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRLV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRLV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] ≫ VGPR[rs]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Shift Right Logical Variable. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

312 第 3章 Instruction Set

VSRAV.PHVector Shift Right Arithmetic Variable Paired HalfWord
Vector Shift Right Arithmetic Variable Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000111

SRAV

Mnemonic:

VSRAV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRAV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRAV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRAV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRAV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRAV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRAV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRAV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] ≫ VGPR[rs]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Shift Right Arithmetic Variable. When s0 is 1, execute operations by scalar

register (SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of

VGPR[rt]. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 313

VRTLV.PH Vector Rotate Left Variable Paired HalfWord
Vector Rotate Left Variable Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000000

SRTLV

Mnemonic:

VRTLV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTLV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTLV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTLV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTLV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTLV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTLV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTLV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] <<< VGPR[rs]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Rotate Left Variable. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

314 第 3章 Instruction Set

VRTRV.PH Vector Rotate Right Variable Paired HalfWord
Vector Rotate Right Variable Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000010

SRTRV

Mnemonic:

VRTRV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTRV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTRV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTRV.PH.vv,sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTRV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTRV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTRV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTRV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VGPR[rd] ← VGPR[rt] >>> VGPR[rs]

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Rotate Right Variable. When s0 is 1, execute operations by scalar register

(SGPR[rt]) insted of VGPR[rt]. When s2 is 1, execute operations by lower half of VGPR[rt].

When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 315

VCMP.PH Vector Compare
Vector Compare Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101000

CMP

Mnemonic:

VCMP.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Compare. Set 1 or 0 to VGPR[rd] depend on cond. When s0 is 1, execute

oeprations by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress the

speculative execution. When set up, specifiy eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

316 第 3章 Instruction Set

VSCMP.PH Vector Compare
Vector Compare Paired HalfWord VECTOR

31 26

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

001100

SCMP

Mnemonic:

VSCMP.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMP.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMP.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMP.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Compare. Execute oepration using lower half of VGPR[rt]. Set 1 or 0 to

VGPR[rd] depend on cond. When s0 is 1, execute oeprations by scalar register (SGPR[rt])

insted of VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy

eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

3.3. Responsive Multithreaded Processor Specific Instructions 317

VCMPU.PH Vector Compare Unsigned Paired HalfWord
Vector Compare Unsigned Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101001

CMPU

Mnemonic:

VCMPU.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPU.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPU.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPU.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Compare Unsigned. Set 1 or 0 to VGPR[rd] depend on cond. When s0 is 1,

execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress

the speculative execution. When set up, specifiy eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to
cond.

318 第 3章 Instruction Set

VSCMPU.PH Vector Compare Unsigned Paired HalfWord
Vector Compare Unsigned Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

001101

SCMPU

Mnemonic:

VSCMPU.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPU.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPU.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPU.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

VGPR[rd] ← 1

else

VGRP[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Compare Unsigned. Execute oepration using lower half of VGPR[rt]. Set 1 or

0 to VGPR[rd] depend on cond. When s0 is 1, execute oeprations by scalar register (SGPR[rt])

insted of VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy

eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

3.3. Responsive Multithreaded Processor Specific Instructions 319

VCMPTS.PH Vector Compare to Scalar Register Paired HalfWord
Vector Compare to Scalar Register Paired HalfWord VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101010

CMPTS

Mnemonic:

VCMPTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Compare to Scalar Register. Results of each elements are store in each bit

of scalar register. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted of

VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy eq(=),

gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

320 第 3章 Instruction Set

VSCMPTS.PHVector Compare Paired HalfWord to Scalar Register
Vector Compare Paired HalfWord to Scalar Register VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

001110

SCMPTS

Mnemonic:

VSCMPTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Compare to Scalar Register. Execute oepration using lower half of VGPR[rt].

Results of each elements are store in each bit of scalar register. When s0 is 1, execute oeprations

by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress the speculative

execution. When set up, specifiy eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

3.3. Responsive Multithreaded Processor Specific Instructions 321

VCMPUTS.PHVector Compare Unsigned Paired HalfWord to Scalar Register
Vector Compare Unsigned Paired HalfWord to Scalar Register VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

101011

CMPUTS

Mnemonic:

VCMPUTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPUTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPUTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPUTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Compare to Scalar Register Unsigned. Results of each elements are store in

each bit of scalar register. When s0 is 1, execute oeprations by scalar register (SGPR[rt]) insted

of VGPR[rt]. When sync is 1, suppress the speculative execution. When set up, specifiy eq(=),

gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to cond.

322 第 3章 Instruction Set

VSCMPUTS.PHVector Compare Unsigned Paired HalfWord to Scalar Register
Vector Compare Unsigned Paired HalfWord to Scalar Register VECTOR

31 26

110110

VINT.PH

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

001111

SCMPUTS

Mnemonic:

VSCMPUTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPUTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPUTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPUTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VGPR[rs] cond VGPR[rt] then

SGPR[rd] ← 1

else

SGPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

16 bit * 2 Vector Compare to Scalar Register Unsigned. Execute oepration using lower half

of VGPR[rt]. Results of each elements are store in each bit of scalar register. When s0 is 1,

execute oeprations by scalar register (SGPR[rt]) insted of VGPR[rt]. When sync is 1, suppress

the speculative execution. When set up, specifiy eq(=), gt(>), lt(<), ne(̸=), le(≤) or ge(≥) to
cond.

3.3. Responsive Multithreaded Processor Specific Instructions 323

3.3.9 浮動小数点ベクトル命令

VADD.S Vector Add Single
ベクトル加算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

000000

ADD.S

Mnemonic:

VADD.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VADD.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VADD.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VADD.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] + VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル加算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い

て演算を行う．syncが 1の場合は，投機実行を抑制する．

324 第 3章 Instruction Set

VADD.D Vector Add Double
ベクトル加算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

001000

ADD.D

Mnemonic:

VADD.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VADD.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VADD.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VADD.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] + VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル加算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い

て演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 325

VSUB.S Vector Subtract Single
ベクトル減算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 9

00

0

8

s1

7

s0

6
s

5 0

000001

SUB.S

Mnemonic:

VSUB.S.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VSUB.S.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VSUB.S.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VSUB.S.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VSUB.S.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VSUB.S.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] − VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル減算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い

て演算を行う．s1が 1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用いて演算

を行う．syncが 1の場合は，投機実行を抑制する．

326 第 3章 Instruction Set

VSUB.D Vector Subtract Double
ベクトル減算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 9

00

0

8

s1

7

s0

6
s

5 0

001001

SUB.D

Mnemonic:

VSUB.D.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VSUB.D.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VSUB.D.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VSUB.D.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VSUB.D.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VSUB.D.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] − VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル減算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い

て演算を行う．s1が 1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用いて演算

を行う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 327

VMUL.S Vector Multiply Single
ベクトル乗算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

000010

MUL.S

Mnemonic:

VMUL.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMUL.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMUL.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMUL.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] × VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル乗算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い

て演算を行う．syncが 1の場合，投機実行を抑制する．

328 第 3章 Instruction Set

VMUL.D Vector Multiply Double
ベクトル乗算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

001010

MUL.D

Mnemonic:

VMUL.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMUL.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMUL.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMUL.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] × VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル乗算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い

て演算を行う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 329

VDIV.S Vector Divide Single
ベクトル除算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 9

00

0

8

s1

7

s0

6
s

5 0

000011

DIV.S

Mnemonic:

VDIV.S.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIV.S.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIV.S.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIV.S.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIV.S.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIV.S.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] ÷ VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル除算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い

て演算を行う．s1が 1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用いて演算

を行う．syncが 1の場合は，投機実行を抑制する．

330 第 3章 Instruction Set

VDIV.D Vector Divide Double
ベクトル除算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 9

00

0

8

s1

7

s0

6
s

5 0

001011

DIV.D

Mnemonic:

VDIV.D.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIV.D.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIV.D.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIV.D.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIV.D.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIV.D.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] ÷ VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル除算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い

て演算を行う．s1が 1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用いて演算

を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 331

VABS.S Vector Absolute Single
ベクトル絶対値演算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

000101

ABS.S

Mnemonic:

VABS.S rd, rs (sync(s) = 0)

VABS.S.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← | VFPR[rs] |

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル絶対値演算．syncが 1の場合は，投機実行を抑制する．

VABS.D Vector Absolute Double
ベクトル絶対値演算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

001101

ABS.D

Mnemonic:

VABS.D rd, rs (sync(s) = 0)

VABS.D.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← | VFPR[rs] |

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル絶対値演算．syncが 1の場合は，投機実行を抑制する．

332 第 3章 Instruction Set

VMOV.S Vector Move Single
ベクトル転送 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

000110

MOV.S

Mnemonic:

VMOV.S rd, rs (sync(s) = 0)

VMOV.S.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs]

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル転送命令．syncが 1の場合は，投機実行を抑制する．

VMOV.D Vector Move Double
ベクトル転送 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

001110

MOV.D

Mnemonic:

VMOV.D rd, rs (sync(s) = 0)

VMOV.D.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs]

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル転送命令．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 333

VNEG.S Vector Negate Single
ベクトル符号反転 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

000111

NEG.S

Mnemonic:

VNEG.S rd, rs (sync(s) = 0)

VNEG.S.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← −1 × VFPR[rs]

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル符号反転演算．syncが 1の場合は，投機実行を抑制する．

VNEG.D Vector Negate Double
ベクトル符号反転 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

001111

NEG.D

Mnemonic:

VNEG.D rd, rs (sync(s) = 0)

VNEG.D.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← −1 × VFPR[rs]

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル符号反転演算．syncが 1の場合は，投機実行を抑制する．

334 第 3章 Instruction Set

VMADD.S Vector Multiply and Add Single
ベクトル積和演算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

010000

MADD.S

Mnemonic:

VMADD.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMADD.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMADD.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMADD.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] × VFPR[rt] + VFPR[rd]

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル積和演算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を

用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 335

VMADD.D Vector Multiply and Add Double
ベクトル積和演算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

011000

MADD.D

Mnemonic:

VMADD.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMADD.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMADD.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMADD.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] × VFPR[rt] + VFPR[rd]

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル積和演算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を

用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

336 第 3章 Instruction Set

VMSUB.S Vector Multiply and Subtract Single
ベクトル積差演算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

010001

MSUB.S

Mnemonic:

VMSUB.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMSUB.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMSUB.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMSUB.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] × VFPR[rt] − VFPR[rd]

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル積差演算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を

用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 337

VMSUB.D Vector Multiply and Subtract Double
ベクトル積差演算 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

011001

MSUB.D

Mnemonic:

VMSUB.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMSUB.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMSUB.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMSUB.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] × VFPR[rt] − VFPR[rd]

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル積差演算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を

用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

338 第 3章 Instruction Set

VACC.S Vector Accumulate Single
ベクトル累算 (単精度) VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

010100

ACC.S

Mnemonic:

VACC.S rd, rs (sync(s) = 0)

VACC.S.sy rd, rs (sync(s) = 1)

Function :

SFPR[rd] ←
∑

VFPR[rs]

Exception :

Vector Floating Point Exception

Overview :

32bit単精度ベクトル累算．ベクトルの要素を全て加算する．syncが 1の場合は，投機実行を抑制

する．

3.3. Responsive Multithreaded Processor Specific Instructions 339

VACC.D Vector Accumulate Double
ベクトル累算 (倍精度) VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

010110

ACC.D

Mnemonic:

VACC.D rd, rs (sync(s) = 0)

VACC.D.sy rd, rs (sync(s) = 1)

Function :

SFPR[rd] ←
∑

VFPR[rs]

Exception :

Vector Floating Point Exception

Overview :

64bit倍精度ベクトル累算．ベクトルの要素を全て加算する．syncが 1の場合は，投機実行を抑制

する．

340 第 3章 Instruction Set

VACC.PS Vector Accumulate Paired Single
ベクトル累算 (SIMD) VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

010100

ACC.S

Mnemonic:

VACC.PS rd, rs (sync(s) = 0)

VACC.PS.sy rd, rs (sync(s) = 1)

Function :

SFPR[rd] ←
∑

VFPR[rs]

Exception :

Vector Floating Point Exception

Overview :

32bit×2単精度ベクトル累算．ベクトルの要素を全て加算する．syncが 1の場合は，投機実行を

抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 341

VMAC.S Vector Multiply and Accumulate Single
ベクトル積和演算 (単精度) VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

010101

MAC.S

Mnemonic:

VMAC.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMAC.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMAC.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMAC.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

SFPR[rd] ←
∑

VFPR[rs] × VFPR[rt]

Exception :

Vector Integer Exception

Overview :

32bit単精度ベクトル積和演算．2つのベクトル要素を乗算し，それを全て加算する．s0が 1の場

合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncが 1の場合は，

投機実行を抑制する．

342 第 3章 Instruction Set

VMAC.D Vector Multiply and Accumulate Double
ベクトル積和演算 (倍精度) VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

000

0

7

s0

6
s

5 0

010111

MAC.D

Mnemonic:

VMAC.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMAC.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMAC.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMAC.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

SFPR[rd] ←
∑

VFPR[rs] × VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

64bit倍精度ベクトル積和演算．2つのベクトル要素を乗算し，それを全て加算する．s0が 1の場

合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncが 1の場合は，

投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 343

VCMP.S Vector Compare Single
ベクトル比較 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

010010

CMP.S

Mnemonic:

VCMP.S.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.S.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.S.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.S.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VFPR[rs] cond VFPR[rt] then

VFPR[rd] ← 1

else

VFPR[rd] ← 0

endif

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル比較命令．条件 (cond)によりVFPR[rd]の値が決定する．s0が 1の場合はVFPR[rt]

の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncが 1の場合は，投機実行を抑

制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(̸=)，le(≤)，ge(≥)のどれかを指定する．

344 第 3章 Instruction Set

VCMP.D Vector Compare Double
ベクトル比較 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

011010

CMP.D

Mnemonic:

VCMP.D.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.D.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.D.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.D.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VFPR[rs] cond VFPR[rt] then VFPR[rd] ← 1

else

VFPR[rd] ← 0

endif

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル比較命令．条件 (cond)によりVFPR[rd]の値が決定する．s0が 1の場合はVFPR[rt]

の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncが 1の場合は，投機実行を抑

制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(̸=)，le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor Specific Instructions 345

VCMPTS.S Vector Compare Single to Scalar Register
ベクトル比較 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

010011

CMPTS.S

Mnemonic:

VCMPTS.S.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.S.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.S.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.S.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VFPR[rs] cond VFPR[rt] then

SFPR[rd] ← 1

else

SFRP[rd] ← 0

endif

Exception :

Vector Floating Point Exception

Overview :

単精度ベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納される．

s0が 1の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncが

1の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(̸=)，le(≤)，
ge(≥)のどれかを指定する．

346 第 3章 Instruction Set

VCMPTS.D Vector Compare Double to Scalar Register
ベクトル比較 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

011011

CMPTS.D

Mnemonic:

VCMPTS.D.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.D.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.D.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.D.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VFPR[rs] cond VFPR[rt] then

SFPR[rd] ← 1

else

SFPR[rd] ← 0

endif

Exception :

Vector Floating Point Exception

Overview :

倍精度ベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納される．

s0が 1の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncが

1の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(̸=)，le(≤)，
ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor Specific Instructions 347

VCVT.S.D Vector Convert to Single from Double
ベクトルフォーマット変換 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

101000

VCVT.S.D

Mnemonic:

VCVT.S.D rd, rs (sync(s) = 0)

VCVT.S.D.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← Double to Single(VFPR[rs])

Exception :

Vector Floating Point Exception

Overview :

倍精度フォーマットから単精度フォーマットへ変換する．syncが 1の場合は，投機実行を抑制する．

VCVT.S.W Vector Convert to Single from Word
ベクトルフォーマット変換 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

100010

VCVT.S.W

Mnemonic:

VCVT.S.W rd, rs (sync(s) = 0)

VCVT.S.W.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← Word to Single(VFPR[rs])

Exception :

Vector Floating Point Exception

Overview :

整数フォーマットから単精度フォーマットへ変換する．sync が 1の場合は，投機実行を抑制する．

348 第 3章 Instruction Set

VCVT.D.S Vector Convert to Double from Single
ベクトルフォーマット変換 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

100001

VCVT.D.S

Mnemonic:

VCVT.D.S rd, rs (sync(s) = 0)

VCVT.D.S.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← Single to Double(VFPR[rs])

Exception :

Vector Floating Point Exception

Overview :

単精度フォーマットから倍精度フォーマットへ変換する．syncが 1の場合は，投機実行を抑制する．

VCVT.D.W Vector Convert to Double from Word
ベクトルフォーマット変換 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

101010

VCVT.D.W

Mnemonic:

VCVT.D.W rd, rs (sync(s) = 0)

VCVT.D.W.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← Word to Double(VFPR[rs])

Exception :

Vector Floating Point Exception

Overview :

整数フォーマットから倍精度フォーマットへ変換する．sync が 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 349

VCVT.W.S Vector Convert to Word from Single
ベクトルフォーマット変換 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

100100

VCVT.W.S

Mnemonic:

VCVT.W.S rd, rs (sync(s) = 0)

VCVT.W.S.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← Single to Word(VFPR[rs])

Exception :

Vector Floating Point Exception

Overview :

単精度フォーマットから整数フォーマットへ変換する．sync が 1の場合は，投機実行を抑制する．

VCVT.W.D Vector Convert to Word from Double
ベクトルフォーマット変換 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

101100

VCVT.W.D

Mnemonic:

VCVT.W.D rd, rs (sync(s) = 0)

VCVT.W.D.sy rd, rs (sync(s) = 1)

Function :

VFPR[rd] ← Double to Word(VFPR[rs])

Exception :

Vector Floating Point Exception

Overview :

倍精度フォーマットから整数フォーマットへ変換する．sync が 1の場合は，投機実行を抑制する．

350 第 3章 Instruction Set

VFMFC Move from Vector Floating Point Control Register
制御レジスタリード VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110000

MFC

Mnemonic:

VFMFC rd, rs (sync(s) = 0)

VFMFC.sy rd, rs (sync(s) = 1)

Function :

FPR[rd] ← VFCTRL[rs]

Exception :

Overview :

浮動小数点ベクトル制御レジスタリード命令．rsで指定された制御レジスタの値を浮動小数点レ

ジスタに格納する．syncが 1の場合は，投機実行を抑制する．

VFMTC Move to Vector Floating Point Control Register
制御レジスタライト VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110001

MTC

Mnemonic:

VFMTC rd, rs (sync(s) = 0)

VFMTC.sy rd, rs (sync(s) = 1)

Function :

VFCTRL[rd] ← FPR[rs]

Exception :

Overview :

浮動小数点ベクトル制御レジスタライト命令．rdで指定された制御レジスタに浮動小数点レジス

タの値を格納する．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 351

VFMFS Move from Vector Floating Point Scalar Register
浮動小数点スカラレジスタリード VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110010

MFS

Mnemonic:

VFMFS rd, rs (sync(s) = 0)

VFMFS.sy rd, rs (sync(s) = 1)

Function :

FPR[rd] ← SFPR[rs]

Exception :

Vector Floating Point Exception

Overview :

浮動小数点スカラレジスタリード命令．rsで指定された浮動小数点スカラレジスタの値を浮動小

数点レジスタに格納する．syncが 1の場は，投機実行を抑制する．

352 第 3章 Instruction Set

VFMTS Move to Vector Floating Point Scalar Register
浮動小数点スカラレジスタライト VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110011

MTS

Mnemonic:

VFMTS rd, rs (sync(s) = 0)

VFMTS.sy rd, rs (sync(s) = 1)

Function :

SFPR[rd] ← FPR[rs]

Exception :

Vector Floating Point Exception

Overview :

浮動小数点スカラレジスタライト命令．rdで指定された浮動小数点スカラレジスタに浮動小数点

レジスタの値を格納する．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 353

VFMFV Move from Vector Floating Point Vector Register
浮動小数点ベクトルレジスタリード VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

110100

MFV

Mnemonic:

VFMFV rd, rs, rt (sync(s) = 0)

VFMFV.sy rd, rs, rt (sync(s) = 1)

Function :

SFPR[rd] ← VFPR[rs][rt]

Exception :

Vector Floating Point Exception

Overview :

浮動小数点ベクトルレジスタリード命令．rsで指定された浮動小数点ベクトルレジスタの rt番目

の要素の値を浮動小数点レジスタに格納する．syncが 1の場合は，投機実行を抑制する．

354 第 3章 Instruction Set

VFMTV Move to Vector Floating Point Vector Register
浮動小数点ベクトルレジスタライト VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 7

0000

0

6
s

5 0

110101

MTV

Mnemonic:

VFMTV rd, rs, rt (sync(s) = 0)

VFMTV.sy rd, rs, rt (sync(s) = 1)

Function :

SFPR[rd] ← VFPR[rs][rt]

Exception :

Vector Floating Point Exception

Overview :

浮動小数点ベクトルレジスタライト命令．rdで指定された浮動小数点ベクトルレジスタの rt番目

の要素に浮動小数点レジスタの値を書き込む．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 355

VFMTM Move to Vector Floating Point Mask Register
浮動小数点ベクトルマスクレジスタライト VECTOR

31 26

011111

VFP

25 21
rs

20 7

00000000000000

0

6
s

5 0

011110

MTM

Mnemonic:

VFMTM rs (sync(s) = 0)

VFMTM.sy rs (sync(s) = 1)

Function :

VFCTRL[Mask Register] ← VSFPR[rs]

Exception :

Vector Floating Point Exception

Overview :

浮動小数点ベクトルマスクレジスタライト命令．rdで指定した浮動小数点スカラレジスタの値を

マスクレジスタに格納する．syncが 1の場合は，投機実行を抑制する．

356 第 3章 Instruction Set

VFRSV Vector Floating Point Register Reserve
浮動小数点ベクトルレジスタ予約 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

110110

RSV

Mnemonic:

VFRSV rd, rs (sync(s) = 0)

VFRSV.sy rd, rs (sync(s) = 1)

Function :

reserve vector register(GPR[rs])

if success reserve operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

None

Overview :

浮動小数点ベクトルレジスタ予約命令．GPR[rs]に予約するレジスタの構成を指定する．予約に

成功した場合はGPR[rd]に 1が，失敗した場合は 0が格納される．syncが 1の場合は，投機実行

を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 357

VFRLS Vector Floating Point Register Release
浮動小数点ベクトルレジスタ開放 VECTOR

31 26

011111

VFP

25 16

0000000000

0

15 11

rd

10 7

0000

0

6
s

5 0

110111

RLS

Mnemonic:

VFRLS rd (sync(s) = 0)

VFRLS.sy rd (sync(s) = 1)

Function :

release vector register()

if success release operation then

GPR[rd] ← 1

else

GPR[rd] ← 0

endif

Exception :

None

Overview :

浮動小数点ベクトルレジスタ開放命令．開放に成功した場合はGPR[rd]に 1が，失敗した場合は

0が格納される．syncが 1の場合，投機実行を抑制する．

358 第 3章 Instruction Set

VFDCI Vector Floating Point Define Compound Instruction
浮動小数点ベクトル複合命令定義 VECTOR

31 26

011111

VFP

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

101110

DCI

Mnemonic:

VFDCI rd, rs (sync(s) = 0)

VFDCI.sy rd, rs (sync(s) = 1)

Function :

VFCPD[rd] ← GPR[rs]

Exception :

Vector Floating Point Exception

Overview :

浮動小数点ベクトル複合命令の定義を行う．GPR[rs]で定義した命令を rdで指定した複合命令バッ

ファのアドレスに格納する．syncが 1の場合，投機実行を抑制する．

VFECI Vector Floating Point Execute Compound Instruction
浮動小数点ベクトル複合命令実行 VECTOR

31 26

011111

VFP

25 21
rs

20 16

rt

15 11

rd

10 6
no

5 0

101111

ECI

Mnemonic:

VFDCI rd, rs, rt, no

Function :

VFPR[rd] ← VFPR[rs] op VFPR[rt]

Exception :

Vector Floating Point Exception

Overview :

浮動小数点ベクトル複合命令の実行を行う．noで指定した複合命令バッファのアドレスから命令

を実行する．

3.3. Responsive Multithreaded Processor Specific Instructions 359

VFLW Vector Floating Point Load Word
浮動小数点ベクトルロード VECTOR

31 26

011111

VFP

25 21

base

20 16

rt

15 7

000000000

0

6
s

5 0

111010

LW

Mnemonic:

VFLW rt, base (sync(s) = 0)

VFLW.sy rt, base (sync(s) = 1)

Function :

VFPR[rt] ← MEM.WORD[GPR[base]]

Exception :

Vector Floating Point Exception

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

メモリから浮動小数点ベクトルレジスタにロードする．sync が 1の場合，投機実行を抑制する．

360 第 3章 Instruction Set

VFLD Vector Floating Point Load Double
浮動小数点ベクトルロード VECTOR

31 26

011111

VFP

25 21

base

20 16

rt

15 7

000000000

0

6
s

5 0

111011

LD

Mnemonic:

VFLD rt, base (sync(s) = 0)

VFLD.sy rt, base (sync(s) = 1)

Function :

VFPR[rt] ← MEM.DWORD[GPR[base]]

Exception :

Vector Floating Point Exception

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Load)

Overview :

メモリから浮動小数点ベクトルレジスタにロードする．sync が 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 361

VFSW Vector Floating Point Store Word
浮動小数点ベクトルストア VECTOR

31 26

011111

VFP

25 21

base

20 16

rt

15 7

000000000

0

6
s

5 0

111110

SW

Mnemonic:

VFSW rt, base (sync(s) = 0)

VFSW.sy rt, base (sync(s) = 1)

Function :

MEM.WORD[GPR[base]] ← VFPR[rt]

Exception :

Vector Floating Point Exception

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

浮動小数点ベクトルレジスタからメモリにストアする．sync が 1の場合，投機実行を抑制する．

362 第 3章 Instruction Set

VFSD Vector Floating Point Store Double
浮動小数点ベクトルストア VECTOR

31 26

011111

VFP

25 21

base

20 16

rt

15 7

000000000

0

6
s

5 0

111111

SD

Mnemonic:

VFSD rt, base (sync(s) = 0)

VFSD.sy rt, base (sync(s) = 1)

Function :

MEM.DWORD[GPR[base]] ← VFPR[rt]

Exception :

Vector Floating Point Exception

D-TLB No Entry Matched

D-TLB Protection Error

Data Address Miss Align (Store)

Overview :

浮動小数点ベクトルレジスタからメモリにストアする．sync が 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor Specific Instructions 363

VADD.PS Vector Add Paired Single
Vector Add VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000000

ADD.S

Mnemonic:

VADD.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VADD.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VADD.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VADD.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VADD.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VADD.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VADD.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VADD.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] + VFPR[rt]

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Add. When s0 is 1, execute operation by scalar register

(SFPR[rt]) instead of VFPR[rt]. When s2 is 1, execute operation by lower 32bit of VFPR[rt].

When sync is 1, suppress the speculative execution.

364 第 3章 Instruction Set

VSUB.PS Vector Subtract Paired Single
Vector Substract VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

s1

7

s0

6
s

5 0

000001

SUB.S

Mnemonic:

VSUB.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PS.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 0, sync(s) = 0)

VSUB.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PS.sv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 1, sync(s) = 0)

VSUB.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PS.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 0, sync(s) = 1)

VSUB.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 1)

VSUB.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 1)

VSUB.PS.sv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] - VFPR[rt]

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Substract. When s0 is 1, execute operation by scalar register

(SFPR[rt]) instead of VFPR[rt]. When s1 is 1, execute operation by scalar register (SFPR[rs])

instead of VFPR[rs]. When s2 is 1, execute operation by lower 32bit of VFPR[rt]. When sync

is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 365

VMUL.PS Vector Multiply Paired Single
Vector Multiply VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

000010

MUL.S

Mnemonic:

VMUL.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMUL.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMUL.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMUL.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMUL.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMUL.PS.vs.sync rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMUL.PS.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMUL.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] × VFPR[rt]

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Multiply. When s0 is 1, execute operation by scalar register

(SFPR[rt]) instead of VFPR[rt]. When s2 is 1, execute operation by lower 32bit of VFPR[rt].

When sync is 1, suppress the speculative execution.

366 第 3章 Instruction Set

VABS.PS Vector Absolute Paired Single
Vector Absolute Operation VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

000101

ABS.S

Mnemonic:

VABS.PS rd, rs, rt (sync(s) = 0)

VABS.PS.sy rd, rs, rt (sync(s) = 1)

Function :

VFPR[rd] ← |VFPR[rs]|

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Absolute Operation. When sync is 1, suppress the speculative

execution.

3.3. Responsive Multithreaded Processor Specific Instructions 367

VNEG.PS Vector Negate Paired Single
Vector Negate VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

00000

0

15 11

rd

10 7

0000

0

6
s

5 0

000111

NEG.S

Mnemonic:

VNEG.PS rd, rs, rt (sync(s) = 0)

VNEG.PS.sy rd, rs, rt (sync(s) = 1)

Function :

VFPR[rd] ← -1 times VFPR[rs]

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Negate Operataion. When sync is 1, suppress the speculative

execution.

368 第 3章 Instruction Set

VMADD.PS Vector Multiply and Add Paired Single
Vector Multiply and Add Operation VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

010000

MADD.S

Mnemonic:

VMADD.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMADD.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMADD.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMADD.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMADD.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMADD.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMADD.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMADD.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] times VFPR[rt] + VFPR[rd]

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Multiply and Add Operation. When s0 is 1, execute operation

by scalar register (SFPR[rt]) instead of VFPR[rt]. When s2 is 1, execute operation by lower

32bit of VFPR[rt]. When sync is 1, suppress the speculative execution.

3.3. Responsive Multithreaded Processor Specific Instructions 369

VMSUB.PS Vector Multiply and Subtract Paired Single
Vector Multiply and Substract VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10

0

0

9

s2

8

0

0

7

s0

6
s

5 0

010001

MSUB.S

Mnemonic:

VMSUB.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMSUB.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

Function :

VFPR[rd] ← VFPR[rs] × VFPR[rt] - VFPR[rd]

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Multiply and Substract Operation. When s0 is 1, execute

operation by scalar register (SFPR[rt]) instead of VFPR[rt]. When s2 is 1, execute operation

by lower 32bit of VFPR[rt]. When sync is 1, suppress the speculative execution.

370 第 3章 Instruction Set

VCMP.PS Vector Compare Paired Single
Vector Comparison VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

010010

CMP.S

Mnemonic:

VCMP.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VFPR[rs] cond VFPR[rt] then

VFPR[rd] ← 1

else

VFPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Compare Instruction. Determinate value of VFPR[rd] by con-

dition. When s0 is 1, execute operation by scalar register (SFPR[rt]) instead of VFPR[rt]. When

sync is 1, suppress the speculative execution. When set up relation conditions, specifiy which

of eq(=)，gt(>)，lt(<)，ne(̸=)，le(≤)，ge(≥).

3.3. Responsive Multithreaded Processor Specific Instructions 371

VSCMP.PS Vector Compare Paired Single
Vector Comparison VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

010010

SCMP.S

Mnemonic:

VSCMP.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMP.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMP.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMP.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VFPR[rs] cond VFPR[rt] then

VFPR[rd] ← 1

else

VFPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Compare Instruction. Determinate value of VFPR[rd] by con-

dition. Execute operation by lower 32bit of VFPR[rt]. When s0 is 1, execute operation by scalar

register (SFPR[rt]) instead of VFPR[rt]. When sync is 1, suppress the speculative execution.

When set up relation conditions, specifiy which of eq(=)，gt(>)，lt(<)，ne(̸=)，le(≤)，ge(≥).

372 第 3章 Instruction Set

VCMPTS.PS Vector Compare Paired Single to Scalar Register
Vector Comparison VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

010011

CMPTS.S

Mnemonic:

VCMPTS.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VFPR[rs] cond VFPR[rt] then

SFPR[rd] ← 1

else

SFRP[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Compare Instruction. Operation result is assigned 1bit for

each elements, and stored scalar register. When s0 is 1, execute operation by scalar register

(SFPR[rt]) instead of VFPR[rt]. When sync is 1, suppress the speculative execution. When set

up relation conditions, specifiy which of eq(=)，gt(>)，lt(<)，ne(̸=)，le(≤)，ge(≥).

3.3. Responsive Multithreaded Processor Specific Instructions 373

VSCMPTS.PS Vector Compare Paired Single to Scalar Register
Vector Comparison VECTOR

31 26

111111

VFP.PS

25 21
rs

20 16

rt

15 11

rd

10 8

cond

7

s0

6
s

5 0

010011

SCMPTS.S

Mnemonic:

VSCMPTS.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPTS.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPTS.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPTS.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

Function :

if VFPR[rs] cond VFPR[rt] then

SFPR[rd] ← 1

else

SFPR[rd] ← 0

endif

Exception :

Vector Integer Exception

Overview :

32bitx2, Single-Precision Vector Compare Instruction. Operation result is assigned 1bit for each

elements, and stored scalar register. Execute operation by lower 32bit of VFPR[rt]. When s0

is 1, execute operation by scalar register (SFPR[rt]) instead of VFPR[rt]. When sync is 1,

suppress the speculative execution. When set up relation conditions, specifiy which of eq(=)，

gt(>)，lt(<)，ne(̸=)，le(≤)，ge(≥).

375

4

Address Decoder

4.1 Register Interface

Each of the address decoder configuration registers are defined as a system register. Therefore, to con-

figure, mtc0 instruction is used.

Values are different by a module.

• Standard (TYPE A)

31 16

-

15 8

Address

7 0

Mask

• I/O (TYPE B)

31 12

-

11 8

Address

7 4

-

3 0

Mask

• External Bus (TYPE C)

31 19

-

18

AR

17 16

WN

15 8

Address

7 0

Mask

• Link Memory (TYPE D)

31 18

-

17 16

WN

15 8

Address

7 0

Mask

• I/O Base (TYPE E)

376 第 4章 Address Decoder

31 16

Address

15 0

Mask

Field Name Function

Address Base Address

Mask Mask

WN Word Number

AR Auto Ready

4.2 Address Mapping

4.2. Address Mapping 377

Connected Module Initial Decode Address Configuration Register Address Type

ROM (EXT 0) 0x00000000 ～ 0x00100000 0x100 TYPE C

LINK SDRAM 0x04000000 ～ 0x04ffffff 0x138 TYPE D

LINK ECC-SDRAM (LSB 8bit valid) 0x05000000 ～ 0x05ffffff 0x139 TYPE D

Trace Buffer 0x10000000 ～ 0x1fffffff 0x153 TYPE A

EXT 1 (FLASH IF) 0x40000000 ～ 0x4fffffff 0x111 TYPE C

EXT 2 0x21000000 ～ 0x21ffffff 0x112 TYPE C

EXT 3 0x22000000 ～ 0x22ffffff 0x113 TYPE C

EXT 4 0x23000000 ～ 0x23ffffff 0x114 TYPE C

EXT 5 0x24000000 ～ 0x24ffffff 0x114 TYPE C

EXT 6 0x25000000 ～ 0x25ffffff 0x114 TYPE C

EXT 7 0x26000000 ～ 0x26ffffff 0x114 TYPE C

FLASH IF Control 0x27000000 ～ 0x27ffffff NA TYPE C

SDRAM IF0 0x80000000 ～ 0x87ffffff 0x130 TYPE A

SDRAM IF1 0x88000000 ～ 0x8fffffff 0x131 TYPE A

SDRAM IF2 0x90000000 ～ 0x97ffffff 0x132 TYPE A

SRAM 0x98000000 ～ 0x9fffffff 0x101 TYPE A

LINK DPM 0xc0000000 ～ 0xcfffffff 0x141 TYPE D

LINK 0xfffe0000 ～ 0xfffeffff 0x140 TYPE E

DMAC0 0xffff0000 ～ 0xffff0fff 0x120 TYPE B

DMAC1 0xffff1000 ～ 0xffff1fff 0x121 TYPE B

DMAC2 0xffff2000 ～ 0xffff2fff 0x122 TYPE B

DMAC3 0xffff3000 ～ 0xffff3fff 0x123 TYPE B

DMAC4 0xffff4000 ～ 0xffff4fff 0x124 TYPE B

DMAC DIAG 0xffff5000 ～ 0xffff5fff 0x125 TYPE B

UART0～3 0xffff6000 ～ 0xffff61ff 0x155 TYPE B

PULSE COUNTER0～5 0xffff7000 ～ 0xffff71ff 0x156 TYPE B

PWMOUT0～11 0xffff7200 ～ 0xffff73ff 0x156 TYPE B

PWMIN0～5 0xffff7400 ～ 0xffff75ff 0x156 TYPE B

32bit Timer0～3 0xffff7800 ～ 0xffff79ff 0x156 TYPE B

64bit Timer0～3 0xffff7a00 ～ 0xffff7bff 0x156 TYPE B

SRAM ECC CONTROLER 0xffff7c00 ～ 0xffff7fff NA TYPE B

IRC 0xffff9000 ～ 0xffff93ff 0x151 TYPE B

SUB IRC0 0xffff9400 ～ 0xffff97ff 0x151 TYPE B

SUB IRC1 0xffff9800 ～ 0xffff9bff 0x151 TYPE B

CLK Generator 0xffffa000 ～ 0xffffa1ff 0x150 TYPE B

MICRO RESET 0xffffa200 ～ 0xffffa3ff NA TYPE B

HIZ CONTROLER 0xffffa400 ～ 0xffffa5ff NA TYPE B

SPI 0xffffb000 ～ 0xffffb7ff 0x157 TYPE B

Parallel I/O 0xffffc000 ～ 0xffffc7ff 0x154 TYPE B

I2C 0xffffc800 ～ 0xffffcfff 0x158 TYPE B

256bit DMAC 0xffffd000 ～ 0xffffd7ff 0x12c TYPE B

LINK SDRAM ECC CONTROLER 0xffffd800 ～ 0xffffdfff 0x142 TYPE B

LINK SDRAM Mode 0xffffe000 ～ 0xffffe7ff NA TYPE B

LINK SDRAM (ECC) Mode 0xffffe800 ～ 0xffffefff NA TYPE B

SDRAM Mode 0xfffff000 ～ 0xfffff1ff NA TYPE B

ECC SDRAM Mode 0xfffff200 ～ 0xfffff3ff NA TYPE B

ECC SDRAM CONTROLER 0xfffff400 ～ 0xfffff5ff NA TYPE B

RTC 0xfffff600 ～ 0xfffff7ff 0x152 TYPE B

379

5

MMU

Responsive Multithreaded Processorのキャッシュシステムは命令キャッシュ，データキャッシュともに物理

キャッシュなのでMMUでのアドレス変換はプロセッシングコアとキャッシュの間で行う．また，アドレス空

間上に，TLBによるアドレス変換が行なわれない領域は存在しない．

5.1 TLBエントリ

本MMUにおける TLBエントリ数は命令MMU, データMMUともに 64エントリである．エントリへの

設定方法は full associative方式とし，設定を行うページ番号に関わらずどのエントリでも設定を行うことを

可能である．

以下本MMUにおける TLBエントリの機能の詳細と特徴について述べて行く．

表 5.1に TLBエントリの設定項目の一覧を示す．TLBエントリは全部で 8byteであるが，設定に際しては

32bitの整数型データを用いて行うため便宜上エントリ 1とエントリ 2に分かれる．

また TLBエントリに指定した仮想アドレスとコンテキスト IDが一致したかどうかの判断はエントリ番号

の大きな順に行われる．そのため複数のエントリが一致した場合には，よりエントリ番号が大きな TLBエン

トリの設定値を用いてアドレス変換が行われる．

TLBのエントリを設定した直後，そのエントリの LRU情報はもっとも最近に参照されたものとして扱わ

れる．

TLBエントリを初期化した場合，各フィールドの値は表 5.2のようになる．また，TLBエントリの LRU

情報を初期化すると LRUの順序はエントリ 0がもっとも最近アクセスされた TLBエントリとなり，エント

リ 1,2,3,... 62, 63と順にアクセスが古い，という状態になる．

VPN

この VPN フィールドには，アドレス変換を行う仮想アドレスがエントリを検索するために必要な仮想ペー

ジ番号を保持する．Responsive Multithreaded Processorは仮想アドレスに 32bitの信号を用い，最小ペー

ジサイズが 4KBであるため，TLBエントリには表 5.1に示すように仮想アドレスの上位 20bitを保持する．

VPN フィールドはエントリ 1に属し，エントリ設定時には設定を行う仮想ページ番号を設定データの上位

20bitに指定する．

380 第 5章 MMU

Table 5.1: TLBエントリ一覧

フィールド名 エントリ番号 データ割り当て 機能

VPN エントリ 1 [31:12] 仮想ページ番号 (Virtual Page Number)

LOCK エントリ 1 [11] エントリのロック

PROTECT エントリ 1 [10:8] 保護情報

SHARE TH エントリ 1 [7:0] エントリの有効情報と共有情報

PPN エントリ 2 [31:12] 物理ページ番号 (Physical Page Number)

PSZ エントリ 2 [11:10] ページサイズ

GROUP エントリ 2 [9:4] コンテキストグループ番号

CACHE LOCK エントリ 2 [3] 該当ページのキャッシュでのロック

UNCACHE エントリ 2 [2] 該当ページのキャッシュ不可

BURST エントリ 2 [1:0] 内部バスアクセス時のバースト転送長

Table 5.2: TLBの初期化時の値

フィールド名 初期化時の値

VPN 全 bit 0

LOCK 0 (ロックオフ)

PROTECT 000 (KER Rモード)

SHARE TH 11111111 (全コンテキスト有効)

PPN 全 bit 0

PSZ 00 (4K Byte)

GROUP 全 bit 0

CACHE LOCK 0 (ロックオフ)

UNCACHE 0 (無効)

BURST 11 (バーストなし)

LOCK

TLBミスが起こると，そのミスを起こした仮想アドレスを変換するための新たな設定を TLBエントリに

行う必要がある．全てのエントリがすでに使われていると，いずれかのエントリを選択して設定の入れ換えを

行わなければならない．本MMUでは各 TLBエントリへのアクセス情報を記録した LRU情報を用い，最も

アクセスがなされていないエントリを入れ換えの対象とする．

この LOCK フィールドを設定する (1にする)と，その TLBエントリを LRU情報を用いた入れ換えの対

象から外すことができる．ただし設定を行うエントリを直接指定した場合にはこの LOCKフィールドの設定

は無効となる．

また，LOCKフィールドが設定された TLBエントリを使ってアドレス変換を行った場合，その TLBエン

トリはもっとも最近に参照されたものとして LRU情報が更新される．

この LOCKフィールドはエントリ 1に属する．

PROTECT

ページ単位でのメモリ領域の保護を行うため，この PROTECTフィールドにそのための保護情報を指定す

る．表 5.3に指定可能な保護情報の一覧を示す．

5.1. TLBエントリ 381

尚 Responsive Multithreaded Processorでは制限の厳しい順にカーネル・スーパバイザー・ユーザの 3つ

のスレッドの動作モードが規定されている．

この PROTECTフィールドはエントリ 1に属する．

SHARE TH

Responsive Multithreaded Processorは同時に最大 8個のスレッドが動作するため，TLBエントリのミス

率が高くなってしまう．ミス率を少しでも低く抑えるために，コンテキスト毎に TLBエントリに有効情報を

持つようにする．Responsive Multithreaded Processorはスレッド ID(32bit)ではなくコンテキスト ID(3bit)

を用いてスレッドの実行を制御している．特にコンテキストが有効かどうかは各コンテキストにつき 1bitの

情報で与えられるので，TLBエントリにはそれに対応する bitを用意している．この SHARE THフィール

ドには，各コンテキストの有効情報を保持する．エントリの有効情報は仮想アドレスの比較に用いられるだけ

ではなく，エントリの共有と入れ換えエントリの選択にも用いる．

入れ替えを行うTLBエントリは特に指定がなければLRU情報に基づいて選択されるが，その前にSHARE TH

フィールドを調べて無効なエントリが存在する場合はそれを入れ替えの対象とする．

また，有効であったコンテキストが無効化され，かつそのコンテキストのMMUでのアドレス変換が有効

であった場合には，自動的にこの SHARE THフィールドは無効に設定される．

0から 7ビット目に，それぞれコンテキスト番号 0から 7が対応する．

この SHARE THフィールドはビットを反転して格納される．例えば，SHARE THフィールドに 0x0fと

設定すると実際に格納される値は 0xf0となる．

このフィールドはエントリ 1に属する．

PPN

この PPNフィールドには，VPNフィールドの仮想ページ番号がマップされている物理ページ番号が保持さ

れる．Responsive Multithreaded Processorは物理アドレスに 32bitの信号を用い，最小ページサイズが 4KB

であるため，TLBエントリで変換される物理アドレスは表 5.1に示すように上位 20bitである．PPNフィー

ルドはエントリ 2に属し，エントリ設定時には設定を行う物理ページ番号を設定データの上位 20bitに指定

する．

Table 5.3: TLBエントリに指定可能なページ保護情報

保護モード 設定コード 保護の詳細

ALL RO 111 全モードでの読み込のみを許可

ALL R 110 全モードでの読み込みと書き込みを許可

USR RW 101 全モードでの読み込みと書き込みを許可

USR R 100 全モードでの読み込み，スーパバイザーモード以上の書き込みを許可

SV RW 011 スーパバイザーモード以上での読み出しと書き込みを許可

SV R 010 スーパバイザーモード以上の読み込み，カーネルモードでの書き込みを許可

KER RW 001 カーネルモードでの読み込みと書き込みを許可

KER R 000 カーネルモードでの読み込みのみを許可

PSZ

Responsive Multithreaded Processorでは，複数ページサイズのサポートをしている．TLBエントリでも

複数のページサイズを用いることができるようにしており，表 5.4に指定可能なページサイズを示す．

382 第 5章 MMU

Table 5.4: TLBエントリに指定可能なページサイズ

ページサイズ 設定コード

4K byte 00

64K byte 01

1M byte 10

16M byte 11

この PSZフィールドはエントリ 2に属する．

GROUP

Responsive Multithreaded Processorではコンテキスト IDを用いた制御が行なわれるため，特に一度コン

テキストキャッシュに退避されたスレッドが実行を再開する場合には，退避前の TLBエントリの設定値は全

く使うことができない．これはコンテキスト単位で仮想アドレスを識別しているために，実行スレッドが切り

替わる際にはどうしても無効化しなければならないからである．各々のスレッドのアドレスマップは通常独立

であるから，エントリの無効化は問題にはならない．しかし共有メモリ領域のエントリでは，退避前までエン

トリを共有していたスレッドが，実行再開後は全く別のエントリに設定しなければならなくなる．

そこでそのような無駄を省くためにこの GROUP フィールドを用いる．各 TLBエントリはこのフィール

ドに設定された IDを用いて有効情報の変更が可能になっている (5.2)．そこで共有メモリ領域を持つスレッド

は，その領域の TLBエントリに設定されたコンテキストグループ番号を知っていれば，実行を再開したコン

テキスト番号をそのコンテキストグループに属する TLBエントリに通知するだけで，容易に TLBエントリ

の有効化を行なうことができる．

この GROUPフィールドはエントリ 2に属する．

CACHE LOCK

このフィールドを有効にすることで，該当ページのデータブロックをキャッシュ上にロックすることができ

る．機能は TLBエントリのロックフィールド (5.1) と同等である．

この CACHE LOCKフィールドはエントリ 2に属し，MMUが無効状態でのデフォルトの値は無効 (ロッ

ク不可)となる．

UNCACHE

このUNCACHEフィールドを有効 (1と設定)にすると，そのページのブロックはキャッシュされない．キャッ

シュシステム内にはキャッシュメモリ本体以外にもデータが置かれるバッファがいくつかあるが，このフィー

ルドが有効になっているページのデータは，書き込みデータのマージ機構 (6.1.4)や内部バス要求キューでの

複数データヒット機構 (6.1.4)，victim buffer (6.1.3) が無効になる．

このフィールドはエントリ 2に属し，MMUが無効状態でのデフォルトの値は有効 (キャッシュ不可)となる．

BURST

アクセスしたいデータがキャッシュミスとなると，内部バスへ要求を出すことになる．この BURSTフィー

ルドには，その場合の内部バスに対するバースト読み出しの転送長を指定する．設定可能な転送長を表 5.5に

示す．

RMTPの仕様上 BURST無しで使用すること．

5.2. MMUの制御 383

Table 5.5: TLBエントリで指定可能な内部バスのバースト転送長

転送長 設定コード 転送データ量

無し 11 32byte

2 10 64byte

4 01 128byte

8 00 256byte

このフィールドの値は書き込み要求には適応されない．また I/Oなど 32bitバスのデータ読み出しにも適応

されない．I/Oであるかどうかはアドレス空間を用いて識別する．

このフィールドはエントリ 2に属し，MMUが無効状態でのデフォルトの値はバースト転送無しとなる．

5.2 MMUの制御

MMUのコントロールレジスタの一覧を表 5.7に示す．

各レジスタは通常のアドレス空間や，プロセッシングコアのコントロールレジスタのアドレス空間とは異な

る独自のアドレス空間にマッピングされている．そのためMMUのコントロールレジスタへのアクセスは表

5.6に示す 4つの専用命令を用いて行う．

Table 5.6: MMUのコントロールレジスタアクセス用命令

命令 用途

MFIMM 命令用MMUのコントロールレジスタの値を読み出す

MTIMM 命令用MMUのコントロールレジスタに値を設定

MFDMM データ用MMUのコントロールレジスタの値を読み出す

MTDMM データ用MMUのコントロールレジスタに値を設定

コントロールレジスタの値の設定方法には，設定するデータをそのまま指定するものと，一定の形式に合わ

せて指定するものがある．後者の一定の形式はMMUのコントロールレジスタの設定のみならず，キャッシュ

コントローラのコントロールレジスタの設定にも用いられる場合がある (6.1.5)．そこでこの一定の形式のこ

とを共通設定形式 (図 5.1)と呼ぶことにする．共通設定形式では 1を設定することで該当レジスタの機能を有

効化することができる．またコンテキストグループ (5.1)に対してはこの共通設定形式を拡張した独自の形式

(図 5.4)を用いて設定を行う．

context7 context6 context5 context4 context3 context2 context1 context0
15 13 11 9 7 5 3 1

S V S V S V S V S V S V S V S V

14 12 10 8 6 4 2 0

S

V

select field

value field

1⁄¸Àß˜Œ⁄„⁄º⁄¨‡”¯ö¥‡¥ó¥˘¥›¥„¥¨⁄òÀæ´ò

1⁄¸Àß˜Œ⁄„⁄º⁄¨˝›‚œ†‰¡¢0⁄¸Àß˜Œ⁄„⁄º⁄¨Ìµ‚œ†‰

Figure 5.1: コントロールレジスタの共通設定形式

384 第 5章 MMU

Table 5.7: MMUのコントロールレジスタ一覧

アドレス [7:0] レジスタ名 設定方法 機能

0x00 MMU SPR START 共通形式 アドレス変換の有効・無効

0x04 MMU SPR ALL FLUSH 設定値無し エントリの無効化と LRU情報の初期化

0x08 MMU SPR TLB FLUSH 直接指定 指定したエントリを無効化

0x0c MMU SPR THREAD FLUSH 共通形式 指定したコンテキストを無効化

0x10 MMU SPR GROUP FLUSH 直接指定 指定したグループを全て無効化

0x14 MMU SPR LRU FLUSH 直接指定 LRU情報を初期化

0x18 MMU SPR MAX LOCK 直接指定 エントリをロックできる最大数

0x1c MMU SPR ENTRY1 直接指定 TLBエントリのエントリ 1を設定

0x20 MMU SPR ENTRY2 直接指定 TLBエントリのエントリ 2を設定

0x24 MMU SPR ENTRY INDEX 設定値無し 指定した TLBエントリを設定

0x28 MMU SPR ENTRY LRU 設定値無し LRU情報によりエントリを設定

0x2c MMU SPR GROUP 特殊形式 指定したグループのエントリの有効化・無効化

0x30 MMU SPR EXP ADDR 設定値無し 例外を発生したアドレス

0x34 MMU SPR EXP LOG 設定値無し 発生した例外の詳細情報

0x38 MMU READ TLB ADDR 設定値無し TLBの読みたいエントリのアドレス

0x3c MMU READ TLB DATA 設定値無し TLBの読みたいエントリのデータ

0x40 MMU GLOBAL BIT LOW 直接指定 グローバルビットの下位 32bit

0x44 MMU GLOBAL BIT HIGH 直接指定 グローバルビットの上位 32bit

コントロールレジスタの設定のタイミングはプロセッサの実行状況によって全く異なるため，実行中のス

レッドに対してページ設定以外の設定情報の変更 (MMUのオン・オフやエントリのフラッシュ) を行う場合

は注意が必要である．

またコントロールレジスタの多くは設定要求 (書き込み要求)のみを規定しており，そのようなレジスタに

対する読み出し要求には返戻値として 0が返る．

MMU SPR START

MMU SPR STARTレジスタはMMU機能の有効・無効を示す．

Responsive Multithreaded Processorはスレッド毎ではなくコンテキスト毎に制御を行うため，MMU SPR START

レジスタもコンテキスト毎に用意されている．コンテキストの指定は書き込みデータの下位 8bit[7:0]で行う．

またこのレジスタの読み出し要求に対しては，データの下位 8bit[7:0]の上位から順番にコンテキスト番号

7からコンテキスト番号 0までの設定値が格納される．

設定には図 5.1に示した共通設定形式を用いる．

MMU SPR ALL FLUSH

このレジスタに対して書き込み要求を行うと，全ての TLBエントリの設定データとエントリアクセスの

LRU情報を初期化する．書き込むデータに制約はなく，設定を行うと次クロックで自動的にクリアされる．

MMU SPR TLB FLUSH

このレジスタに指定した番号の TLBエントリのみを初期化する．TLBエントリの指定は書き込みデータ

の下位 6bit[5:0]で行う．設定を行うと次クロックで自動的にクリアされる．

5.2. MMUの制御 385

MMU SPR THREAD FLUSH

各 TLBエントリにおいてこのレジスタに指定したコンテキストのみを無効化する．設定方法は図 5.1に示

した共通設定形式を用いる．設定を行うと次クロックで自動的にクリアされる．

MMU SPR GROUP FLUSH

このレジスタに指定したコンテキストグループに属する TLBエントリを無効化する (5.1)．コンテキスト

グループの指定は書き込みデータの下位 6bit[5:0]で行う．設定を行うと次クロックで自動的にクリアされる．

MMU SPR LRU FLUSH

このレジスタに書き込み要求を行うと，TLBエントリのアクセスに関する LRU情報を初期化する．書き

込むデータに制約はない．設定を行うと次クロックで自動的にクリアされる．

MMU SPR MAX LOCK

このレジスタには TLB エントリをロックし，LRU 情報によるエントリの入れ換え対象計算から外すこ

とのできるエントリ数を設定する．既定値は 16 エントリ，最小値は 0 エントリ，最大値は 63 エントリで

あり，このレジスタの値以上のエントリをロックすることは基本的にできない．しかしロックエントリ数の

計算に 1クロック要するため，エントリの設定命令が 2クロック連続するとこのレジスタの値を越えてロッ

クが設定される可能性がある．全 64エントリがロックされてしまった場合，ページフォルト発生時にペー

ジテーブルを設定できなくなってしまう．そのため，64エントリがロックされると例外を発生させる (5.3)

．MMU SPR ENTRY LRUでエントリ 1の LOCKフィールドを 1にした TLBエントリをセットする時に

MMU SPR MAX LOCKの値以上にセットしようとした場合，ロックはされないが TLBエントリのほかの

内容はセットされる．例えば，MMU SPR MAX LOCKが 16で既にロックされている TLBエントリも 16

個存在する時にMMU SPR ENTRY LRUでロックしたエントリをセットする場合，LOCKフィールドを 0

にして TLBエントリをセットすることになる．

このレジスタの読み出し要求に対しては，データの下位 6bit[5:0]に現在の設定値を格納する．

MMU SPR ENTRY1

各 TLBエントリが持つエントリフィールドのうち，このレジスタには仮想アドレス，エントリのロック指

定，ページ保護情報，エントリ共有情報を設定する．設定形式を図 5.2に示す．

7:010:81131:12

†¾`Û¥Ú¡…¥‚¨Ö„æ ¥Ú¡…¥‚˚Ý‚î¾ð˚ó

¶ƒ˝›¾ð˚ó

: VPN : PRO

: SHR: LCK¥¤¥ó¥¨¥Œ¥í¥ˆ¥fl

LCK PRO SHRVPN

Figure 5.2: ENTRY1 の設定形式

386 第 5章 MMU

MMU SPR ENTRY2

各 TLBエントリが持つエントリフィールドのうち，このレジスタには物理アドレス，ページサイズ，コン

テキストグループ，該当ページのキャッシュでのロックの可否，該当ページのキャッシュの可否，該当ページ

のバスアクセス時のバースト転送長を指定する．設定形式を図 5.3に示す．

˚“˝ý¥Ú¡…¥‚¨Ö„æ

¥‡¥ó¥˘¥›¥„¥¨¥°¥º¡…¥×

¥›¥ª¥ˆ¥•¥å¥í¥ˆ¥fl

¥›¥ª¥ˆ¥•¥åÉÔ†˜

¥—¡…¥„¥¨¯¾`÷˜„

¥Ú¡…¥‚¥µ¥⁄¥”

: PPN

: PSZ

: GRP

: CLC

: UNC

: BRT

1:09:411:1031:12

PPN BRTUNCCLCGRPPSZ

3 2

Figure 5.3: ENTRY2 の設定形式

MMU SPR ENTRY INDEX

このレジスタに書き込み要求を行いTLBエントリ番号を指定することで，事前に設定しておいたMMU SPR ENTRY1

フィールドとMMU SPR ENTRY2フィールドの値を，その指定された TLBエントリに設定する．TLBエ

ントリの指定は書き込むデータの下位 6bit[5:0]で行う．

MMU SPR ENTRY LRU

このレジスタに書き込み要求を行うことで，事前に設定しておいた MMU SPR ENTRY1 フィールドと

MMU SPR ENTRY2フィールドの値を，LRU情報を元にして最もアクセスがなされていない TLBエント

リに設定する．書き込むデータに制約はない．

MMU SPR GROUP

このレジスタに書き込み要求を行うことで，指定したコンテキストグループに所属する TLBエントリの，

指定したコンテキストの有効化・無効化を行う (5.1)．コンテキストグループとコンテキストの指定形式を図

5.4に示す．

context7 context6 context5 context4 context3 context2 context1 context0
15 13 11 9 7 5 3 1

S V S V S V S V S V S V S V S V

14 12 10 8 6 4 2 01621

¥‡¥ó¥˘¥›¥„¥¨¥°¥º¡…¥×¨Ö„æ

S

V

select field

value field

1⁄¸Àß˜Œ⁄„⁄º⁄¨‡”¯ö¥‡¥ó¥˘¥›¥„¥¨⁄òÀæ´ò

1⁄¸Àß˜Œ⁄„⁄º⁄¨˝›‚œ†‰¡¢0⁄¸Àß˜Œ⁄„⁄º⁄¨Ìµ‚œ†‰

Figure 5.4: コンテキストグループの設定形式

5.2. MMUの制御 387

MMU SPR EXP ADDR

このレジスタはアドレス変換において該当する TLBエントリが存在しなかった場合に，その仮想アドレス

を保持する．アドレスはコンテキスト毎に保持され，その値を読み出すにはデータの下位 3bit[2:0]にコンテ

キスト番号を指定する．

このレジスタに対する書き込み要求は，実行したコンテキストに対応するレジスタの値がクリアされるだけ

である．

MMU SPR EXP LOG

このレジスタにはページ保護の違反が確認された時にその違反コード (表 5.8)が保持される．

Table 5.8: MMUのページ保護違反コード

コード名 違反コード 違反内容

MMU EXP NONE 000 違反無し

MMU EXP PRO ALL RO 001 全モードでの読み出し制限違反

MMU EXP PRO USR RW 010 ユーザモード以上に限定されたページへのアクセス違反

MMU EXP PRO USR R 011 ユーザモード以上に限定されたページへの書き込み違反

MMU EXP PRO SPV RW 100 スーパバイザーモード以上に限定されたページへのアクセス違反

MMU EXP PRO SPV R 101 スーパバイザモード以上に限定されたページへの書き込み違反

MMU EXP PRO KER RW 110 カーネルモード以上に限定されたページへのアクセス違反

MMU EXP PRO KER R 111 カーネルモード以上に限定されたページへの書き込み違反

このレジスタの読み出し要求に対しては，5bit目 [4]に違反発生の有無が (1で保護違反発生)，下位 3bit[2:0]

に違反コードが格納される．

またこのレジスタに対する書き込み要求は，実行したコンテキストに対応するレジスタの値がクリアされる

だけである．

MMU READ TLB ADDR

MMU READ TLB DATA

この2つのレジスタを用いてTLBの中身を読むことができる．まず読みたいTLBのエントリをMMU READ TLB ADDR

レジスタに書き込み，次にMMU READ TLB DATAレジスタを読み出す．MMU READ TLB ADDRレジ

スタに書き込む値は 6:1 bit目にエントリの番号，0bit目に Entry1ならば 0，Entry2ならば 1を指定する．た

だし，Entry1の SHARE THのビットは反転した値が読みだされる．

MMU GLOBAL BIT LOW

MMU GLOBAL BIT HIGH

グローバルビットを指定することで，SHARE THビットに関係なく TLBエントリの内容は全てのスレッ

ドで有効となる．つまりグローバルビットがセットされているエントリは全てのスレッドで共通のアドレス空

間となり，コンテキストスイッチが発生した際もエントリの無効化は発生しない．これはカーネル空間などの

共有領域や，TLBミスが発生してはいけない領域などでの利用を想定している．グローバルビットを使用す

る際には，同時にそのエントリをロックすることを強く推奨する．グローバルビットはエントリ番号に紐付け

されているため，もし当該エントリが TLBの置換対称となった場合，置換後のエントリ内容もグローバルと

388 第 5章 MMU

なってしまう．これは意図しない動作の原因になるだろう．グローバルビットはリセット時とALL FLUSHを

行った際にのみ自動的に初期化される．グローバルビットはMMU GLOBAL BIT LOWが TLBエントリの

0番から 31番，MMU GLOBAL BIT HIGHが TLBエントリの 32番から 63番に対応し，LSB側から TLB

エントリの若番に対応する．

（e.g. MMU GLOBAL BIT LOW[0] => TLB ENTRY[0], MMU GLOBAL BIT HIGH[0] => TLB ENTRY[32]）

5.3 MMUが発生させる例外

本MMUが発生させる例外を表 5.9に示す．

命令用MMU，データ用MMU共に発生させる例外の種類は同じであるが，命令とデータの区別をつけて

例外を扱う．

また命令要求が発生させた例外とデータ要求が発生させた例外とではプロセッシングコアでの扱いが異な

るが，MMUに対して設定を行うのはデータ要求であるため，命令用MMUで発生した設定用の例外 (表 5.9

の例外の種類の設定)はデータ用MMUの例外コードと一緒に扱われる．

Table 5.9: MMUの発生させる例外

例外名 例外の種類 命令用MMUのコード データ用MMUのコード

エントリミス 要求 0x3 0x8

ページ保護違反 要求 0x5 0xa

エントリミス (TLBミス)

命令要求やデータ要求によって指定された仮想アドレスとコンテキスト IDが，どのエントリの設定値とも

一致しなかった場合に発生する．例外を起こした仮想アドレスをコントロールレジスタに保持するが (5.2)，

MMUの状態は変化しない．例外発生後もアドレス変換や TLBエントリの設定は通常通り可能である．例外

発生時，MMU SPR EXP LOGの値は 0(違反なし)に設定される．

尚命令用MMUで本例外が発生した場合，命令フェッチユニットの仕様により命令を返さなければ例外処理

に進むことができないため，フェッチ命令幅の全てを No-opコードとして返す．

ページ保護違反

命令要求やデータ要求によって指定された仮想アドレスとコンテキスト IDが一致したTLBエントリにおい

て，その要求が設定された保護情報に反する場合に発生する．コントロールレジスタには例外コード (表 5.8)

が格納されるが，MMUの状態は変化しない．

命令用MMUでこの例外が発生した場合，エントリミスと同様に命令フェッチ幅の全てをNo-opとして返す．

389

6

CACHE

6.1 キャッシュシステム

6.1.1 概要

Responsive Multithreaded Processorのキャッシュシステムの特徴を以下に示す．またモジュール構成を図

6.1に示す．本節ではこれらキャッシュシステムを構成する各要素について述べる．

• 32 KB 8-way set-associative方式

• ブロックサイズ，ラインサイズともに 32byte

• Look Through

• ノンブロッキング

• 下位メモリとのデータ一貫性の維持はライトバック方式

• 書き込み要求ミスの処理はライトアロケート方式

• キャッシュポートは 1 ポート

• 物理タグでデータを保持

• 転送ブロック数が可変

• キャッシュのロックが可能

• 3 サイクルのアクセス遅延

• マルチタグ，シングルデータ方式

• 16 エントリの victim buffer

• 最大 16 個のキャッシュミスを同時に保持

• 入れ換えを行うブロックの選択方法は LRUと優先度の 2 通り

• バス待ちキューでの優先度による要求の追い越しが可能

390 第 6章 CACHE

Ì¿˛Æ˝Ñ MMU

¥˙¡…¥¿˝Ñ MMU

Ì¿˛Æ¥›¥ª¥ˆ¥•¥å
¥‡¥ó¥¨¥í¡…¥Ø ¥˙¡…¥¿¥›¥ª¥ˆ¥•¥å

¥¿¥°¡ƒÀß˜Œ¾ð˚ó

¥˙¡…¥¿¥›¥ª¥ˆ¥•¥å
¥‡¥ó¥¨¥í¡…¥Ø

mem_rw_buffer

victim buffer
¥‡¥ó¥¨¥í¡…¥Ø

victim buffer
¥‡¥ó¥¨¥í¡…¥Ø

read buffer

write buffer
wait buffer

¥‡¥ó¥¨¥í¡…¥Ø

wait buffer
¥‡¥ó¥¨¥í¡…¥Ø

victim buffer

256 bit ˘âÉô¥—¥„

¥Æ¥â¥Œ¥¢¥fl¥»¥„¥æ¥¸¥ˆ¥¨
Ì¿˛Æ¥Õ¥§¥ˆ¥`
¥æ¥¸¥ˆ¥¨

Ì¿˛Æ¥›¥ª¥ˆ¥•¥å

¥¿¥°¡ƒÀß˜Œ¾ð˚ó

read buffer

victim buffer

CPU ¥‡¥¢

¥˙¡…¥¿¥›¥ª¥ˆ¥•¥å¥•¥„¥˘¥à

Ì¿˛Æ¥›¥ª¥ˆ¥•¥å¥•¥„¥˘¥à

Figure 6.1: キャッシュシステムのモジュール構成

6.1.2 キャッシュ制御

キャッシュの制御は図 6.1の命令キャッシュコントローラ，データキャッシュコントローラで行う．

キャッシュ要求がキャッシュミスを起こした場合には，先に victim bufferで保持されているデータと比較さ

れ (6.1.3)，そこでも該当データを発見できなければ wait buffer から内部バスへアクセスを行う (6.1.4)．

キャッシュでのデータ一貫性の維持

命令，データの両キャッシュコントローラは，内部バスで発生する書き込み要求を常に監視する．そしても

しキャッシュしているデータが書き込みを受けた場合にそのデータを無効化する．

6.1.3 victim buffer

victim buffer では，キャッシュブロックの入れ換えに伴いキャッシュメモリを追い出されたデータを，full

associative 方式でエントリに保持する．そしてキャッシュミスを起こした要求のアドレスを現在保持している

データのタグと比較し，もし一致するデータがあれば該当データをキャッシュへと送り込む．

6.1.4 wait buffer

概要

wait buffer は内部バス要求キュー，read buffer とその管理機構からなるキャッシュコントローラの内部バ

スインタフェースであり，命令用とデータ用のそれぞれに分かれる．データキャッシュ用の wait buffer には

更に write buffer とその管理機構が付随する．

6.1. キャッシュシステム 391

内部バス要求

内部バス要求キューと write buffer は 16 エントリから成り，victim buffer から送られてくる様々な要求を

順にエントリに格納して行く．

内部バス要求キューの要求順位入れ換え機能

内部バス要求キューの要求順位を入れ替える機構がある．その方法は読み出し要求を書き込み要求よりも優

先して行う方法と，優先度が高いコンテキストの要求を優先して行う方法の 2種類である．ただし，ライト

アロケート方式を用いているため通常の書き込み要求は読み出し要求と同じくデータの読み出しを行うため，

追い抜きの対象は write back 要求になっている．

書き込み要求のマージ機能

通常の書き込み要求のデータは 1 byte の文字型や 4 byte の整数型， 8 byte の倍精度浮動点小数型のデー

タであるため，1 キャッシュラインのデータ幅である 32 byte に対しては小さい．よって同じキャッシュライ

ンに対するデータの書き込みは 1 つのエントリにまとめることができるようにしている．

ただし I/O への書き込み要求であった場合には，データのマージは行わない．

6.1.5 キャッシュのコントロールレジスタ

キャッシュのコントロールレジスタの一覧を表 6.1に示す．これらのレジスタはプロセッシングコアのコン

トロールレジスタと同じアドレス空間にマッピングされており，それらと同じ命令 (表 6.2)を用いてアクセス

する．尚これらのレジスタの設定方法は TLB のコントロールレジスタの設定 (5.2)と同じようにデータを直

接指定するか，図 5.1に示した共通設定形式を用いる．

Table 6.1: キャッシュのコントロールレジスタ

レジスタ名 設定方法 機能 命令用アドレス [7:0] データ用アドレス [7:0]

ON 共通形式 キャッシュの有効・無効 0x80 0x86

REP MODE 直接指定 入れ換え方法の指定 0x81 0x87

ACC SCHE 直接指定 要求の追い越し指定 0x82 0x88

LOCK 共通形式 ロックの有効・無効 0x83 0x89

RESET 直接指定 キャッシュのリセット 0x84 0x8a

FLUSH 共通形式 write backの指定 無し 0x8b

ALL FLUSH 直接指定 全て write back 無し 0x8c

Table 6.2: コントロールレジスタをアクセスする命令

命令 用途

MFC0 コントロールレジスタの値を読み出す

MTC0 コントロールレジスタに値を設定

392 第 6章 CACHE

ON

このレジスタを設定することで，コンテキスト毎にキャッシュの有効・無効を指定できる．

初期状態の設定値は全コンテキスト共に無効になっており，またコンテキストが無効化されるとそのコンテ

キストに対応するフィールドは自動的に無効となる．

このレジスタの設定には共通設定形式 (図 5.1)を用いる．またこのレジスタの読み出し要求に対しては，デー

タの下位 8 bit [7:0]の上位から順番にコンテキスト番号 7 からコンテキスト番号 0 までの設定値が格納さ

れる．

REP MODE

このレジスタにはキャッシュブロックの入れ換え方法を指定する．0 を設定すると LRU 情報に基づく方法，

1 を設定するとオーナーコンテキストの優先度に基づく方法となる．

設定はデータの 1 bit 目で行われる．このレジスタの初期値は LRU を用いた方法である．またこのレジス

タの読み出し要求に対しては，データの最下位 bit [0] に設定値が格納される．

ACC SCHE

このレジスタには，6.1.4で述べた優先度に従った内部バス要求キューの要求入れ換え機能の有効，無効を

指定する．このレジスタに 1 を設定することでその機能を有効にできる．

設定は REP MODEレジスタと同様にデータの 1 bit 目で行われ，初期値は無効である．またこのレジス

タの読み出し要求に対しては，データの最下位 bit [0] に設定値が格納される．

LOCK

このレジスタには 5.1で述べたコンテキスト毎のキャッシュロックの有効，無効を指定する．このレジスタ

とTLBエントリのCACHE LOCKフィールドが設定されることで，該当コンテキストがキャッシュデータを

ロックすることが可能になる．どちらか一方の設定だけではキャッシュロックを行うことはできない．

一旦キャッシュをロックしてしまうと，そのコンテキストが有効である限りそのデータがキャッシュから追

い出されることはない．これはキャッシュの入れ換えを優先度に従う方式で行っていても同様のため，低優先

度のスレッドに対するロック許可や，ロック許可状態での高優先度のスレッドの実行を行う場合には注意が必

要である．

初期状態の設定値は全コンテキスト共に無効になっており，またコンテキストが無効化されるとそのコンテ

キストに対応するフィールドは自動的に無効となる．

このレジスタの設定には共通設定形式 (図 5.1)を用いる．またこのレジスタの読み出し要求に対しては，デー

タの下位 8 bit [7:0]の上位から順番にコンテキスト番号 7 からコンテキスト番号 0 までの設定値が格納さ

れる．

RESET

このレジスタに 1 を設定することで，キャッシュと victim buffer のエントリを全て無効化することができ

る．ただしデータ用のエントリに収められているデータでもその書き戻しは行わない．

このレジスタの読み出し要求に対しては，データの最下位 bit [0] に現在の状態を格納する．1 が読み出さ

れた場合は，現在キャッシュの無効化が行われていることを意味する．

6.1. キャッシュシステム 393

FLUSH (データキャッシュコントローラのみ)

このレジスタを有効に設定することで，キャッシュデータと victim buffer のデータの下位メモリへの書き戻

しを開始する．書き戻しが終了すると，自動的に無効状態になる．設定には共通設定形式 (図 5.1)を用い，コ

ンテキスト単位で書き戻し要求を指定できるが，無効状態のコンテキストに対する指定でも書き戻しを行う．

またこのレジスタの読み出し要求に対しては，データの下位 8 bit [7:0]の上位から順番にコンテキスト番

号 7 からコンテキスト番号 0 までの設定値が格納される．

ALL FLUSH

このレジスタに書き込み要求を行うと，それだけで全コンテキストの書き戻しを開始する．指定するデータ

に制限はない．

395

7

システムレジスタ

システムレジスタはMFC0，MTC0命令でアクセスする．アクセスしたいレジスタ番号を入れたレジスタ

を rdに指定する．

7.1 レジスタマップ
offset 31 24 23 16 15 8 7 0
0x00 Status Register (Thread0)

0x01 Status Register (Thread1)

0x02 Status Register (Thread2)

0x03 Status Register (Thread3)

0x04 Status Register (Thread4)

0x05 Status Register (Thread5)

0x06 Status Register (Thread6)

0x07 Status Register (Thread7)

0x08 Thread Table Register (Thread0)

0x09 Thread Table Register (Thread1)

0x0a Thread Table Register (Thread2)

0x0b Thread Table Register (Thread3)

0x0c Thread Table Register (Thread4)

0x0d Thread Table Register (Thread5)

0x0e Thread Table Register (Thread6)

0x0f Thread Table Register (Thread7)

0x10 Thread ID Register (Thread0)

0x11 Thread ID Register (Thread1)

0x12 Thread ID Register (Thread2)

0x13 Thread ID Register (Thread3)

0x14 Thread ID Register (Thread4)

0x15 Thread ID Register (Thread5)

0x16 Thread ID Register (Thread6)

0x17 Thread ID Register (Thread7)

396 第 7章 システムレジスタ

offset 31 24 23 16 15 8 7 0
0x18 Instruction Count Register (Thread0)

0x19 Instruction Count Register (Thread1)

0x1a Instruction Count Register (Thread2)

0x1b Instruction Count Register (Thread3)

0x1c Instruction Count Register (Thread4)

0x1d Instruction Count Register (Thread5)

0x1e Instruction Count Register (Thread6)

0x1f Instruction Count Register (Thread7)

0x20 Count Register (Thread0)

0x21 Count Register (Thread1)

0x22 Count Register (Thread2)

0x23 Count Register (Thread3)

0x24 Count Register (Thread4)

0x25 Count Register (Thread5)

0x26 Count Register (Thread6)

0x27 Count Register (Thread7)

0x28 Compare Register (Thread0)

0x29 Compare Register (Thread1)

0x2a Compare Register (Thread2)

0x2b Compare Register (Thread3)

0x2c Compare Register (Thread4)

0x2d Compare Register (Thread5)

0x2e Compare Register (Thread6)

0x2f Compare Register (Thread7)

0x30 Floating-Point Control Register (Thread0)

0x31 Floating-Point Control Register (Thread1)

0x32 Floating-Point Control Register (Thread2)

0x33 Floating-Point Control Register (Thread3)

0x34 Floating-Point Control Register (Thread4)

0x35 Floating-Point Control Register (Thread5)

0x36 Floating-Point Control Register (Thread6)

0x37 Floating-Point Control Register (Thread7)

0x38 Issue Mode Register

0x39 CPU Count Register (Low)

0x3a CPU Count Register (High)

0x3b ～ 0x47 MMU Register

0x48 Exception PC Register (Thread0)

0x49 Exception PC Register (Thread1)

0x4a Exception PC Register (Thread2)

0x4b Exception PC Register (Thread3)

0x4c Exception PC Register (Thread4)

0x4d Exception PC Register (Thread5)

0x4e Exception PC Register (Thread6)

0x4f Exception PC Register (Thread7)

0x50 Exception Cause Register (Thread0)

0x51 Exception Cause Register (Thread1)

0x52 Exception Cause Register (Thread2)

0x53 Exception Cause Register (Thread3)

0x54 Exception Cause Register (Thread4)

0x55 Exception Cause Register (Thread5)

0x56 Exception Cause Register (Thread6)

0x57 Exception Cause Register (Thread7)

7.1. レジスタマップ 397

offset 31 24 23 16 15 8 7 0
0x58 Interruption Wait Register (Thread0)

0x59 Interruption Wait Register (Thread1)

0x5a Interruption Wait Register (Thread2)

0x5b Interruption Wait Register (Thread3)

0x5c Interruption Wait Register (Thread4)

0x5d Interruption Wait Register (Thread5)

0x5e Interruption Wait Register (Thread6)

0x5f Interruption Wait Register (Thread7)

0x60 External Interruption Level Register (Thread0)

0x61 External Interruption Level Register (Thread1)

0x62 External Interruption Level Register (Thread2)

0x63 External Interruption Level Register (Thread3)

0x64 External Interruption Level Register (Thread4)

0x65 External Interruption Level Register (Thread5)

0x66 External Interruption Level Register (Thread6)

0x67 External Interruption Level Register (Thread7)

0x68 Interruption Pending Register

0x69 Interruption Clear Register

0x6a Exception Base Address Register

0x6b Interruption Mode Register

0x6c ～ 0x6f -

0x70 ～ 0x77 Event Link In Register

0x78 ～ 0x7f Event Link Out Register

0x80 ～ 0x84 Instruction Cache Control Register

0x86 ～ 0x8c Data Cache Control Register

0x90 Multiplexer Arbitor Mode Bus

0x91 Multiplexer Arbitor Priority 256bit Bus

0x92 Multiplexer Arbitor Priority High 32bit Bus

0x93 Multiplexer Arbitor Priority Low 32bit Bus

0x94 Multiplexer Watchdog Timer 256bit Bus Enable

0x95 Multiplexer Watchdog Timer 256bit Bus Count

0x96 Multiplexer Error Handler State 256bit Bus

0x97 Multiplexer Error Handler State 32bit Bus

0x98 Multiplexer Error Handler Instruction Cache

0x99 Multiplexer Error Handler Data Cache

0xb8 IO BAse Address Decoder Control Register

0xb9 Multiplexer Watchdog Timer 32bit Bus Enable

0xba Multiplexer Error Handler Master32

0xbb Multiplexer Error Handler Master256

0xbc Multiplexer Watchdog Timer 32bit Bus Count

0xc9 Reservation Station Aging

0xca Reservation Station Aging Increment

0xcb Reservation Station Aging Span

0xcc PID Parameter Register (Thread0～1)

0xcd PID Parameter Register (Thread2～3)

0xce PID Parameter Register (Thread4～5)

0xcf PID Parameter Register (Thread6～7)

0xd0 Target IPC Register (Thread0)

0xd1 Target IPC Register (Thread1)

0xd2 Target IPC Register (Thread2)

0xd3 Target IPC Register (Thread3)

0xd4 Target IPC Register (Thread4)

398 第 7章 システムレジスタ

offset 31 24 23 16 15 8 7 0
0xd5 Target IPC Register (Thread5)

0xd6 Target IPC Register (Thread6)

0xd7 Target IPC Register (Thread7)

0xd8 Fetch Bound Register (Thread0)

0xd9 Fetch Bound Register (Thread1)

0xda Fetch Bound Register (Thread2)

0xdb Fetch Bound Register (Thread3)

0xdc Fetch Bound Register (Thread4)

0xdd Fetch Bound Register (Thread5)

0xde Fetch Bound Register (Thread6)

0xdf Fetch Bound Register (Thread7)

0xe0 Own Status Register

0xe1 Own Thread Table Register

0xe2 Own Thread ID Register

0xe3 Own Instruction Count Register

0xe4 Own Count Register

0xe5 Own Compare Register

0xe6 Own Floating-Point Control Register

0xe7 Own Bad Virtual Address Register

0xe8 Own Exception PC Register

0xe9 Own Exception Cause Register

0xea Own Interruption Wait Register

0xeb Own External Interruption Level Register

0xec Own Target IPC Register

0xed Own Fetch Bound Register

0xf0 Special Mode Register

0xf1 NMI Mode Register

0xf2 Special Operation Register

0xf3 I Cache ECC ON Register

0xf4 I Cache ECC Mode Register

0xf5 Multiplexer Error Handler I-Cache

0xf6 Multiplexer Error Handler D-Cache

0xf7 D Cache ECC ON Register

0xf8 D Cache ECC Mode Register

0xfd Commit Mode
0xfe Proceccor ID
0xff Chip Version Register

0x100 ROM Address Decoder Control Register

0x101 SRAM Address Decoder Control Register

0x110 EXT0 Address Decoder Control Register

0x111 EXT1 Address Decoder Control Register

0x112 EXT2 Address Decoder Control Register

0x113 EXT3 Address Decoder Control Register

0x114 EXT4 Address Decoder Control Register

0x115 EXT5 Address Decoder Control Register

0x116 EXT6 Address Decoder Control Register

0x117 EXT7 Address Decoder Control Register

0x120 DMAC0 Address Decoder Control Register

0x121 DMAC1 Address Decoder Control Register

0x122 DMAC2 Address Decoder Control Register

0x123 DMAC3 Address Decoder Control Register

7.1. レジスタマップ 399

offset 31 24 23 16 15 8 7 0
0x124 DMAC4 Address Decoder Control Register

0x125 DMAC5 Address Decoder Control Register

0x126 DMAC6 Address Decoder Control Register

0x127 DMAC7 Address Decoder Control Register

0x128 ～ 0x12b DMAC DIAG Address Decoder Control Register

0x12c DMAC256 Address Decoder Control Register

0x130 SDRAM IF0 Address Decoder Control Register

0x131 SDRAM IF1 Address Decoder Control Register

0x132 SDRAM IF2 Address Decoder Control Register

0x133 SDRAM IF3 Address Decoder Control Register

0x138 LINK SDRAM IF Address Decoder Control Register

0x139 LINK SDRAM(ECC) IF Address Decoder Control Register

0x13c SDRAM IF Mode
0x13d LINK SDRAM IF Mode
0x13e LINK SDRAM(ECC) IF Mode

0x140 LINK Address Decoder Control Register

0x141 LINK DPM Address Decoder Control Register

0x142 LINK ECC Control Address Decoder Control Register

0x150 Clock Generator Address Decoder Control Register

0x151 IRC Address Decoder Control Register

0x152 RTC Address Decoder Control Register

0x153 Trace Buffer Address Decoder Control Register

0x154 PIO Address Decoder Control Register

0x155 UART Address Decoder Control Register

0x156 PP Address Decoder Control Register

0x157 SPI Address Decoder Control Register

0x158 I2C Address Decoder Control Register

0x159 PCI Address Decoder Control Register

0x15a Ethernet Address Decoder Control Register

0x15b IEEE1394 Address Decoder Control Register
0x15c, 0x15d USB Address Decoder Control Register

0x170 Extbus1 Status
0x171 Extbus2 Status
0x172 Extbus3 Status
0x173 Extbus4 Status
0x174 Extbus5 Status
0x175 Extbus6 Status
0x176 Extbus7 Status
0x178 ROM Status
0x179 E2M Status
0x17a Extbus Mem IO
0x180 Multiplexer Error Handler DMAC0

0x181 Multiplexer Error Handler DMAC1

0x182 Multiplexer Error Handler DMAC2

0x183 Multiplexer Error Handler DMAC3

0x184 Multiplexer Error Handler DMAC4

0x185 Multiplexer Error Handler DMAC5

0x188 Multiplexer Error Handler Extbus0

0x189 Multiplexer Error Handler Extbus1

0x18a Multiplexer Error Handler Extbus2

0x18b Multiplexer Error Handler Extbus3

0x18c Multiplexer Error Handler Extbus4

0x18d Multiplexer Error Handler Extbus5

0x18e Multiplexer Error Handler Extbus6

0x18f Multiplexer Error Handler Extbus7

0x1a1 Multiplexer Error Handler MDMAC256

400 第 7章 システムレジスタ

7.1.1 Status Register

Address: 0x00 ～ 0x07 (各スレッド毎)

スレッド毎の状態を示す．リセット後は 0x00000000に初期化される．

31 25

-

24

TS

23

PE

22

EV

21 12

-

11 8

IM

7

-

6

EB

5

C

4 3

MO

2

-

1

EL

0

IE

Field Name Function

TS Timer Start

1: タイマーをスタートする．

0: タイマーをストップする．

PE Period

1: Timer Interruptを周期的に発生する

0: One Shot

EV Exception Vector Location．

1: Bootstrap · · · 例外発生時に EBAレジスタで指定した例外ベクタへ制御が

移る．

0: Normal · · · 例外発生時に通常の例外ベクタ (0x60000000)へ制御が移る．

IM Interruption Mask．1をセットすると，対応する種類の割り込みをマスクする．

11: Tiemr Interruption

10: Hardware Interruption

9: Software Interruption1

8: Software Interruption0

EBAE (EB) Exception Base Address Enable

1: Variable · · · TBA(Table Base Address)を基準とした番地の例外ベクタを

使用する．

0: Fixed · · · 固定番地の例外ベクタを使用する．
CRAM (C) Control Register Access Mode

0: Precise · · · 直前の命令がコミットされるまで制御レジスタに対するアクセ
ス命令の発行を待たせる．

MO Mode Bit

00: Kernel Mode

01: Superviser Mode

10: User Mode

EL Exception Level．例外が発生すると 1にセットされる．ERET命令で 0にセッ

トされる．

IE Interruption Mode

0: 全ての割り込みが無効

1: 全ての割り込みが有効

7.1.2 Thread Table Register

Address: 0x08 ～ 0x0f (各スレッド毎)

7.1. レジスタマップ 401

スレッドの状態を示す．基本的にスレッド制御命令によって変更を行う．読み書き可能であるが，強制的に

書き込みを行った場合の動作は保証しない．0x08意外は 0x00000000に初期化される．

31 14

-

13

E

12 9

STATE

8

K

7 0

PRIOR

Field Name Function

E Thread Enable

0: そのコンテキストにアクティブスレッドが割り当てられていない．

1: そのコンテキストにアクティブスレッドが割り当てられている．

STATE Thread State

0000: Invalid

0001: Run

0010: Ready

0011: Not Ready

0100: Backup Now

0101: Restore Now

0110: Backup Wait

0111: Restore Wait

1000: Copy or Swap Now

1001: Stop Wait

KEEP (K) Keep Active Thread

0: 通常

1: スレッドをコンテキストキャッシュに退避する命令を無効にする．

PRIOR Thread Priority．256 Level．

7.1.3 Thread ID Register

Address: 0x10 ～ 0x17 (スレッド毎)

31 0

Thread ID

Field Name Function

Thread ID スレッドに対するアクセスの際のスレッドの指定に用いる．

7.1.4 Instruction Counter Register

Address: 0x18 ～ 0x1f (スレッド毎)

31 0

Instruction Counter

402 第 7章 システムレジスタ

Field Name Function

Instruction

Counter

各スレッドが生成されてからコミットした命令の総数をカウントする．

7.1.5 Count Register

Address: 0x20 ～ 0x27 (スレッド毎)

31 0

Count

Field Name Function

Count 毎クロックカウントアップされるカウンタ．Compare Register と等しくなる

と 0にクリアされる．

7.1.6 Compare Register

Address: 0x28 ～ 0x2f (スレッド毎)

31 0

Compare

Field Name Function

Compare このレジスタに 0以外の値がセットされており，かつ Count Registerの値が

このレジスタの値と等しくなった時，タイマ割り込みを発生する．タイマ割り

込みは Status Registerの IMフィールドと IEフィールドで有効または無効に

設定される．

7.1.7 Floating-Point Control Register

Address: 0x30 ～ 0x37 (スレッド毎)

31 6

-

5 4

RND

3 0

EM

7.1. レジスタマップ 403

Field Name Function

RND Rounding Mode

00: Round to Nearest

01: Round to Zero

10: Round to Positive Infinity

11: Round to Negative Infinity

EM Exception Mask

各ビットに 1を立てることで，対応する例外をマスクすることができる．

3: Inexact Exception

2: Underflow Exception

1: Overflow Exception

0: Invalid Exception

7.1.8 Issue Mode Register

Address: 0x38

発行命令の選択方法を設定するレジスタ．0x00000000に初期化される．

31 28

-

27 25

SA3

24 22

SA2

21 19

SA1

18 16

SA0

15 13

MA3

12 10

MA2

9 7

MA1

6 4

MA0

3 2

SP

1 0

PO

404 第 7章 システムレジスタ

Field Name Function

Sub Assign0,

1, 2, 3 (SA0,

1, 2, 3)

発行スロットにスレッドを割り当てる発行方式 (TH ASSIGN) で，

SUB POLICY フィールドが SUB FIX に設定されている状態で，ス

ロット毎のメインで割り当てられているスレッドから命令を発行できない場

合にこのフィールドで設定されたスレッドから命令を発行する．

Main As-

sign0, 1, 2, 3

(MA0, 1, 2,

3)

発行スロットにスレッドを割り当てる発行方式 (TH ASSIGN)で，スロット毎

にメインで割り当てるスレッドを指定する．

Sub Policy

(SP)

発行命令選択ポリシーのサブポリシーを設定する．

• 1INST 1TH

00: NORMAL

01: PRED STOP · · · 次に発行すべき命令が分岐予測の結果として発行
される命令であり，キャンセルされる可能性がある場合はそのスレッド

の優先度を低下させる．

10: MINST STOP · · · あるスレッドのリオーダバッファの半数以上のエ
ントリが埋まっている場合はそのスレッドの優先度を低下させる．

• TH ASSIGN

00: SUB PRIOR · · · スロットにメインで割り当てられているスレッドに
発行できる命令がない場合は，スロットに割り当てられていないスレッ

ドの中で最も優先度の高いスレッドから命令を発行する．

01: SUB FIX · · · スロットにメインで割り当てられているスレッドに発
行できる命令がない場合は，スロットに対しサブで割り当てられている

スレッドから命令を発行する．サブのスレッドにも発行できる命令がな

い場合は，空きスロットとなる．

Policy (PO) 発行選択ポリシーを設定する．

00: 1INST 1TH · · · 毎クロックサイクル，1スレッドから最大 1命令だけを発

行可能とするポリシー．4スレッド以上のスレッドが実行されていないと，発

行スロットに空きができてしまうことになる．

01: HIGHEST FAST · · · 毎クロックサイクル，最高優先度のスレッドから発
行できるだけの命令を発行し，余った発行スロットは次に高い優先度を持つス

レッドに割り当てる．さらに余った場合は 3番目に高い優先度を持つスレッド

でも同様に行う．

10: TH ASSIGN · · · 発行スロットごとに特定のスレッドを割り当てて，その
スレッドから命令を発行できない場合のみ他のスレッドの命令を発行する．

7.1.9 CPU Count Register

Address: 0x39, 0x3a

7.1. レジスタマップ 405

31 0

CPU Count

Field Name Function

CPU Count 64bit カウンタ．リセット時から毎クロック 1 ずつカウントアップしていく．

0x39が下位 32bit，0x3aが上位 32bitを示す．

7.1.10 MMU Register

Address: 0x3b ～ 0x47

MMU関連の設定レジスタ．

7.1.11 Exception PC Register

Address: 0x48 ～ 0x4f (スレッド毎)

31 0

Exception PC

Field Name Function

Exception

PC

例外を生じた命令，もしくは例外が発生した時点で最後にコミットされた PC

を保持するレジスタ．ERET命令で例外処理からの戻り番地として参照する．

7.1.12 Exception Cause Register

Address: 0x50 ～ 0x57 (スレッド毎)

発生した例外の情報を保持するレジスタ．0x00000000に初期化される．

31

D

30 17

-

16 12

HIRL

11

TI

10

HI

9 7

-

6 2

CODE

1 0

-

406 第 7章 システムレジスタ

Field Name Function

Delay Bit

(D)

例外を発生した命令が Delay Slotの命令である場合に 1がセットされる．

Hardware

Interrup-

tion Level

(HIRL)

外部割込みのレベル．

Timer In-

terruption

Pending

(TI))

タイマが満了した際に 1が書き込まれる．タイマ割込みにより起床したタスク

は手動でこのビットをクリアする必要がある．

HI Hardware Interruption Pending

Exception

Code

(CODE)

最後に発生した例外のコードを保持する．

7.1.13 Interruption Wait Register (スレッド毎)

Address: 0x58 ～ 0x5f

31 0

Interruption Wait

Field Name Function

Interruption

Wait

各ビットが割り込みレベル (IRL)に対応している．ビットが 1ならそのスレッ

ドは対応する IRLの外部割込みを受け付ける．

7.1.14 External Interruption Level Register (スレッド毎)

Address: 0x60 ～ 0x67

31 0

External Interruption Level

Field Name Function

External

Interruption

Level

最後に IRCから入力された外部割り込みの IRLを保持する．

7.1. レジスタマップ 407

7.1.15 Interruption Pending Register

Address: 0x68

現在 (多分)使用していない．

7.1.16 Interruption Clear Register

Address: 0x69

現在 (多分)使用していない．

7.1.17 Exception Base Address Register

Address: 0x6a

31 0

Exception Base Address

Field Name Function

Exception

Base Ad-

dress

例外ベクタのベースアドレスを保持する．Status Registerの EBAEビットを

1に設定すると，例外発生時に EBAに例外の内容に従ったオフセットを加え

た番地に制御が移る．Status Registerの EVビットを 1にすると，例外発生時

に例外の種類に依らず EBAの番地に制御が移る．両方を 1にした場合 EBAE

レジスタが優先される．

7.1.18 Event Link In Register

Address: 0x70 ～ 0x73

7.1.19 Event Link Out Register

Address: 0x74 ～ 0x77

7.1.20 Instruction Cache Control Register

Address: 0x80～0x84

6章 (CACHE)のキャッシュのコントロールレジスタを参照．

7.1.21 Data Cache Control Register

Address: 0x86～0x8c

6章 (CACHE)のキャッシュのコントロールレジスタを参照．

408 第 7章 システムレジスタ

7.1.22 Multiplexer Arbitor Mode Bus

Address: 0x90

31 5

Reserved

4
pac

3
PM1

2
PM0

1
M1

0
M0

Field Name Function

M0(256bit

arbiter

mode)

バスアービトレーションのモードを指定する．0を指定すると固定優先度，1

を指定するとラウンドロビン方式でバスマスタにバス権を与える．固定優先度

モードではより高い値をセットされたバスマスタにより高い優先度が与えられ

る．0に初期化され優先度が等しい場合には下位ビットのバスマスタが優先さ

れる．

M1(32bit ar-

biter mode)

バスアービトレーションのモードを指定する．0を指定すると固定優先度，1

を指定するとラウンドロビン方式でバスマスタにバス権を与える．固定優先度

モードではより高い値をセットされたバスマスタにより高い優先度が与えられ

る．0に初期化され優先度が等しい場合には下位ビットのバスマスタが優先さ

れる．

7.1.23 Multiplexer Arbitor Priorty 256bit Bus

Address: 0x91

31 8

Reserved

7 6

IC

5 4

DC

3 2
DMAC256

1 0
32bit Bus

256bit Busのバスマスタの優先度を設定する．デフォルトは 0 (最低優先度)．

7.1.24 Multiplexer Arbitor Priorty High 32bit Bus

Address: 0x92

31 28

32bit Bus

27 24

OCE

23 20

DMA5

19 16

DMA4

15 12

DMA3

11 8

DMA2

7 4

DMA1

3 0

DMA0

32bit Busのバスマスタの優先度を設定する．デフォルトは 0 (最低優先度)．

7.1.25 Multiplexer Arbitor Priorty Low 32bit Bus

Address: 0x93

31 28

Extbus7

27 24

Extbus6

23 20

Extbus5

19 16

Extbus4

15 12

Extbus3

11 8

Extbus2

7 4

Extbus1

3 0

Extbus0

32bit Busのバスマスタの優先度を設定する．デフォルトは 0 (最低優先度)．

7.1. レジスタマップ 409

7.1.26 Multiplexer Watchdog Timer 256bit Bus Enable

Address: 0x94

31 1

Reserved

0
E

Field Name Function

E Default: 0

0: Disable

1: Enable

このレジスタとWatchdog Timer 256bit Countの両方を設定しないと有効に

ならない．

7.1.27 Multiplexer Watchdog Timer 256bit Bus Count

Address: 0x95

31 0

Count

Field Name Function

Count Default: 0

256bitバスに Address Strobeが降りてから，Readyが返ってくるまでの時間

が書き込まれた値のクロックサイクル数を超えた場合，Watchdog Timer Error

割込みを発生させる．

Watchdog Timer Enableが設定されていない場合，無効．

7.1.28 Multiplexer Error Handler State 256bit Bus

Address: 0x96

エラーを起こしている箇所を示すレジスタ．

エラーの詳細は対応するエラーハンドルレジスタを参照する．

31 2

Reserved

1 0

C

410 第 7章 システムレジスタ

Field Name Function

C Default: 0

00: I Cache Error

01: D Cache Error

10: DMAC256 Error

11: 32bit bus Error

7.1.29 Multiplexer Error Handler State 32bit Bus

Address: 0x97

7.1.30 Multiplexer Error Handler Instruction Cache

Address: 0x98

Instruction Cacheがバスマスタの場合のエラーハンドラ．

31 8

Reserved

7 6

SE

5 0

ES

7.1. レジスタマップ 411

Field Name Function

SE エラーの種類を示す．

Default: 0

00: No Error

01: Reserved

10: Address Error (無効なアドレス)

11: Watchdog Timer Error

ES エラーを起こしたスレーブを示す．

Default: 0

0x00: SDRAM IF 0

0x01: SDRAM IF 1

0x02: SDRAM IF 2

0x03: SDRAM IF 3

0x04: SDRAM IF Mode

0x05: ROM

0x06: SRAM

0x07: DMAC 256

0x08: DMAC 0

0x09: DMAC 1

0x0a: DMAC 2

0x0b: DMAC 3

0x0c: DMAC 4

0x10: Extbus 0

0x11: Extbus 1

0x12: Extbus 2

0x13: Extbus 3

0x14: PCI

0x15: Ethernet

0x16: IEEE1394

0x17: UART

0x18: PP

0x19: IRC

0x1a: Clock Generator

0x1b: SPI

0x1c: PIO

0x1d: RTC

0x1e: I2C

0x1f: Trace Buffer

0x20: Responsive Link

0x21: Responsive Link DPM

0x22: Link SDRAM IF

0x23: Link SDRAM IF Mode

0x24: Link SDRAM ECC IF

0x25: Link SDRAM ECC IF Mode

0x26: Link SDRAM ECC Controler

412 第 7章 システムレジスタ

7.1.31 Multiplexer Error Handler Data Cache

Address: 0x99

Dada Cache がバスマスタの場合のエラーハンドラ．7.1.30 項の Multiplexer Error Handler Instruction

Cache と同様．

7.1.32 Multiplexer Error Handler MDMAC256

Address: 0x1a1

DMAC256がバスマスタの場合のエラーハンドラ．7.1.30項のMultiplexer Error Handler Instruction Cache

と同様．

7.1.33 Multiplexer Watchdog Timer 32bit Bus Enable

Address: 0xb9

31 1

Reserved

0
E

Field Name Function

E Default: 0

0: Disable

1: Enable

このレジスタとWatchdog Timer 32bit Countの両方を設定しないと有効にな

らない．

7.1.34 Multiplexer Error Handler Master32

Address: 0xba

現在使用されていない．

7.1.35 Multiplexer Error Handler Master256

Address: 0xbb

現在使用されていない．

7.1.36 Multiplexer Watchdog Timer 32bit Bus Count

Address: 0xbc

31 0

Count

7.1. レジスタマップ 413

Field Name Function

Count Default: 0

32bitバスに Address Strobeが降りてから，Readyが返ってくるまでの時間

(単位: Clock cycle) が書き込まれた値のクロックサイクル数を超えた場合，

Watchdog Timer Error割込みを発生させる．

Watchdog Timer Enableが設定されていない場合，無効．

7.1.37 Reservation Station Aging

Address: 0xc9

31 1

Reserved

0

E

Reservation Stationのエントリのエイジングを行う

7.1.38 Reservation Station Aging Increment

Address: 0xca

32 0

count

Reservation Stationのエントリのエイジング量

7.1.39 Reservation Station Aging Span

Address: 0xcb

32 0
span

Reservation Stationのエントリのエイジングスパン

7.1.40 PID Parameter Register

Address: 0xcc ～ 0xcf (2スレッド毎)

PID制御の比例ゲインと積分ゲイン，微分ゲインの変更を行う．Target IPC Registerで PID制御を用いな

い場合には無意味．31～16ビットが奇数スレッド用で，15～0ビットが偶数スレッド用．

31

E

30 26

Kp

25 21

Ki

20 16

Kd

15

E

14 10

Kp

9 5

Ki

4 0

K

414 第 7章 システムレジスタ

Field Name Function

E PID Parameter Enable

0: ハードウェアで設定されたゲインを用いる．

1: ソフトウェアから任意のゲインを設定する．

Kp，Ki，Kd 10000: 5ビット右シフトする．(1
32)

01000: 4ビット右シフトする．(1
16)

00100: 3ビット右シフトする．(18)

00010: 2ビット右シフトする．(14)

00001: 1ビット右シフトする．(12)

複数のビットを指定した場合には，シフト後に合計する．

例: 10011と指定した場合には，ゲインは 1
32 + 1

4 + 1
2 = 25

32 となる．

7.1.41 Target IPC Register

Address: 0xd0 ～ 0xd7 (各スレッド毎)

IPC制御を有効にする．Compare Registerを設定しないと動作しない．

31

E

30 29

MO

28 0

Target IPC

Field Name Function

E IPC Enable

0: IPC制御を行わない．

1: IPC制御を行う．

MO IPC制御に用いる制御手法の選択

00: PID制御

01: フィードフォワード制御

それ以外: PID制御

Target IPC 目標の IPC(実際には，Compare Registerで設定したクロックサイクル数内に

実行する命令数)を設定

例: Compare Registerを 10000に設定していて目標 IPCを 0.7にしたい場合

には，7000を指定．

7.1.42 Fetch Bound Register

Address: 0xd8 ～ 0xdf (2スレッド毎)

31 0

Fetch Bound

Field Name Function

Fetch Bound フェッチ数の上限値．

7.1. レジスタマップ 415

7.1.43 Own Status Register

Address: 0xe0

自身のコンテキスト番号の Status Registerを参照する

7.1.44 Own Thread Table Register

Address: 0xe1

自身のコンテキスト番号の Thread Table Registerを参照

7.1.45 Own Thread ID Register

Address: 0xe2

自身のコンテキスト番号の Thread ID Registerを参照

7.1.46 Own Instruction Count Register

Address: 0xe3

自身のコンテキスト番号の Instruction Count Registerを参照

7.1.47 Own Count Register

Address: 0xe4

自身のコンテキスト番号の Count Registerを参照

7.1.48 Own Compare Register

Address: 0xe5

自身のコンテキスト番号の Compare Registerを参照

7.1.49 Own Floating-Point Control Register

Address: 0xe6

自身のコンテキスト番号の Floating-Point Control Registerを参照

7.1.50 Own Bad Virtual Address Register

Address: 0xe7

自身のコンテキスト番号の Bad Virtual Address Registerを参照

7.1.51 Own Exception PC Register

Address: 0xe8

自身のコンテキスト番号の Exception PC Registerを参照

416 第 7章 システムレジスタ

7.1.52 Own Exception Cause Register

Address: 0xe9

自身のコンテキスト番号の Exception Cause Registerを参照

7.1.53 Own Interruption Wait Register

Address: 0xea

自身のコンテキスト番号の Interruption Wait Registerを参照

7.1.54 Own External Interruption Level Register

Address: 0xeb

自身のコンテキスト番号の External Interruption Level Registerを参照

7.1.55 Own Target IPC Register

Address: 0xec

自身のコンテキスト番号の Target IPC Registerを参照

7.1.56 Own Fetch Bound Register

Address: 0xed

自身のコンテキスト番号の Fetch Bound Registerを参照

7.1.57 Special Mode Register

Address: 0xf0

31 2

Reserved

1
TH

0
SYN

Field Name Function

Thread (TH) default: 0

マルチスレッディングを利用する場合に 1にセットする．

0: rstrth命令等によって復帰したスレッドは自動的に実行を開始する．(Active

Thread RUN状態)

1: 復帰したスレッドは自動的に実行開始せず（Active Thread STOP状態），

runth命令により明示的に実行を開始させる必要がある．

Sync (SYN) default: 0

0: Sync MODE 無効

1: 全ての命令に強制的に syncを挿入

7.1. レジスタマップ 417

7.1.58 NMI Mode Register

Address: 0xf1

31 8

Reserved

7
TH7

6
TH6

5
TH5

4
TH4

3
TH3

2
TH2

1
TH1

0
TH0

Field Name Function

Thread (TH) default: TH0 = 1

外部からの NMIの入力を受け取るスレッドを設定する．

該当するスレッドは NMIの入力があった場合，指定されたアドレスへジャン

プする．

Status Registerの EBAEビットを 1に設定し，Exception Base Address Reg-

ister に例外ベクタのベースアドレスを設定する必要がある．

EBAEビットが 0の場合，アドレスは 0x80000000 に設定される．

7.1.59 Special Operation Register

Address: 0xf2 命令を実行したコンテキストの system registerに対して書き込みを行う．(write only)

31 9

Reserved

8
OFF

7
ON

6
DE

5
IE

4 0
ARG

Field Name Function

ARG 0: 全ての割込み源

other: 指定した bit番目の割込み源

IE 0: 割込みを無効化 (statusレジスタの IEと同様)．1: 割込みを有効化 (status

レジスタの IEと同様)．

DE 1: 割込みを無効化 (statusレジスタの IEと同様)．0: 割込みを有効化 (status

レジスタの IEと同様)．DEを 1にしていた場合 IEの値に関係なく割込みが

無効化される．

ON ARGで指定した場所の interruption waitを有効化．

OFF ARGで指定した場所の interruption waitを無効化．OFFを 1にしていた場

合 ONの値に関係なく割込みが無効化される．

7.1.60 I Cache ECC ON Register

Address: 0xf3

31 16

Reserved

15 14
TH7

13 12
TH6

11 10
TH5

9 8
TH4

7 6
TH3

5 4
TH2

3 2
TH1

1 0
TH0

418 第 7章 システムレジスタ

Field Name Function

TH I Cacheの ECC ON，OFFを設定する．デフォルトでは全て off．

このレジスタの設定には共通設定形式 (図 5.1)を用いる．

1つでも ECC ONのスレッドが存在する場合，Writeと Invalidationはすべて

ECC ONで行われる．Readはそのスレッドの ECC ON，OFFに従う．

7.1.61 I Cache ECC Mode Register

Address: 0xf4

31 4

Reserved

3
AOFF

2
AON

1
MRMW

0
RMWE

Field Name Function

AOFF All ECC OFF

0: 何もしない．

1: 全スレッド及び Invalidationの ECCを強制的に OFFにする．

ECC ONレジスタや，ALL ECC ONより優先される．

AON All ECC ON

0: 何もしない．

1: 全スレッド及び Invalidationの ECCを強制的に ONにする．

ECC ONレジスタや，ECC OFFより優先される．

MRMW Manual Read Modify Write

0: 何もしない．

1: Read modefy Writeが始まる．完了すると 0に戻る．

RMWE Read Modify Write Enable

0: ECC OFFから ECC ONとなっても Read Modify Writeは行わない．

1: ECC OFFから ECC ONとなった際に Read modefy Writeを行う．

7.1.62 D Cache ECC ON Register

Address: 0xf7

31 16

Reserved

15 14
TH7

13 12
TH6

11 10
TH5

9 8
TH4

7 6
TH3

5 4
TH2

3 2
TH1

1 0
TH0

Field Name Function

TH D Cacheの ECC ON，OFFを設定する．デフォルトでは全て off．

このレジスタの設定には共通設定形式 (図 5.1)を用いる．

1つでも ECC ONのスレッドが存在する場合，Writeと Invalidationはすべて

ECC ONで行われる．Readはそのスレッドの ECC ON，OFFに従う．

7.1. レジスタマップ 419

7.1.63 D Cache ECC Mode Register

Address: 0xf8

31 4

Reserved

3
AOFF

2
AON

1
MRMW

0
RMWE

Field Name Function

AOFF All ECC OFF

0: 何もしない．

1: 全スレッド及び Invalidationの ECCを強制的に OFFにする．

ECC ONレジスタや，ALL ECC ONより優先される．

AON All ECC ON

0: 何もしない．

1: 全スレッド及び Invalidationの ECCを強制的に ONにする．

ECC ONレジスタや，ECC OFFより優先される．

MRMW Manual Read Modify Write

0: 何もしない．

1: Read modefy Writeが始まる．完了すると 0に戻る．

RMWE Read Modify Write Enable

0: ECC OFFから ECC ONとなっても Read Modify Writeは行わない．

1: ECC OFFから ECC ONとなった際に Read modefy Writeを行う．

7.1.64 Address Decoder Control Register

Address: 0x100 ～ 0x139, 0x140 ～ 0x158

4章 (アドレスデコーダ)のアドレスマップを参照．

7.1.65 Extbus0 Status

Address: 0x170 Default: 0x3000

31 16

Reserved

15 14

BR

13 12

WD

11

A

10

F

9 8

UC

7 0

AC

420 第 7章 システムレジスタ

Field Name Function

BR バースト長を設定する．

00: default

10: IO

11: MEMORY

WD バスのアクセス幅を設定する．

11: 32bit

01: 16bit

10: 8bit

A Auto Readyの設定をする．

0: Disable

1: Enable

F Flash IFを使用するか設定する．この設定は Extbus1のみで有効になる．

0: Disable

1: Enable

UC Un cacheを設定する (現在は使用していない)．

AC Auto Readyを返すまでのカウント値を設定する．

7.1.66 Extbus1 Status

Address: 0x170

7.1.65項の Extbus0 Statusと同様．

7.1.67 Extbus2 Status

Address: 0x171

7.1.65項の Extbus0 Statusと同様．

7.1.68 Extbus3 Status

Address: 0x172

7.1.65項の Extbus0 Statusと同様．

7.1.69 Extbus4 Status

Address: 0x173

7.1.65項の Extbus0 Statusと同様．

7.1.70 Extbus5 Status

Address: 0x174

7.1.65項の Extbus0 Statusと同様．

7.1. レジスタマップ 421

7.1.71 Extbus6 Status

Address: 0x175

7.1.65項の Extbus0 Statusと同様．

7.1.72 Extbus7 Status

Address: 0x176

7.1.65項の Extbus0 Statusと同様．

7.1.73 ROM Status

Address: 0x178

現在は使用していない

7.1.74 E2M Status

Address: 0x179

現在は使用していない

7.1.75 Extbus Mem IO

Address: 0x17a

現在は使用していない

7.1.76 Multiplexer Error Handler DMAC0-5

Address: 0x180 ～ 0x185

7.1.30項のMultiplexer Error Handler Instruction Cache と同様．

7.1.77 Multiplexer Error Handler Extbus0-7

Address: 0x188 ～ 0x18f

7.1.30項のMultiplexer Error Handler Instruction Cache と同様．

423

8

例外処理

8.1 割り込みコントローラ (IRC)

割り込みコントローラ (IRC)は，同じ機能の 3つの IRCがカスケードされています．Sub IRCの割り込み

出力 (IRL)は ORされてMain IRCの IRQ26, 27に接続されています．Main IRCの IRLが RMT PUのコ

アに接続されています．

Initial Address: Main IRC: 0xffff9000, Sub IRC1: 0xffff9400, Sub IRC2: 0xffff9800

8.1.1 レジスタマップ

offset 31 24 23 16 15 8 7 0
0x00 31ch 30ch 29ch 28ch 27ch 26ch 25ch 24ch 23ch 22ch 21ch 20ch 19ch 18ch 17ch 16ch
0x04 15ch 14ch 13ch 12ch 11ch 10ch 9ch 8ch 7ch 6ch 5ch 4ch 3ch 2ch 1ch 0x00
0x08 Request Sense Register 0
0x0c Request Clear Register 0
0x10 Mask Register MI

0x14 26’h0 CL IRL Latch
0x18 31’h0 Mode

8.1.2 Trigger Mode Register

Offset: 0x00,0x04

31 30

31ch

29 28

30ch

27 26

29ch

25 24

28ch

23 22

27ch

21 20

26ch

19 18

25ch

17 16

24ch

15 14

23ch

13 12

22ch

11 10

21ch

9 8

20ch

7 6

19ch

5 4

18ch

3 2

17ch

1 0

16ch

31 30

15ch

29 28

14ch

27 26

13ch

25 24

12ch

23 22

11ch

21 20

10ch

19 18

9ch

17 16

8ch

15 14

7ch

13 12

6ch

11 10

5ch

9 8

4ch

7 6

3ch

5 4

2ch

3 2

1ch

1 0

0x00

424 第 8章 例外処理

Field Name Function

Trigger 各チャネルのトリガモードの設定．offset 0x00ではチャネル 31-17まで，off-

set0x04ではチャネル 16-1のトリガモードの設定を行う．

bit Trigger Mode

00 High Level

01 Low Level

10 Rise Edge

11 Fall Edge

8.1.3 Request Sense Register

31 1

Request Sense Register

0

0

Field Name Function

Request

Sense

Trigger Mode Registerで設定されたトリガが端子 IRLIN,IRQINに入力され

ると，その割り込みチャネルに対応したビットに 1がセットされる．bit31が

IRQ31, bit1が IRQ1に対応．Readのみ

8.1.4 Request Clear Register

31 1

Request Clear Register

0

0

Field Name Function

Request

Clear

Request Clear Registerの bit31-1の中で 1がセットされるとそれに対応する

保持されていた割り込み要求が 0になる．writeのみ．

8.1.5 Mask Register

31 1

Mask Register

0

MI

8.2. 動作/使用方法 425

Field Name Function

Mask 31-1ビットが割り込みチャネルの 31-1に対応し，1をセットすることで割り

込みをマスクできる．ただし，Maskが 1の場合でも Request Sense Register

はセットされる．

MI 0ならば，IRLOUTに割り込みレベルラッチの内容を出力．1ならばマスクし，

IRLOUTには “L”を出力

8.1.6 IRL Latch/Clear

31 6

26’h0

5

CL

4 0

IRL Latch

Field Name Function

IRL Latch 割り込みレベルラッチの内容を出力

CL 1を書き込むことで，割り込みレベルラッチの内容をクリアし，次の割り込み

レベルをラッチする．

8.1.7 IRC Mode Register

31 1

31’h0

0
Mode

Field Name Function

Mode 1ならば端子 IRLINを IRQIN[31:27]として使用．0ならば端子 IRLINをその

まま IRLOUTに出力．

8.2 動作/使用方法

8.2.1 IRC

IRCモードレジスタが 1に設定されると，入力端子 IRLIN[4:0](IRQIN[31:27]), IRQIN[26:1]に入力された

割り込み信号はトリガモードレジスタに設定されたトリガモードに従ってその割り込みを保持します．保持さ

れた割り込みはMASKレジスタでマスクされていないもののうちでプライオリティが一番高いものがコード

化されて割り込みレベルラッチ (IRL Latch)に保持されます．保持された IRL LatchのデータはMASKレジ

スタのMIビットが (ビット 0)が 0の場合，端子 IRLOUT[4:0]に出力されます．

IRCモードレジスタが 0に設定されると，端子 IRLIN[4:0]に入力されたデータがそのまま IRLOUT[4:0]に

出力されますが，この機能は使用しないでください．

表にMain IRCの割り込みマップを，表に Sub IRCの割り込みマップを示します．Sub IRCの割り込み出

力 (IRL)は ORされてMain IRC の IRQ16にカスケード接続されています．

426 第 8章 例外処理

Table 8.1: Main IRC割り込みマップ
IRQ31 Bus Error

IRQ30 Address Error

IRQ29 Watch Dog Timer Error

IRQ28 Responsive Link

IRQ27 Sub IRC2

IRQ26 Sub IRC1

IRQ25 Reserved

IRQ24 SRAM ECC Fatal Error

IRQ23 SRAM ECC Correct Error

IRQ22 SDRAM ECC Fatal Error

IRQ21 SDRAM ECC Correct Error

IRQ20 I-Cache ECC Fatal Error

IRQ19 I-Cache ECC Correct Error

IRQ18 D-Cache ECC Fatal Error

IRQ17 D-Cache ECC Correct Error

IRQ16 Reserved

IRQ15 64-bit Timer 1

IRQ14 64-bit Timer 0

IRQ13 32-bit Timer 1

IRQ12 32-bit Timer 0

IRQ11 RTC

IRQ10 External IO 0

IRQ9 DMAC2

IRQ8 DMAC1

IRQ7 DMAC0

IRQ6 DMAC256

IRQ5 SPI 0

IRQ4 I2C

IRQ3 GPIO

IRQ2 UART 1

IRQ1 UART 0

8.2. 動作/使用方法 427

Table 8.2: Sub IRC1割り込みマップ
IRQ31 Reserved

IRQ30 Reserved

IRQ29 Pulse Counter 5

IRQ28 Pulse Counter 4

IRQ27 Pulse Counter 3

IRQ26 Pulse Counter 2

IRQ25 Pulse Counter 1

IRQ24 Pulse Counter 0

IRQ23 Reserved

IRQ22 Reserved

IRQ21 PWM Input 5

IRQ20 PWM Input 4

IRQ19 PWM Input 3

IRQ18 PWM Input 2

IRQ17 PWM Input 1

IRQ16 PWM Input 0

IRQ15 Reserved

IRQ14 Reserved

IRQ13 Reserved

IRQ12 PWM11

IRQ11 PWM10

IRQ10 PWM9

IRQ9 PWM8

IRQ8 PWM7

IRQ7 PWM6

IRQ6 PWM5

IRQ5 PWM4

IRQ4 PWM3

IRQ3 PWM2

IRQ2 PWM1

IRQ1 PWM0

Table 8.3: Sub IRC2割り込みマップ
IRQ31 Reserved

IRQ30 Reserved

IRQ29 64-bit Timer 3

IRQ28 64-bit Timer 2

IRQ27 Reserved

IRQ26 Reserved

IRQ25 32-bit Timer 3

IRQ24 32-bit Timer 2

IRQ23 Reserved

IRQ22 Reserved

IRQ21 Reserved

IRQ20 Reserved

IRQ19 Reserved

IRQ18 DMAC5

IRQ17 DMAC4

IRQ16 DMAC3

IRQ15 Reserved

IRQ14 Reserved

IRQ13 Reserved

IRQ12 Reserved

IRQ11 Reserved

IRQ10 External IO 3

IRQ9 External IO 2

IRQ8 External IO 1

IRQ7 Reserved

IRQ6 Reserved

IRQ5 Reserved

IRQ4 SPI 1

IRQ3 Reserved

IRQ2 UART 3

IRQ1 UART 2

428 第 8章 例外処理

8.2.2 RMT固有機能

• IRL Unit

割り込みが入る度に実行中の全てのスレッドが割り込みハンドラを起動するのでは，非効率的であり，

割り込みに対するレスポンス時間の増加を招いてしまいます．そのため，RMTでは IRL Unitという

IRLを各スレッドに割り当てる機構を持ちます．

IRL Unitにはスレッド毎に Interruption Wait Registerが用意されています．Interruption Wait Register

の各ビットは IRLに対応しています．IRCが出力した IRLを受け取り，Interruption Wait Register の

IRLに対応するビットが 1のとき，割り込みを受け付け，Exception Unit に外部割り込みが発生したこ

ととその IRLを通知します．

Interruption Wait Registerはコンテキストスイッチの際にレジスタセットと同様にバックアップ及び

リストアされるために，コンテキストスイッチの度に設定する必要はありません．

• 割り込みによるスレッド起動
外部イベントによるスレッド制御の際のレスポンス時間を短縮するために，停止状態にあるスレッド

(Status Registerの STATEフィールドが 0010 or 0011) に対して外部割り込みがかかった場合はそのス

レッドを実行状態にします．

ただし，この際に Interruption Wait Registerの対象とする割り込みに対応するビットが 1かつ，対象

のスレッドの Status Registerの Interruption Mode (IE)のビットが 0である必要があります．

8.2.3 例外処理プロセス

タイマ割り込み，ハードウェア割り込み (外部割り込み)，ソフトウェア割り込みが発生すると，Exception

Cause Registerの対応する Pending Registerが 1にセットされます．また，外部割り込みの場合は Exception

Cause RegisterのHIRLに通知された IRLをセットします．これらの割り込みが通常通り発生するには Status

Registerの Interruption Mode(bit0) が 0, Interruption Mask(bit11-8)の対応するビットが 0である必要があ

ります．

これらの割り込みや RMTPU で例外が発生した場合，Status Register の Exception Level(bit1) が 0 な

らば通常通り例外処理が発生します．Exception Unitでは CPU coreの exception信号や Exception Cause

Registerの Pending Registerを参照し，実際に例外処理を行います．例外処理の優先度は例外，タイマ割り

込み，ハードウェア割り込み，ソフトウェア割り込みの順です．

例外処理が発生すると，次の動作が行われます．

• Status Registerの Exception Levelを 1にセット

• その時点のモードを保持し，カーネルモードへ移行

• 例外を生じた命令，もしくは例外が発生した時点で最後にコミットされた PCを Exception PC Register

に保持

• Exception Code Registerの CODEフィールドに例外を識別するコード (表 8.4)を書き込む

• Status Registerの Exception Base Address Enableが 1ならば Exception Base Address Registerの値

に例外の内容に従ったオフセットの値を加えた番地に制御が移る

Exception Base Address Enableが0ならば固定番地 (Exception Vector Locationが1ならば0xbfc00200,0

ならば 0x80000000)に制御が移る

8.2. 動作/使用方法 429

外部割り込みが起こった際に，対象となるスレッドが停止状態にある場合は通常の例外処理と異なり，ス

レッドが実行状態へ移行する処理のみ行われます．

外部割り込みに対する例外処理ルーチンでは処理に対応した IRCに保持されている割り込み要求をクリア

し，IRL Latchをクリアする必要があります．その結果次の保持されている割り込みを IRL Latchに保持す

ることができ，Exception Cause Registerの対応する Pendingフィールドが更新されます．タイマ割り込み

やソフトウェア割り込みの場合は明示的に Exception Cause Registerの対応する Pendingフィールドをクリ

アする必要があります．

例外処理の終了時には ERET命令を実行することで次の動作が行われます．

• Status Rergisterの Exception Levelを 0にセット

• モードを例外発生時のものに戻す

• Exception PC Registerに格納された番地に制御が移る

430 第 8章 例外処理

Table 8.4: Exception Code, Offset

種類 コード オフセット

I-TLB SPR Address Miss 0x01 0x010

I-TLB All Entry Locked 0x02 0x020

I-TLB No Entry Matched 0x03 0x030

I-TLB Thread Mode Error 0x04 0x040

I-TLB Protection Error 0x05 0x050

D-TLB SPR Address Miss 0x06 0x060

D-TLB All Entry Locked 0x07 0x070

D-TLB No Entry Matched 0x08 0x080

D-TLB Thread Mode Error 0x09 0x090

D-TLB Protection Error 0x0a 0x0a0

Coprocessor Unusable 0x0b 0x0b0

Reserved (Invalid) Instruction 0x0c 0x0c0

Sytem Call 0x0d 0x0d0

Break Point 0x0e 0x0e0

Integer Overflow 0x0f 0x0f0

Divide By Zero 0x10 0x100

Trap 0x11 0x110

Data Address Miss Align (Load) 0x12 0x120

Data Address Miss Align (Store) 0x13 0x130

Floating Point Overflow 0x14 0x140

Floating Point Underflow 0x15 0x150

Floating Point Divide By 0 0x16 0x160

Floating Point Inexact 0x17 0x170

Floating Point Invalid Operation 0x18 0x180

Reserve 0x19 0x190

Vector Integer Exception 0x1a 0x1a0

Vector Floating Exception 0x1b 0x1b0

Timer Interruption 0x1c 0x1c0

Hardware Interruption 0x1d 0x1d0

Software Interruption 0x1e 0x1e0

Software Interruption 0x1f 0x1f0

431

9

クロックジェネレータ

432 第 9章 クロックジェネレータ

9.1 接続図

PLL
CPU

SDRAM

Link
SDRAM

PWM

1/4

1/2

1/2

PWMIN

Pulse
Counter

SPI

Timer

Timer64

Link

FIN

clk_src_in

Figure 9.1: クロック生成部

9.2. 制御レジスタ 433

ピン名 概要 デフォルト値

FIN A クロック入力 -

FOUT A PLL出力 -

F A PLLの逓倍数を制御する 16

R A PLLの逓倍数を制御する 3

OD A PLLの逓倍数を制御する 0

PD A PLL Power Down Mode (1:Power Down) 0

BP A PLL Bypass Mode (1: Bypass) 0

OEB A PLL Output Enable (0:Enable) 0

デフォルトでは FIN Aより 75MHzのクロックを入力し，PLL Aから 800MHzが出力される．これらを分

周器で分周し各モジュールにクロックを供給する．

9.2 制御レジスタ

Initial Address: 0xffffa000

9.2.1 Clock Enable

Offset: 0x0000

各クロックを有効/無効にする．対応するビットを 1で無効，0で有効になる．初期値は全て 0．

31 28

Reserve

27 0

Enable

Field Name Function

Enable 各クロックを有効/無効にする．

9.2.2 Soft Reset

Offset: 0x0004

各モジュールにリセットをかける．対応するビットを 0にするとリセットがかかる．ビットを 1に戻さない

限りリセット状態が続く (CPUを除く)．

31 28

Reserve

27 0

Reset

Field Name Function

Reset 各モジュールにリセットをかける．

434 第 9章 クロックジェネレータ

9.2.3 Clock Enable / Soft Reset Bit Map

Clock Enable, Soft Reset共にビットマップは以下の様になっている．なお，Outerとは外部ピンに対して出

力するクロックである．Responsive Linkの通信速度に関わるクロックがLinkである．Half linkは，Responsive

Linkのコントロールを行うクロックである．仕様上 Linkの半分の値に設定するため，便宜上 Half linkと定

義している．

bit module bit module

00 CPU 14 Vector Floating-Point

01 DMAC0 15 SDRAM

02 DMAC1 16 Pulse Counter

03 DMAC2 17 PWM

04 DMAC3 18 Outer

05 DMAC4 19 Link

06 DMAC DIAG 20 PWM Input

07 Context Cache 21 Link SDRAM

08 Complex INT 22 Reserved

09 Floating-Point Unit 23 PIO

10 SIMD 24 SPI

11 Floating-Point Reservation Station 25 Half Link

12 Synchronize 26 Timer

13 Vector Integer 27 Timer64

9.2.4 Divider Ratio

Offset: 0x0008～0x001c, 0x0028, 0x002c, 0x0030, 0x0034, 0x0038

各クロックの分周率を設定する．対応する分周器のアドレスと初期値は以下の通り．

分周器 デフォルト値 アドレスオフセット

CPU 1/2 0x0008

SDRAM 1/4 0x000c

Pulse Counter 1/8 0x0010

PWM 1/512 0x0014

Outer 1/8 0x0018

Link 1/1 0x001c

PWM Input 1/512 0x0028

Link SDRAM 1/4 0x002c

SPI 1/8 0x0030

Timer 1/2 0x0034

Timer64 1/2 0x0038

31 17

Reserve

16

T

15 0

Ratio

9.2. 制御レジスタ 435

Field Name Function

T 分周せずにクロックをスルーする (1/1指定時)

Ratio クロックの分周率を指定する．指定した数値の半分 (小数点以下切捨て)でク

ロックが立ち下がり，指定した数値でクロックが立ち上がる．1を指定した場

合の動作は保証外．1/1の場合は Tビットを 1にすること．

9.2.5 Clock Synchronization

Offset: 0x0020

1を指定したクロックの立ち上りエッジをCPUのクロックにそろえる．次のクロックで自動的に値はリセッ

トされる．

31 12

Reserve

11 1

Sync

0

-

Field Name Function

Sync クロックの立ち上りエッジを CPUのクロックにそろえる．

ビットマップは以下の様になっている．

bit module bit module

1 SDRAM 7 Link SDRAM

2 Pulse Counter 8 SPI

3 PWM 9 HALF Link

4 Outer 10 Timer

5 Link 11 Timer64

6 PWM Input

9.2.6 All Reset

Offset: 0x0024

このアドレスに書き込みを行うと全てにリセットをかける．

9.2.7 Micro Reset

対応する bitに 0を書き込むと,リセットがかかる.

Offset: 0x0208

31 28

DMAC2

27 22

DMAC1

21 16

DMAC0

15 10

Responsive Link

9

†2
8 4

ext bus

3

†1
2 0

clk

†1: IRC, †2: OCE

436 第 9章 クロックジェネレータ

bit | 概要

0 全体 8 auto ready1 16 dmac0の ch0 24 dmac1の ch2

1 clk 9 OCE 17 dmac0の ch1 25 dmac1の ch3

2 hiz 10 Responsive Linkの bus I/F 18 dmac0の ch2 26 dmac1の arbiter

3 IRC 11 コントローラー 19 dmac0の ch3 27 dmac1の I/F

4 ext busの I/F 12 シリパラ変換器 20 dmac0の arbiter 28 dmac2の ch0

5 romの I/F 13 sdram I/F 21 dmac0の bus I/F 29 dmac2の ch1

6 flashの I/F 14 dmacdiagの bus I/F 22 dmac1の ch0 30 dmac2の ch2

7 auto ready0 15 dmacdiag 23 dmac1の ch1 31 dmac2の ch3

Offset: 0x020c

31 29

SPI

28 27

†6
26

†5
25 21

UART

20

†4
19 14

DMAC5

13 8

DMAC4

7 2

DMAC3

1 0

†3

†3: DMAC CH2, †4: DMAC256, †5: PIO, †6: SDRAM

bit | 概要

0 dmac2の arbiter 8 dmac4の ch0 16 reserved 24 uartの ch3

1 dmac2の bus I/F 9 dmac4の ch1 17 reserved 25 uartの bus I/F

2 dmac3の ch0 10 dmac4の ch2 18 reserved 26 pio

3 dmac3の ch1 11 dmac4の ch3 19 dmac diagの bus I/F 27 sdram I/F (bus)

4 dmac3の ch2 12 dmac4の arbiter 20 dmac256 28 sdram I/F (sdram)

5 dmac3の ch3 13 dmac4の bus I/F 21 uartの ch0 29 spi0

6 dmac3の arbiter 14 dmac diagの ch0 22 uartの ch1 30 spi1

7 dmac3の bus I/F 15 reserved 23 uartの ch2 31 spiの bus I/F

Offset: 0x0210

31 2

PP

1

†8
0

†7

†7: SPI, †8: I2C

bit | 概要

0 spiと BUS I/Fの sync 8 pwm out0 16 pwm out8 24 pwm in4

1 i2c 9 pwm out1 17 pwm out9 25 pwm in5

2 pls counter0 10 pwm out2 18 pwm out10 26 ext timer0

3 pls counter1 11 pwm out3 19 pwm out11 27 ext timer1

4 pls counter2 12 pwm out4 20 pwm in0 28 ext timer2

5 pls counter3 13 pwm out5 21 pwm in1 29 ext timer3

6 pls counter4 14 pwm out6 22 pwm in2 30 timer64の ch0

7 pls counter5 15 pwm out7 23 pwm in3 31 timer64の ch1

Offset: 0x0214

9.2. 制御レジスタ 437

31 6

reserved

5

†10
4

†9
3 2

RTC

1 0

PP

†9: Trace Buffer, †10: SRAM

bit | 概要

0 timer64の ch2

1 timer64の ch3

2 rtcの bus I/F

3 rtc

4 trace buffer

5 sram

9.2.8 HiZ Control

以下のオフセットに 0x0を書き込むと,対応するモジュールが HiZとなる.

オフセットは以下の通りである.

モジュール アドレスオフセット

Responsive Link 0x0400

Link SDRAM 0x0404

SDRAM 0x0408

CLK 0x040c

EBIU 0x0410

SPI 0x0414

PWM Out 0x0418

UART 0x041c

PIO 0x0420

I2C 0x0424

On Chip Emulator 0x0428

439

10

スレッド制御

Responsive Multithreaded Processorにおけるスレッド制御方法について述べる．

10.1 スレッドの概要

RMT Processorは 8つのハードウェアコンテキストを所有しており，それぞれのハードウェアコンテキス

トは専用の物理レジスタセット (GPRと FPR)を所有している．ブート時には 1つのハードウェアスレッド

が 1つのハードウェアコンテキストで動作する．ソフトウェアはスレッド制御命令を発行することで動的に

ハードウェアスレッドを生成/削除することが可能であり，それらを未使用のハードウェアコンテキストで動

作させることができる．これにより，RMT Processor上のソフトウェアは現在動作しているハードウェアス

レッドを認識し，タスクを割り当てることが可能になる．

RMT Processorではグローバルスケジューリングにおけるコンテキストスイッチを取り除くために 8つの

ハードウェアコンテキストを実装している．

10.2 スレッド起床メカニズム

RMT Processorは IRCユニットを用いた特殊な割込み機構を所有している．割込みが発生すると，対応す

るスリープスレッドがハードウェアにより次のクロックサイクルで起床する．これによりイベントへの応答時

間の短縮が可能であり，I/Oイベントに対して適用した場合はイベントドリブンプログラミングが可能にな

る．リアルタイム実行では応答時間の短縮は重要である．また，この割込み機構は内部/外部タイマーにも適

用でき，タイムドリブンの正確なスレッド制御が可能になる．このスレッド起床メカニズムで生成された特殊

なタスクは Responsive Taskと呼ばれる．Responsive Taskはコンテキストスイッチのオーバーヘッドを削減

し，低ジッタなリアルタイム実行を実現する．

10.3 スレッドの種類

RMT Processorのスレッドは 2つに分類される．

• アクティブスレッド

440 第 10章 スレッド制御

• キャッシュスレッド

アクティブスレッドとはレジスタファイルやプログラムカウンタなどの資源が確保され，プロセッサ内です

ぐにでも実行可能なスレッドを示す．キャッシュスレッドとはコンテキストキャッシュ内に保持されているス

レッドを示す．RMT Processorが実行するスレッドはアクティブスレッドで実行状態にあるスレッドのみで

ある．リセット時，スレッド IDが 0のスレッドが優先度 0でアドレス 0から実行される．

10.4 スレッド制御命令

10.4.1 作成・削除

新しくスレッドを作成する場合は mkth命令を用いる．また，アクティブスレッドをコピーして新しいス

レッドを作成することも可能である．

• mkth

新しくアクティブスレッドを作成する．rsでスレッド ID，rtでスタートアドレスを設定する．Stack

Pointer 等は設定されないため，後で作成されたスレッド自身によって設定される必要がある．mkth命

令はアクティブスレッドを作成するだけで実行は開始しない．つまりmkth命令で作成されたスレッド

はストップ状態にある．実行を開始するためには runth命令を使用する．スレッドの作成に成功すると

rdに 1が返り，失敗すると 0が返る．

• delth

アクティブスレッドを削除する．rsで削除するスレッドの IDを指定する．スレッドの削除に成功する

と rdに 1が返り，失敗すると 0が返る．この命令が成功すると指定されたスレッドはプロセッサから

削除される．

• cpthtoa

アクティブスレッドを別のアクティブスレッドとしてコピーする．rsでコピー元のスレッド ID，rtで新

たに作成するスレッドの IDを指定する．cpthtoa命令はアクティブスレッドのコピーを新しいアクティ

ブスレッドとして作成する．作成したコピーはストップ状態にあり，実行を開始するためには runth命

令を使用する．スレッドのコピーに成功すると rdに 1が返り，失敗すると 0が返る．

• cpthtom

アクティブスレッドを別のキャッシュスレッドとしてコピーする．rsでコピー元のスレッド ID，rtで新

たに作成するスレッドの IDを指定する．cpthtom命令はアクティブスレッドのコピーを新しいキャッ

シュスレッドとして作成する．作成したコピーはコンテキストキャッシュ内にあるため，実行を開始す

るためには rstrth命令などでアクティブスレッドにしなければならない．スレッドのコピーに成功する

と rdに 1が返り，失敗すると 0が返る．

10.4.2 状態制御

アクティブスレッドは実行・停止のいずれかの状態にある．これらの状態は以下の命令を用いて制御する．

• runth

停止状態のアクティブスレッドを実行状態にする．rsでスレッド IDを指定する．指定されたスレッド

は実行状態になり，優先度に従って実行が開始される．実行開始に成功すると rdに 1が返り，失敗する

と 0が返る．

10.4. スレッド制御命令 441

• stopth

実行状態のアクティブスレッドを停止状態にする．rsでスレッド IDを指定する．指定されたスレッド

は停止状態になり，命令実行のスケジューリングからはずされる．再び実行するためには runth命令を

実行する．停止に成功すると rdに 1が返り，失敗すると 0が返る．

• stopslf

自分自身を停止状態にする．停止に成功すると rdに 1が返り，失敗すると 0が返る．

• chgpr

スレッドの優先度を変更する．rsで変更するスレッドの ID，rtで新しい優先度を指定する．優先度の

変更に成功すると rdに 1が返り，失敗すると 0が返る．優先度が変更されると，つぎのクロックから

新しい優先度で命令実行が制御される．

10.4.3 転送

RMT Processorはコンテキストキャッシュを持ち，コンテキストスイッチにおけるオーバヘッドを軽減し

ている．以下にコンテキストキャッシュとの転送命令を示す．

• bkupth

アクティブスレッドをコンテキストキャッシュに退避する．rsで退避するアクティブスレッドの IDを

指定する．指定されたアクティブスレッドは実行を停止し，コンテキストキャッシュに退避される．退

避に成功すると rdに 1が返り，失敗すると 0が返る．

• bkupslf

自分自身をコンテキストキャッシュに退避する．退避に成功すると rdに 1が返り，失敗すると 0が返る．

• rstrth

キャッシュスレッドをアクティブスレッドとして復帰する．rsで復帰するスレッドの IDを指定し，指

定されたキャッシュスレッドがコンテキストキャッシュから読み込まれる．復帰時の状態はシステムレ

ジスタ Special Mode Register(0xf0)の Thread bit(1bit目)の値によって異なる．1の場合は停止状態

で復帰するため，明示的に runth命令により実行状態に移す必要がある．0の場合は実行状態で復帰す

る．復帰に成功すると rdに 1が返り，失敗すると 0が返る．

• swapth

アクティブスレッドとキャッシュスレッドを入れ換える．rsで退避するアクティブスレッドの ID，rtで

復帰するキャッシュスレッドの IDを指定する．指定されたアクティブスレッドは実行を停止し，コン

テキストキャッシュに退避される．同時に指定されたキャッシュスレッドがコンテキストキャッシュか

ら読み込まれる．復帰したスレッドの状態はシステムレジスタ Special Mode Register(0xf0)の Thread

bit(1bit目)の値によって異なる．1の場合，復帰するスレッドは退避するアクティブスレッドの状態を

踏襲する．0の場合，復帰するスレッドは退避するアクティブスレッドの状態に関わらず実行状態とな

る．入れ換えに成功すると rdに 1が返り，失敗すると 0が返る．

• swapslf

自分自身とキャッシュスレッドを入れ換える．rtで復帰するキャッシュスレッドの IDを指定する．自分

自身の実行を停止し，コンテキストキャッシュに退避する．同時に指定されたキャッシュスレッドがコ

ンテキストキャッシュから読み込まれ，実行状態になる．入れ換えに成功すると rdに 1が返り，失敗す

ると 0が返る．

442 第 10章 スレッド制御

10.5 状態遷移

RMT Processorにおけるスレッドの状態遷移を図 10.1に示す．

Active Thread
RUN

Active Thread
STOP

Cache Thread

mkth,
cpthtoa

delth

delth

cpthtom

runth

stopth,
stopslf

bkupth,
bkupslf,
swap(rs),
swapslf

bkupth,
swap(rs)

swap(rt),
swapslf(rt)

rstrth

Figure 10.1: スレッドの状態遷移

図 10.1において Active Thread RUN状態のスレッドのみ優先度に従ってプロセッサで実行される．

443

11

同期

11.1 概要

RMTPには 31個の共有レジスタ (64bit)が存在し, これを使用することでスレッド間での排他制御, バリ

ア同期が可能になる. また, コンテキストキャッシュに存在するスレッドとの排他制御, バリア同期も可能であ

る. RMTPには共有レジスタとは別に,バイナリセマフォを実現するための 1024個のバイナリセマフォレジ

スタが存在する. 共有レジスタが tidを保持するのに対しバイナリセマフォは tidを保持せず,ハードウェアコ

ストを抑えてバイナリセマフォを実現することができる.

11.2 共有レジスタバイナリ

31個の共有レジスタ (0, 1, ... , 30)と 1つの設定レジスタ ($31)からなる. それぞれの共有レジスタには

• Full/Empty (F/E) bit (1bit)

• Exclusive / Producer-Consumer (E/P) bit (1bit)

• Barrier bit (1bit)

• Thread ID (32bit)

が割り当てられ, その共有レジスタの使用権利を持つスレッドと権利の状態が保存される.

Full/Empty bitはそのレジスタにロックがかかっているかどうかを示し, 他 2bitはかかっているロックの

状態を示す.

11.3 バイナリセマフォレジスタ

1024個のバイナリセマフォレジスタ (0, 1, ..., 1023)からなる.

444 第 11章 同期

11.4 同期命令

共有レジスタには次の命令を用いてアクセス可能である．

• RGPSH, RFPSH rt, ss

Read Shared 命令. rs に GPR (FPR) を, ss に対象となる共有レジスタを指定する.

対象の共有レジスタの F/E bit が Emptyのときに成功する. 対象となる共有レジスタから GPR (FPR)

に書き込む.

• WGPSH, WFPSH rt, sd

Write Shared 命令. rs に GPR (FPR) を, sd に対象となる共有レジスタを指定する.

対象の共有レジスタの F/E bit が Empty のときに成功する. 対象となる共有レジスタに GPR (FPR)

から書き込む.

• RGPEX, RFPEX rt, ss

Read Exclusive 命令. rt に GPR (FPR) を, ss に対象となる共有レジスタを指定する.

対象の共有レジスタの F/E bit が Emptyのときに成功する. 対象とする共有レジスタから GPR (FPR)

に書き込む. 成功すると対象の共有レジスタの F/E bit を Full にし, 自分のスレッド ID を書き込む.

• WGPEX, WFPEX rt, sd

Write Exclusive 命令. rt に GPR (FPR) を, sd に対象となる共有レジスタを指定する.

対象の共有レジスタの F/E bit が Full かつ自分のスレッド ID が書き込まれているときに成功する.

対象となる共有レジスタに GPR (FPR) から書き込む. 成功すると対象の共有レジスタの F/E bit を

Empty にする. 失敗したときには NOP として実行される.

• GPPR, FPPR rt, sd, tid

Write Producer 命令. rt に GPR (FPR) を, sd に対象となる共有レジスタを, tid に権利を与えるス

レッド ID を指定する.

対象の共有レジスタの F/E bit が Empty のときに成功する. 対象となる共有レジスタに GPR (FPR)

から書き込む. 成功すると対象の共有レジスタの F/E bit を Full にし, tid をロックをかけた対象の共

有レジスタの権利者として書き込む.

• GPCO, FPCO rt, ss, tid

Read Consumer 命令. rt に GPR (FPR) を, ss に対象となる共有レジスタを, tid に GPPR (FPPR)

を実行したスレッド ID を指定する.

対象の共有レジスタの F/E bit が Full かつ自分のスレッド ID が書き込まれているときに成功する.

対象とする共有レジスタから GPR (FPR)に書き込む. 成功すると対象の共有レジスタの F/E bit を

Empty にする. 両方の条件を満たしていないときには NOP として実行される.

• BAR rt, sd

Barrier 命令. rt に到着を待つスレッド数を, sd に使用する共有レジスタを指定する.

初めて実行された場合, 対象の共有レジスタの値を Full にし, F/E bit が Full になる. 2 回目以降は対

象の共有レジスタの値をインクリメントすることで指定したスレッド数と等しくなるまで, スレッドを

ストールする. 指定したスレッド数と等しくなると, すべてのスレッドのストールを解除し、 F/E bit

を Empty にする.

• PBAR sd

Pre Barrier 命令. sd に排他制御やバリア同期に使用する共有レジスタを指定する.

共有レジスタ 31 に 0 以外の値を書き込み, PBAR を実行したスレッドはコンテキストキャッシュに退

避されていても, BAR 命令が指定した共有レジスタを用いて行われた際に BAR を行った命令と swap

されることでコンテキストキャッシュも含めた同期が取れるようになる.

11.4. 同期命令 445

共有レジスタアクセス命令の実行条件を表 11.1に示す．

Table 11.1: 共有レジスタアクセスの実行条件

命令種別 実行条件 実行後 注釈

F/E E/P bar F/E E/P bar

EX READ E x x F E 0

EX WRITE F E 0 E x x TH ID一致，条件以外では NOP

CON READ F P 0 E x x 対象 TH IDと一致

PRO WRITE E x x F P 0

SH READ E x x E x x

SH WRITE E x x E x x

BARRIER E x x F x 1 最初に到着した命令

F x 1 F x 1 バリア待ち

E x 0 バリア解放

同期命令の失敗時にはデッドロックの回避のために，対象のスレッドのパイプライン中の命令を全て開放

し，フェッチを止めることでストールさせます．対象のレジスタのロックが開放される (CON READでは書

き込みが起こる)とストールが解除され，再び実行されます．

また，同期命令の失敗時に次のスレッド IDを調べ，そのスレッドがコンテキストキャッシュ内に退避され

ている場合は同期命令を失敗したスレッドと入れ換えます．

• 対象の共有レジスタにロックが掛かっている場合
ロックを獲得しているスレッド

• Read Consumer命令が値が書き込まれておらず失敗した場合

Read Consumer命令で指定する相手スレッド

また，バリア命令により他の到着スレッドを待つ場合には，同じバリア命令を実行するグループのスレッド

を調べます．その際，そのスレッドが属するグループを設定する命令として PBAR命令があります．PBAR

命令はバリアに使用する共有レジスタを指定します．バリア待ちのスレッドは現在使用している共有レジスタ

番号と同じ値を PBAR命令で設定されたスレッドがコンテキストキャッシュ内にあるか調べ，存在する場合

は自分と入れ換えます．

この同期命令失敗時のスレッド切替え機能は共有レジスタの 31番に 0以外の値を書き込むことで有効にな

ります．defaultでは無効化されています．

バイナリセマフォレジスタには次の命令を用いてアクセス可能である．

• SEMLOCK, rt, ss

Semaphore Lock命令. rtに GPRを, ssに対象となるバイナリセマフォレジスタを指定する. ロックの

確保に成功すると 1を返し,失敗した場合対象のバイナリセマフォレジスタのロックが開放されるまで

スレッドの実行を停止する.

• SEMREL, rt, ss

Semaphore Release命令. rtにGPRを, ssに対象となるバイナリセマフォレジスタを指定する. ロック

の開放に成功すると 1を返し,失敗した場合 0を返す.

• SEMTRY, rt, ss

Semaphore Try命令. rtに GPRを, ssに対象となるバイナリセマフォレジスタを指定する. ssで指定

446 第 11章 同期

したバイナリセマフォレジスタのロックを獲得する. ロックの獲得が成功した場合 1を返し,失敗した場

合は 0を返す. 失敗した場合でもスレッドは停止せず実行し続ける.

447

12

IPC Control Mechanism

12.1 Abstract

Stabilize the number of executed instructions of each thread per unit time (control period) by using IPC

(Instructions Per Clockcycle) control. Feed Forward control or PID control can be selected as IPC control

scheme. By configuring parameters properly, PID control can stabilize throughput more than Feed Forward

control.

12.2 Configurable Parameters

Configurable parameters are shown below.

• Proportional gain, integral gain, derivative gain of PID control (see also section7.1.40).

• Enable/Disable IPC control (see also section7.1.41).

• The number of instructions which will be executed during control period (see also section7.1.41).

Also, to use IPC control, you should configure the register below.

• Clock number of control period (see also section7.1.6).

12.3 Usage

In this IPC control mechanism, the number of instructions configured by Target IPC Register are executed

in each control period configured by Compare Register. If the value of Target IPC Register is higher than

the number of actual executed instructions, IPC control will not work. If the number of actual executed

instructions exceed the configured number, instruction fetch of the thread is stalled until next IPC control

period begins. The limit number of instructions calculated in control period is stored in Fetch Bound

Register (see also section7.1.42).

The procedure of using IPC control is shown below.

1. Start a thread.

448 第 12章 IPC Control Mechanism

2. Configure a cache, MMU if necessary.

3. If you use PID control, set PID gain (PID Parameter Register).

4. Enabling IPC control by setting Target IPC Register.

5. Configure a control period (unit: clocks) by setting Compare Register.

6. Start timer by setting Status Register.

In this IPC control mechanism, longer the control period, higher the stability of thread speed. Also, if

the number of instructions are too many, IPC control can not work. Please take care.

12.4 Program Example

This is a program example of the procedure described in section12.3, step 3 to 5. mtc0 instructions is

used to write to control registers.

/// Preprocessor macro examples ///

/*****

* Status Register

* Status Register Address: 0x00-0x07

*****/

#define RMT_TH_STATUS(x) (0x00+(x))

#define RMT_TH_STATUS_PE 0x00800000 // Timer Start

#define RMT_TH_STATUS_TM 0x01000000 // Period

/*****

* Compare Register

* Compare Register Address: 0x28-0x2f

*****/

#define RMT_TH_PERIOD(x) (0x28+(x))

/*****

* Target IPC Register

* IPC Control Register Address: 0xd0-0xd7

*****/

#define RMT_TH_TARGET_IPC(x) (0xd0+(x)) // xth thread’s target IPC

#define RMT_IPC_PID_MODE 0x80000000 // Enable IPC control by PID

#define RMT_IPC_FF_MODE 0xA0000000 // Enable IPC control by Feed Forward

/*****

* PID Parameter Register

* Configurations of 2 threads are on single register.

*****/

#define RMT_PID_PARAM01 0xcc // PID Param Register (Thread 0,1)

#define RMT_PID_PARAM23 0xcd // PID Param Register (Thread 2,3)

#define RMT_PID_PARAM45 0xce // PID Param Register (Thread 4,5)

12.4. Program Example 449

#define RMT_PID_PARAM67 0xcf // PID Param Register (Thread 6,7)

#define RMT_PID_ENABLE_ODD 0x80000000 // Setting PID gain of odd thread

#define RMT_PID_ENABLE_EVEN 0x00008000 // Setting PID gain of even thread

#define RMT_PID_K_DERI_EVEN(x) (x<<0) // Kd of even thread

#define RMT_PID_K_INTE_EVEN(x) (x<<5) // Ki of even thread

#define RMT_PID_K_PROP_EVEN(x) (x<<10) // Kp of even thread

#define RMT_PID_K_DERI_ODD(x) (x<<16) // Kd of odd thread

#define RMT_PID_K_INTE_ODD(x) (x<<21) // Ki of odd thread

#define RMT_PID_K_PROP_ODD(x) (x<<26) // Kp of odd thread

/*****

* Configurations of IPC control period, instruction numbers.

*****/

#define PERIOD_TH1 10000 // Set control period of thread 1 to 10,000

#define PERIOD_TH2 20000 // Set control period of thread 2 to 20,000

#define TARGET_IPC_TH1 4000 // Set target IPC of thread 1 to 0.4 (4,000/10,000)

#define TARGET_IPC_TH2 6000 // Set target IPC of thread 2 to 0.3 (6,000/20,000)

/******

* Example: IPC control on thread 1 using PID

* Target IPC: 0.4, IPC control period: 10,000 clockcycles

* Kp: 0.5, Ki: 0.125, Kd: 0.25

******/

// Set PID parameters of thread 1

mtc0((RMT_PID_ENABLE_ODD | RMT_PID_K_PROP_ODD(0x01)|

RMT_PID_K_INTE_ODD(0x04)|RMT_PID_K_DERI_ODD(0x02)),

RMT_PID_PARAM01);

// Enable IPC control

mtc0((RMT_IPC_PID_MODE + TARGET_IPC_TH1), RMT_TH_TARGET_IPC(1));

// Set control period of thread 1

mtc0(PERIOD_TH1, RMT_TH_PERIOD(1));

// Start a timer

mtc0((RMT_TH_STATUS_PE | RMT_TH_STATUS_TM), RMT_TH_STATUS(1));

/******

* Example: IPC control on thread 2 using FF

* Target IPC: 0.3, IPC control period: 20,000 clockcycles

******/

// Enable IPC control

mtc0((RMT_FF_PID_MODE + TARGET_IPC_TH2), RMT_TH_TARGET_IPC(2));

// Set control period of thread 2

mtc0(PERIOD_TH2, RMT_TH_PERIOD(2));

// Start a timer

mtc0((RMT_TH_STATUS_PE | RMT_TH_STATUS_TM), RMT_TH_STATUS(2));

451

13

Vector Unit

13.1 概要

RMT ProcessorのVector Unitのブロック図を図 13.1に示す．Vector Integer Unit，Vector Floating Point

Unit共に大きく 3つの部分から成る．

Status

Register

Vector Register

Controller

Vector

Compound

Instruction

Buffer

Vector Control

Unit

Vector

Register Unit

Scalar Register

Vector Register

Vector Execution

Unit 0

Execution

Controller

Vector Execution

Unit 1

Execution

Controller

from Reservation Station

to Common Data Bus to Common Data Busto Memory Unit

Figure 13.1: Vector Unitのブロック図

• Vector Control Unit

演算ユニットの制御，命令発行を行い，後述するVector Registerの割り当て，解放を行う．Vector Length，

Mask Bitなどの Vector Unitによる演算に必要な制御情報を管理する．

• Vector Register Unit

ベクトル演算を行うためのレジスタを持つ．このレジスタは Vector Execution Unitとの接続ポートの

他に Memory Unitとの接続ポートを持ち，Memoryとのデータ転送が行われる．RMT Processorは

452 第 13章 Vector Unit

512個のレジスタを持つ．

• Vector Execution Unit

Vector Register Unitからベクトル要素を取り出し，ベクトル演算を行い，結果をVector Register Unit

に格納する．

13.1.1 Vector Execution Unit

Vector Execution Unitのブロック図を図 13.2 に示す．

Execution Controller

VINT VINT DIV

Accumulator MUX

Reg. ID

Data

Reg. ID,

Data

Op, Reg. ID, Immediate

to CDB

Execution Controller

VFP VFP FDIV

Shifter MUX

Reg. ID

Data

Reg. ID,

Data

Op, Reg. ID, Immediate

to CDB

Vector Integer Unit Vector Floating Point Unit

(a) Vector Integer Unit (b) Vector Floating Point Unit

VINT: Ineger Unit
DIV: Divider
MUX: Multiplexer
VFP: Floating Point Unit
FDIV: Floating Point Divider
CDB: Common Data Bus

Figure 13.2: Vector Execution Unitのブロック図

Execution Controller は Vector Register Unit から必要なベクトルデータを取り出し，Vector Integer (

Floating Point) Unitへ送る．

RMT Processorではベクトル演算性能を向上させるために，Vector Integer Unit は 8つ，Vector Floating

Point Unitは 4つの演算器を持つ．それぞれの演算器はパイプライン化され，1クロックに 1つの演算を開始

する．

割り算は使用頻度が低いため，RMT ProcessorではVector Divide Unitを 2つあるVector Execution Unit

のうちの片方のみ除算回路を持つ．

13.1.2 命令フォーマット

ベクトル演算命令のフォーマットはR-Typeを拡張したものを用いる．OpecodeフィールドにはVector Integer

命令用に 011110 (Word)，0x110110 (Paired HalfWord)，111110 (Quad Byte)，Vector Floating Point命令

用に 011111 (Double / Single)，111111 (Paired Single)を用いる．図 13.3 にベクトル演算命令のフォーマッ

トを示す．

rs，rtフィールドはベクトル演算の Source Register，rdフィールドは Destination Registerを指定する．

functionフィールドにはベクトル演算の種類を指定する．subfuncフィールドはベクトル演算命令により用途

が異なり，ベクトル - スカラ演算を行う際に用いる scalar bitや比較命令において比較条件を指定する cond

bit，命令の順序制御を行う sync bitが含まれる．

13.2. ベクトルレジスタ 453

31 26 25 21 20 16 15 1110 6 5 0

011110 rs rt rd subfunc function

(a) Vector Integer Instruction Format

31 26 25 21 20 16 15 1110 6 5 0

011111 rs rt rd function

(b) Vector Floating Point Instruction Format

VINT

VFP

subfunc

Figure 13.3: ベクトル演算命令フォーマット

13.2 ベクトルレジスタ

RMTPでは 512エントリのベクトルレジスタを複数スレッドで共有している．各スレッドは Reserve命令

を用いることで必要に応じて 128エントリ，256エントリ，512エントリ，のいずれかの量を確保して使用す

る．確保する際には図 13.4 のように，ベクトルレジスタを 4つの領域に分け，確保したエントリに応じた

領域が割り当てられる．スカラレジスタも 32エントリを共有して使用し，確保したベクトルレジスタに応じ

たスカラレジスタが割り当てられる．使用した後は Release命令を用いてレジスタを解放することで，他のス

レッドでも使用できるようになる．

Vector Register

128entry

128entry

128entry

128entry

256entry

256entry

0

128

256

384

512entry

8entry

8entry

8entry

8entry

16entry

16entry

32entry

Scalar Register

Figure 13.4: ベクトルレジスタのサイズ

また，確保したベクトルレジスタはあらかじめ設定されたベクトル長に応じて分割される．ベクトル長は 8,

16, 32, 64 の中から選択する．このベクトル長は確保したエントリ数によって選択出来る値が変わる．RMTP

で選択出来るレジスタの構成は図 13.5 のとおりである．

454 第 13章 Vector Unit

8length16 8

16length

(a) Register Configuration of 128 Entry

8length32 16

16length

8

32length

(b) Register Configuration of 256 Entry

32

16length

32length

16 8

64length

(c) Register Configuration of 512 Entry

Figure 13.5: ベクトルレジスタの構成

13.3. ステータスレジスタ 455

• (a)128エントリ

– ベクトル長 8 ×レジスタ 32個

– ベクトル長 16×レジスタ 16個

• (b)256エントリ

– ベクトル長 8 ×レジスタ 32個

– ベクトル長 16×レジスタ 16個

– ベクトル長 32×レジスタ 8個

• (c)512エントリ

– ベクトル長 16×レジスタ 32個

– ベクトル長 32×レジスタ 16個

– ベクトル長 64×レジスタ 8個

この構成はベクトルレジスタを確保する際にモードを指定することで設定する．モードは表 13.1 の中から

選択する．

Table 13.1: Vector Register Modeの指定

(128 Entry)

8 length × 16 0x4

16 length × 8 0x5

(256 Entry)

8 length × 32 0x8

16 length × 16 0x9

32 length × 8 0xA

(512 Entry)

16 length × 32 0xD

32 length × 16 0xE

64 length × 8 0xF

13.3 ステータスレジスタ

RMTPでは，各スレッドごとに表 13.2 のようなステータスレジスタを持つ．Status Registerはベクトル

演算を行うために必要な情報を各スレッドごとに保持する．Status Registerへのアクセスは vimfc, vfmfc (読

み込み)，vimtc, vfmtc(書き込み)命令を用いて行う．

456 第 13章 Vector Unit

Table 13.2: Vector Status Register

Address Name Description

0x00 Mask (Low) ベクトルレジスタの要素 (下位)に対応し，1を立てることにより

演算をマスクする．マスクは最下位ビットが 1番目の要素，最上位

ビットが 32番目の要素に対応する．

0x01 (Int) Mask (High) ベクトルレジスタの要素 (上位)に対応し，1を立てることにより演

算をマスクする．マスクは最下位ビットが 33番目の要素，最上位

ビットが 64番目の要素に対応する．

0x01 (FP) Rouding Mode 浮動小数点の丸めモードを指定する (0: Round to Nearest, 1:

Round to 0, 2: Round to +∞ , 3: Round to -∞)

0x02 Length 演算を行うベクトル長 (実際に指定するのはベクトル長 - 1)を指定

する

0x03 Stride Load / Store時のアドレスのストライドを指定する．実際には各要

素の間隔をワード数で指定する．0を指定した場合は連続した番地

からベクトル要素を読み込む．1を指定すると 1ワードおきに要素

を読み込む．

13.4. 使用例 457

13.4 使用例

図 13.6 に以下の条件での実際の演算のプログラム例を示す．

• ベクトル長 32×8個のモードを使用

• $8，$9，にデータの先頭アドレスを格納済み

• $10 に計算結果を格納する先頭のアドレスを格納済み　

• vector floatを使用

• stride は使用しない

addiu $12, $0, 0x000A # 256 Entry (32 length x 8) Mode

lui $11, $0, 0x0001

addiu $11, $11, 0x1111 # length (32 - 1)

virsv $13, $12 # Reserve Instruction

mtc1 $11, $f0 # store length to FPR0

vfmtc $2, $f0 # set length

mtc1 $0, $f0 # store stride(0) to FPR0

vfmtc $3, $f0 # set stride

vfld $0, $8 # load from $8

vfld $1, $9 # load from $9

add.v $2, $0, $1 # add vreg0, vreg1

== Vector Execution ==

vfsd $2, $10 # store to $10

virls $10 # Release Instruction

Figure 13.6: ベクトル演算のプログラム例

13.5 複合演算命令

本ベクトル演算器では，ユーザが複合演算命令を定義し，複合演算実行命令 1 命令で定義された複合演算命

令を処理することによりVector Unitの使用率を向上させる．複合演算はVector Control Unitの Compound

Instruction Controller内の Compound Instruction Bufferに定義する．Compound Instruction Bufferはベ

クトルレジスタやスカラレジスタと同じように 4つに分割し，確保したベクトルレジスタと同じ領域を使う

ようにする．Compund Instruction Buffer全体を 32エントリであるため，ベクトルレジスタを 128個確保し

た場合，使用できるエントリ数は 8個，256個確保した場合は，使用できるエントリ数は 16個，512個確保

した場合は使用できるエントリ数は 32個となる．

図 13.7 に Compound Instruction Bufferのフォーマットを示す．

458 第 13章 Vector Unit

31

N

30 29

SIMD

28 23

Rd

22 17

Rt

16 11

Rs

10 0

Op

Figure 13.7: Compound Instruction Bufferのフォーマット

一つのエントリに一つの命令を定義し，それを複数合わせることにより複合演算命令を定義する．Next(N)

bitは次のエントリに複合命令が続くことを示す．複合命令の最後の命令は Next Bitを 0にする．Next Bit

を 0にして複合命令を区切ることにより，複数の複合命令を定義することができる．

SIMDフィールドには SIMD演算を行う場合のビット幅を指定する．整数演算の場合，0x0で 32bit演算

(SIMD演算を行わない)，0x1で 16bit × 2演算，0x2で 8bit × 4演算を行う．浮動小数点演算の場合，0x0

で通常の演算 (SIMD演算を行わない)，0x1で 32bit × 2演算を行う．

Rs, Rtはソースレジスタ，Rdはデスティネーションレジスタを指定する．レジスタの指定は以下の通りで

ある．

5

V

4 0

ID

Figure 13.8: レジスタの指定

ベクトルレジスタを使用する場合，Vビットを 1にする．スカラレジスタを使用する場合，Vビットを 0に

する．IDには使用するレジスタの IDを指定する．図 13.5で指定した構成に従って IDの中で有効となるビッ

ト幅が決定する．例えば 8length × 16個の構成では IDのうち下位 4ビットが有効となる．16length × 32個

の構成では IDの 5ビットが有効となる．

実際に使用される rs，rt，rdは次に述べるVIECI，VFECI命令で指定された rs，rt，rdのオフセット値と

して用いられる．例えばVIECI命令の rsが 1で Compound Instruction Bufferの rsの IDが 3の場合，実際

に指定される Register IDは 1 + 3の 4となる．

operationには演算を行う命令を指定する．以下に整数演算の場合のフォーマットを示す．

10 9

ACC

8

S

7 4

SUB OP

3 0

OP

Figure 13.9: Operationのフォーマット (整数演算)

OPには以下を指定する．

• NOP (0x0)

何も行わない．

• AND (0x1)

論理積を計算する．

13.5. 複合演算命令 459

• OR (0x2)

論理和を計算する．6ビット目 (SUB OP)を 1にすると NORオペレーションとなる．

• XOR (0x3)

排他的論理和を計算する．

• ADD (0x4)

加算する．6ビット目 (SUB OP)を 1にすると減算となる．

• MULT (0x5)

乗算する．4ビット目 (SUB OP)を 1にすると符号なし演算となる．6ビット目 (SUB OP)を 1にする

と演算結果 (64bit中)の上位 32ビットを返す．

• SHIFT (0x6)

シフト演算を行う．4ビット目 (SUB OP)が 0の場合は左シフト，1の場合は右シフトとなる．6ビット

目 (SUB OP)が 1の場合は算術シフトとなる．5ビット目 (SUB OP)が 1の場合はシフトではなくロー

テーションとなる．

• COMPARE (0x7)

比較演算を行う．4ビット目 (SUB OP)が 1の場合はオペランドを符号無し数値として扱う．5-7ビッ

ト目 (SUB OP)で比較条件を指定する．比較条件は 0x0: 常に偽，0x1: =，0x2: >=，0x3: >，0x4: 常

に真，0x5: ̸=，0x6: <，0x7: <=となる．

• THROUGH (0x8)

rsの値を返す．

• MADD (0x9)

Multiply and ADD演算を行う．6ビット目 (SUB OP)が 1の場合減算となる．

• DIV (0xf)

除算を行う．4ビット目 (SUB OP)が 1の場合，値を符号無しとして扱う．6ビット目 (SUB OP)が 1

の場合，剰余演算となる．

Sビットを 1にすると，SIMD演算の場合にスカラ演算を行う．例えば 8bit × 4演算の場合，Sビットを 1

にすると rtの下位 8bitを全てのフィールドで使用する．

ACCフィールドに 0x2を指定すると，各ベクトル要素の演算結果を加算する．この場合，Rdはスカラレ

ジスタを指定する必要がある．

以下に浮動小数点演算の場合のフォーマットを示す．

10 9

-

8

S

7

D

6 3

SUB OP

2 0

OP

Figure 13.10: Operationのフォーマット (浮動小数点演算)

OPには以下を指定する．

460 第 13章 Vector Unit

• NOP (0x0)

何も行わない．

• THROUGH (0x1)

rsの値を返す．3ビット目 (SUB OP)を 1にすると符号反転を行なう．4ビット目 (SUB OP)を 1にす

ると絶対値を求める．

• ADD (0x2)

加算する．4ビット目 (SUB OP)を 1にすると減算となる．

• MULT (0x3)

乗算する．

• CONVERT (0x4)

フォーマット変換を行う．4-3ビット目 (SUB OP)で変換後のフォーマットを指定する．0x0: 単精度，

0x1: 倍精度，0x2: 整数へ変換を行う．6ビット目が 1 の場合ソースオペランドを整数値として扱う．

• COMPARE (0x5)

比較を行う．5-3ビット目 (SUB OP)で比較条件を指定する．0x0: False，0x1: Unorderd，0x2: Equal，

0x3: Unorderd or Equal，0x4: Ordered or Less Than，0x5: Unordered or Less Than，0x6: Ordered

or Less Than or Equal，0x7: Unorderded or Less Than or Equal．

• MADD (0x6)

Multiply and Add演算を行う．4ビット目 (SUB OP)が 1の場合減算となる．

• DIV (0x7)

除算を行う．

Dビットが 1の場合，オペランドを倍精度として扱う．Dビットが 0の場合，オペランドを単精度として

扱う．

Sビットを 1にすると，SIMD演算の場合にスカラ演算を行う．例えば 32bit × 2演算の場合，Sビットを

1にすると rtの下位 32bitを全てのフィールドで使用する．

複合演算命令は VIDCI，VFDCI命令を用いて Compound Instruction Bufferに定義する．そして VIECI，

VFECI命令により複合命令の演算を開始する．それぞれの命令フォーマットを図 13.11 に示す．

複合演算定義命令では rsに図 13.7 に従ったデータが入ったレジスタを指定し，rdに格納する Compound

Instruction Buffer の ID を指定する．複合演算実行命令では rs，rt に Source Register，rd に Destination

Registerを指定し，noに実行を開始する Compound Instruction Bufferの位置を指定する．

複合演算実行命令が発行されると，Compound Instruction Controllerは Compound Instruction Bufferか

ら noに指定されたエントリの命令を読み出し，Register IDの変換を行ってからVector Execution Unitへ読

み出した命令を渡す．読み出した命令の Next Bitを見て 1が立っていたら Compound Instruction Bufferの

次のエントリから命令を読み出し演算を続ける．Next Bitが 0ならばそこで複合演算を終了し，次の命令を

受け付ける．

図 13.12 に複合演算命令の例を示す．例ではエントリの 0から 1でベクトルの加算をした後スカラレジス

タの値で比較を行っている．また 2から 9で別の複合演算命令として，ベクトル変換命令を定義している．複

合演算実行命令で noに 0を指定するとベクトルの加算と比較を実行し，2を指定するとベクトル変換命令を

実行する．

13.5. 複合演算命令 461

31 26 25 21 20 16 15 1110 6 5 0

011110 rs 00000 rd 00000 101110

VINT VIDCI

VIDCI (Vector Integer Define Compound Instruction)

31 26 25 21 20 16 15 1110 6 5 0

011110 rs rt rd no 101111

VINT VIECI

VIECI (Vector Integer Execute Compound Instruction)

31 26 25 21 20 16 15 1110 6 5 0

011111 rs 00000 rd 00000 101110

VFP VFDCI

VFDCI (Vector Floating Point Define Compound Instruction)

31 26 25 21 20 16 15 1110 6 5 0

011111 rs rt rd no 101111

VFP VFECI

VFECI (Vector Floating Point Execute Compound Instruction)

Figure 13.11: 複合演算命令のフォーマット

Next Rd

1 V0 VADD

Rt

V0

Rs

V0

Operation

0 V1 VCMPS0 V1

1 S0 VMACV0 V0

0

1

2

1 S1 VMACV1 V13

1 S2 VMACV2 V24

1 S3 VMACV3 V35

1 S4 VMACV4 V46

1 S5 VMACV5 V57

1 S6 VMACV6 V68

0 S7 VMACV7 V79

Figure 13.12: 複合演算の定義例

463

14

Responsive Link

14.1 概要

Responsive Linkは，各種ロボット，自動車，プラント，ホームオートメーション等の種々の分散制御を実

現するために必要なハードリアルタイム通信，及び，画像，音声等のマルチメディアデータを滑らかに伝送す

るために必要なソフトリアルタイム通信の両方を同時に可能にするように設計を行っている．特に，リアルタ

イムの理論をそのまま応用可能なように，パケットの追い越し機能を実現している．

Responsive Linkは柔軟なリアルタイム通信を実現するために，

• 通信パケットに優先度を付け，高い優先度の通信パケットが低い優先度の通信パケットを通信ノード毎
に追い越し

• ハードリアルタイム通信（データリンク）とソフトリアルタイム通信（イベントリンク）の分離

• 全く同じネットワークアドレス（送信元アドレス及び送信先アドレス）を持つ通信パケットの経路を優
先度によって別の経路に設定することによって専用回線や迂回路を設け実時間通信を制御

• 通信パケットの優先度を通信ノード毎に付け替え可能にすることによってパケットの加減速を分散管理
で制御

• ハードウェアによるフレーム単位のエラー訂正

という方法を組み合わせることによって，分散管理を用いて大規模かつ量子時間の小さい実時間通信を実現す

る．さらに，

• 通信速度を動的に変更可能

• トポロジーフリー，

• Hot-Plug&Play

等の様々な機能を実現する．

Responsive Linkは国内では情報処理学会試行標準 (IPSJ-TS 2003:0006)として標準化されており，国際的

にはでは ISO/IEC JTC1 SC25 WG4において標準化作業が行われている．

464 第 14章 Responsive Link

14.2 Responsive Linkのインタフェース

ソフトリアルタイム通信（以下，単にデータと呼ぶ）のデータサイズ（画像データ，音声データ等）は大き

く，それに対してハードリアルタイム通信（以下，単にイベントと呼ぶ）のデータサイズ（制御コマンド，同

期信号等）は非常に小さい．従って，従来型の 1系統の通信路で全ての通信を行う方法では，同時に通信すべ

き通信データとして，大量のデータパケットと，ごくわずかではあるが分散リアルタイム制御用途には非常に

重要なイベントパケットが同一種類のパケットとして存在する．データとイベントを，共有された同一の通信

線を通して時分割に通信を行う従来方式ではイベント伝達の時間が正確にバウンドできないので，ハードリア

ルタイムシステムは実現困難であると考えられる．

また，複数のモジュールでひとつの通信チャネルを共有するシリアルバスでは，同時に何台のモジュールが

通信するかによってバンド幅が動的に変化し時間をバウンドすることが困難であり，実効速度も出にくい．

さらに，リアルタイム通信におけるトレードオフとして，ソフトリアルタイム通信は主にバルク的なマルチ

メディアデータの通信等に用いられ，ハードリアルタイム通信は主に制御等に用いられるので，

• ソフトリアルタイム：バンド幅保証 ⇒
スループットをできるだけ上げたい

• ハードリアルタイム：レイテンシ保証 ⇒
レイテンシをできるだけ小さくしたい

という要求がある．しかしながらパケットサイズを大きくするとスループットは高くなるが，同時にレイテン

シも長くなる．逆にパケットサイズを小さくするとレイテンシは短くなるが，オーバヘッドが大きくなりス

ループットが低くなる．

従って，Responsive Linkでは，データラインとイベントラインを分離し，かつ各ラインの結合形態を point-

to-pointの双方向シリアル通信として設計されている（図 14.1参照）．以下，それぞれをデータリンク，イベ

ントリンクと呼ぶ．データリンクではパケットサイズを固定長かつ大きめにしてソフトリアルタイム通信に使

用し，イベントリンクではパケットサイズを固定長かつ小さめにしてハードリアルタイム通信に使用する．

Tx Data+

Tx Data-

Rx Data+

Rx Data-

Responsive Link Cable
(Enhanced Category 5)

Responsive Link Connector
(RJ-45)

Tx Event+

Tx Event-

Rx Event+

Rx Event-

Event Link

Data Link

4

3

2

5

6

7

8

1

4

3

2

5

6

7

8

1
Tx Data+

Tx Data-

Rx Data+

Rx Data-

Tx Event+

Tx Event-

Rx Event+

Rx Event-

Responsive Link Connector
(RJ-45)

Figure 14.1: Responsive Linkインタフェース

14.3. パケットフォーマット 465

14.3 パケットフォーマット

図 14.2に Responsive Linkのパケットフォーマットを示す．通信パケットは，ヘッダ部，ペイロード部，ト

レイラ部から構成する．ヘッダ部は優先度付のネットワークアドレスから構成し，トレイラ部は制御情報とス

テータスから構成される．

通信パケットは固定長で，ハードリアルタイム通信用のイベントリンクのパケットサイズは 16バイト（ペ

イロード：8バイト）と小さく，ソフトリアルタイム通信用のデータリンクのパケットサイズは 64バイト（ペ

イロード：56バイト）と大きい．

Source Addr. Destination Addr.

Event Packet Format (16B)Data Packet Format (64B)

Source Addr. Destination Addr.

Payload

Redundancy bitsData bits

1 bit

1 byte

Serial Number (Cnt.)CorrectFatalInt.Start End

0 Full Data Length

Dirty0 Dirty1 Dirty2 Dirty3 Dirty4 Dirty5 Dirty6 Dirty7

Dirty8 Dirty9 Dirty10 Dirty11 Dirty12 Dirty13 Dirty14Dirty15

Control & Status Format (32bits)

Control & Status

Control & Status

0

1

2

3

Payload

Frame Format (12bits)

Figure 14.2: Responsive Linkのパケットフォーマット

図 14.2の通信パケットのヘッダ部に対して，図 14.3に示すようにネットワークアドレスに優先度を付加す

466 第 14章 Responsive Link

る．256レベル (8bit)の優先度を有し，優先度は 0が一番低く，数字が大きくなるにしたがって高くなる．

31 16 15 0

Priority[7-4] Priority[3-0]Source Address Destination Address

Figure 14.3: Responsive Linkのヘッダフォーマット

Responsive Linkの最大通信ノード数は，ネットワークアドレス長に制限され，優先度を使用しない場合，

理論的には 232ノードとなる (図 14.3参照)．Responsive Linkの規格で推奨している使用法（ノード毎にノー

ドアドレスを割り当て，12bitの送信元アドレス，12bitの送信先アドレス，8bitの優先度を用いてルーティ

ングを行う）の場合には，212 = 4096ノードとなる．4096よりノード数が大きなシステムを構築する際には，

経路にアドレスを割り当てる（24bitのネットワークアドレスと 8bitの優先度を用いてルーティングを行う）

ことにより 224 = 16Mノードまでのノード数をサポートする．

14.3.1 固定長（64B）のデータパケット

レスポンシブリンクのスイッチ部はカットスルー型のスイッチを採用している．データパケットは固定長

(64byte)で，パケットに優先度が付加されている．データパケットはアドレス（ソースとデスティネーショ

ン），ペイロード，ステータスから構成される．カットスルー型のスイッチなので，衝突が起きない限りデー

タはノードを経由して転送されるが，あるノードで衝突が起こった場合は，優先度の高いパケットが低いパ

ケットを追い越すことができるようになっている．この機能によって従来までの集中管理型ではなく分散管理

型のリアルタイム通信を実現している．　　　　　　　　　　　　　　　　

データパケットは，2byteの送信元アドレス・2byteの送信先アドレス・56byte のペイロード・4byteの制

御・状態データの計 64byteより構成される．4byteの制御・状態データは以下のフォーマットをとる．　　

　　　　　　　　

UD ユーザ定義フラグ（任意に設定可能）

Full ペイロード 56byteがすべて有効データで埋められているとき 1，それ以外は 0

Data Length ペイロードの有効データ長．1から 56の値をとる．

Dirty0-15 パケットのどのワード（4byte）にエラーが存在するかを示すビット．パケットの

2ワード目にエラーがある場合は Dirty1が 1となる．（ハードウェアによりセットされる）

Start このパケットがスタートパケットであるとき 1，それ以外は 0

End このパケットがエンドパケットであるとき 1，それ以外は 0

Int このパケットを受け取る際に割り込みを生じるときは 1，それ以外は 0

Fatal このパケットに致命的なエラーが存在するときは 1，それ以外は 0（ハードウェアによりセットされる）

Correct このパケットの一部分にエラーが存在し，それが修復されたときは 1，

それ以外は 0（ハードウェアによりセットされる）

Serial Number パケットのシリアルナンバ．スタートパケットが 0，以降 0から 7までを繰り返す．

14.3.2 固定長（16B）のイベントパケット

イベントパケットも固定長 (16byte)で，送信元アドレス，送信先アドレス，ペイロード，ステータスから

構成される．イベントの場合もノードで衝突がない限り，直接ノードを経由してルーティングされるが，衝突

が生じた場合はデータの場合と同様に，優先順位に従ってパケットの追い越しを行なう．

14.3. パケットフォーマット 467

4byteの制御・状態データは以下のフォーマットをとる．

UD ユーザ定義フラグ（任意に設定可能）

Full ペイロード 8byteがすべて有効データで埋められているとき 1，それ以外は 0

Data Length ペイロードの有効データ長．1から 8の値をとる．

Dirty0-15 パケットのどのバイトにエラーが存在するかを示すビット．パケットの

2バイト目にエラーがある場合は Dirty1が 1となる．（ハードウェアによりセットされる）

Start このパケットがスタートパケットであるとき 1，それ以外は 0

End このパケットがエンドパケットであるとき 1，それ以外は 0

Int このパケットを受け取る際に割り込みを生じるときは 1，それ以外は 0

Fatal このパケットに致命的なエラーが存在するときは 1，それ以外は 0（ハードウェアによりセットされる）

Correct このパケットの一部分にエラーが存在し，それが修復されたときは 1，

それ以外は 0（ハードウェアによりセットされる）

Serial Number パケットのシリアルナンバ．スタートパケットが 0，以降 0から 7までを繰り返す．

14.3.3 優先度による追い越し機構

優先度を用いたパケットの追い越し機構を実現するために，追い越し用バッファと退避用外部記憶を有し

たネットワークスイッチを搭載している．図 14.4は 5入力 5出力で一つの入力部当たり追い越し用バッファ

が 4 パケット分あるネットワークスイッチの構成を示している．（実際にRMTPに実装されているResponsive

Linkには 8パケット分の追い越し用バッファが実装されている．）図 14.4において，最後の数字はポート番

号を示している．入力ポート (In0～4)から入力された通信パケットは，通信ノードで衝突しない場合，その

まま出力ポート (Out0～4)へ出力を行う．異なる入力ポートから入力された通信パケットが同じ出力ポート

に出力を行なう場合，通信パケットに付加された優先度に従い，低い優先度の通信パケットを追い越し用バッ

ファ（意味的には追い越され用バッファ）に貯めて出力を待たし，高い優先度の通信パケットを先に出力させ

る．高い優先度の通信パケットの出力の後に低い優先度の通信パケットを追い越し用バッファから出力ポート

に出力し，優先度に従った通信パケットの追い越しを行う．

この際，内部のスイッチングは，ヘッダ部受信のオーバヘッド及びルーティングテーブルの参照時間を隠蔽

するために図 14.4のように 8bitパラレル（byte単位）で行うように設計されている．

上記の通信パケットの追い越しを実現するために通信パケットの大きさと等しい追い越し用バッファを 8本

入力ポート側に搭載している．さらに，出力が待たされ続けている時に入力が入り続けバッファが溢れそうに

なった場合に，追い越し用バッファの内容を一時的に退避するための退避用外部記憶 (DDR SDRAM)を設け

ることができるようになっている．

図 14.5は図 14.4のネットワークスイッチのひとつの入力部の詳細を示している．図 14.5において，最後

の数字はポート番号を示している．通信パケットの追い越しを行うために，まず，入力ポート (In)から入力

された通信パケットを，入力ポインタ (In-Pointer)で指し示されている追い越し用バッファ0から追い越し用

バッファ3のうち使用されていない空バッファに書き込む．入力パケットのヘッダ部分は必ず全て受信し追い

越し用バッファに書き込み，その受信されたヘッダを元に図 14.6のようなルーティングテーブルを参照し出

力ポート番号と優先度を得る．得られた出力ポート番号は図 14.5のリンクストローブ (L0～L4)に書き込む．

例えば L2ビットが有効であればその入力パケットの出力先は出力ポート 2であることを示す．

468 第 14章 Responsive Link

Out0 Out1 Out2 Out3 Out4

Fifo00
Fifo01
Fifo02
Fifo03

Fifo10
Fifo11
Fifo12
Fifo13

Fifo20
Fifo21
Fifo22
Fifo23

Fifo30
Fifo31
Fifo32
Fifo33

Fifo40
Fifo41
Fifo42
Fifo43

SDRAM
 I/F

32bit

8bit

SDRAM

SDRAM
Arbitor

In0

In1

In2

In3

In4

Priority
Arbitor0

MUX0
Priority
Arbitor1

MUX1
Priority
Arbitor2

MUX2
Priority
Arbitor3

MUX3
Priority
Arbitor4

MUX4
Routing
 Table

Table
Arbitor

MPU

Figure 14.4: Responsive Linkのネットワークスイッチ

Figure 14.5: Responsive Linkの追い越し用バッファ

図 14.5において L0から L4までの複数ビットが有効であればマルチキャストを意味し，全て有効であれば

ブロードキャストを意味する．入力部の出力側は出力ポート毎 (Out0～Out4)にそれぞれ独立に各追い越し用

バッファのリンクストローブを参照し，自出力ポートのリンクストローブが有効な場合，出力側ポート側に配

置された当該優先度調停器 (図 14.4の Priority ArbitorN)に対して優先度と共に出力要求を行なう．図 14.5

の PriorityNは図 14.4の Priority ArbitorNに接続されている．優先度調停器は，出力要求が一つの入力ポー

トからだけある場合はただちに出力許可を与え，出力要求が複数ある場合は優先度の一番高いものに出力許可

を与えるようにする．一番優先度の高い要求が複数ある場合は，ラウンドロビン方式で出力許可を与える．

14.4. フレームフォーマット 469

通信パケットの衝突がない場合や，衝突があってもその時点での最高優先度の通信パケットの場合は，ヘッ

ダの受信とルーティングテーブル参照の遅延時間後に直ちに出力を開始する．入力部の各出力ポート側ではパ

ケットの送信終了直後に対応するリンクストローブを無効にし，全てのリンクストローブが無効になったらそ

のバッファが空であることを意味する．

例えば，In-pointerが追い越し用バッファ1を指している場合，入力ポート In から入力されたパケットは，

まずヘッダ部が追い越し用バッファ1に入る．次にそのヘッダを元にルーティングテーブルを引き，リンクス

トローブと優先度を得る．例えば，L1と L3が有効だった場合，Out-pointer1とOut-pointer3は共にその追

い越し用バッファ1を指し，Out1と Out3側が出力要求と共にその優先度をそれぞれ Priority1と Priority3

に出力する．例えば，Out3にすぐに出力可能であれば，出力許可が Priority Arbitor3から与えられるので，

直ちに追い越し用バッファ1から Out3に出力を開始する．出力が終われば，Out3側が追い越し用バッファ

1の L3をクリアする．また，Out1には直ちに出力許可がおりなかったとすると，出力許可が得られるまで

出力要求と優先度を Priorty1に出力し続ける．ここで，Out1への出力待ちの状態で，同じくOut1へ出力し

たい高優先度パケットが新たに追い越し用バッファ2に入ってきた場合，Out-pointer1はより優先度の高い

パケットの入っている追い越し用バッファ2を指すようになり，その高優先度パケットの出力要求と優先度を

Priority1に出力するようになる．後から到着した高優先度パケットの出力が終わると，他に Out1に出力し

たい高優先度パケットがない場合，Out-pointer1は再び追い越し用バッファ1を指して，同様に出力を継続し

ようとする．このように，同一系路上の先行する低優先度パケットが待たされている際にも，後続の高優先度

パケットが追い越していくことを可能にする．

図 14.5において，空バッファが少なくなっていき残り 1本になってしまった場合，次の入力パケットは退

避用外部記憶 (DDR SDRAM)に退避を行うようになっている．出力が進んで空バッファの残りが多くなり 2

本以上になると，退避用外部記憶に退避されていた入力パケットを優先度を考慮して追い越し用バッファに書

き戻すことにより，出力を継続する．

また，退避用外部記憶が溢れそうになると，そのノードのプロセッシングコアに対して割り込みをかけられ

るようになっている．退避用外部記憶が溢れる場合は，アドミッションコントロールを行ってパケットの破棄

を行ったり，送信元に送信データの一時停止を行うように制御する等の方法が考えられるが，そのプロトコル

自身は Responsive Linkの規格では定めていない．それらは上位のプロトコルで行うことになるので，上記割

り込みをかける閾値を設定可能にするように設計している．

リアルタイム通信を実現するために，優先度によるパケットの追い越しをこのように再送を行なわななくて

よいように設計されている．

14.4 フレームフォーマット

1byteは，図 14.2の Frame Formatような冗長ビットを含めたフレームとしてシリアルに送受信される．詳

細は低レベル通信の節を参照．

Data bits 8bitのデータ

Redundancy bits byte毎にRedudancy bits（冗長ビット）を付加することで，CRC等とは異なり，パケッ

ト全てを受信し終わらなくても byte毎にエラー訂正が可能

14.5 ルーティング・テーブル

Responsive Linkの経路制御は，図 14.6に示すようなルーティングテーブル（経路制御表）を設定すること

によって行う．ルーティングテーブルは，Responsive Linkコントローラ内に置き，そのノードのローカルプ

ロセッサから読み書きできるようになっている．図 14.6において，Reference部はパケットのヘッダと同一で

あり，Referent部に当該パケットに関する設定を行う．EEビット及び DEビットは，それぞれそのラインが

470 第 14章 Responsive Link

イベントリンク用の設定かデータリンク用の設定かを示す．両方とも設定されていれば，両リンクとも同様の

設定になる．L[4-0]は，前述のリンクストローブビットであり，出力ポート（複数可）を指し示す．

ルーティングテーブルの大きさ（エントリ数）は実装依存で有限となるため，非常に大きな分散システムを

構築する際には溢れてしまう可能性がある．ルーティングテーブルに入りきらない大規模なシステムを構築す

る際には，ローカルノードプロセッサの主記憶上に完全なルーティングテーブルを用意し，Responsive Link

コントローラ上のルーティングテーブルはキャッシュとして用いるようにする．つまり，TLB付きのMMU

とページテーブルを用いたメモリ管理と同様な管理手法を行うようにする．

そのために，ルーティングテーブルにヒットしないエントリがあった際には，ローカルノードのプロセッサ

に対して割り込みをかけると同時に，該当パケットを一時的に前述の退避用外部記憶に退避する．割り込み

をかけられたプロセッサは，主記憶上の完全なルーティングテーブルをソフトウォークしてエントリを検索

し，そのエントリを Responsive Linkコントローラ上のルーティングテーブルの適切なエントリとスワップす

るようにする．（多くの場合，最近使用されていないエントリとスワップすると考えられるが，それは RT-OS

のポリシ依存である．）Responsive Linkコントローラ側は，イベントリンクとデータリンクそれぞれについ

て，LRUエントリアドレスが分かるように設計し，RT-OSに対してヒントを与えるようにする．その後，退

避していたパケットを追い越しバッファに書き戻すことによって継続的にルーティングを実現する．

上記のような機構により，大規模な分散リアルタイムシステムが構築可能である．ただし，コントローラ内

のルーティングテーブルに収まる範囲の規模でないと，厳密にハードリアルタイム性を維持するのは困難と

なる．

また，分散リアルタイムシステムの規模が大きくなればなるほど（つまりルーティングテーブルのサイズが

大きくなればなるほど）通信のジッタは大きくなり，リアルタイム性の時間粒度も大きくなるが，近傍で激し

く通信している経路をキャッシュに置き，そうでないものは主記憶上のルーティングテーブルに置く等の方法

をとることにより，運用が可能であると考えられる．

EE DE P1 P0 PE L4 L3 L2 L1 L0

Priority[7-4] Priority[3-0]Source Address (16bit) Destination Address (16bit)

0
1

2
3

Priority[7-0] : Priority
EE : Event Enable
DE : Data Enable
PE : Priority exchange Enable
P[7-0] : New Priority
L[4-0] : Output Port Number

EE DE P1 P0 PE L4 L3 L2 L1 L0

EE DE P1 P0 PE L4 L3 L2 L1 L0

EE DE P1 P0 PE L4 L3 L2 L1 L0

Reference Referent

P7 P6

P7 P6

P7 P6

P7 P6

P5 P4

P5 P4

P5 P4

P5 P4

P3 P2

P3 P2

P3 P2

P3 P2

Figure 14.6: Responsive Linkのルーティングテーブル

14.6 パケットの加減速制御

リアルタイム通信パケットの制御を外部から行うことができるようにするために，通信ノード毎にパケット

の優先度の付け替えができるようにして，分散管理型でのリアルタイム通信の制御を実現している．

優先度の付け替えは，図 14.6のルーティングテーブルを用いることによって行なう．図 14.6において，ネッ

トワークアドレスと優先度を元にルーティングテーブルを参照し出力ポート番号を決定する際に，優先度を付

け替えないモード（図 14.6の優先度付替ビット PEが無効）の場合は優先度はそのままであるが，優先度を付

け替えるモード（優先度付替ビット PEが有効）の場合，出力ポートから出力する際に優先度 (Priority[7-0])

を新優先度 (P7～P0)に置き換える．つまり，現ノードでの通信パケットの優先度は入力パケットのヘッダに

14.7. 優先度に従った経路制御 471

付加されている優先度で決定され，その優先度に従って追い抜きやルーティングが決定されるが，次ノード以

降での通信パケットの優先度を制御することができる．ルーティングテーブルの設定はソフトウェア（分散リ

アルタイムオペレーティングシステム等）で行ない，ルーティング（経路制御）自身はハードウェアで行なう

ようになっている．

このパケットの加減速制御機構により，例えば，リアルタイム通信の流量やレイテンシを監視するミドル

ウェアを用いて，リアルタイム通信の制御を可能とする．リアルタイム性の低い通信パケットがバルク的に流

れていて，そのパケットが他のリアルタイム性の高いパケットの通信のリアルタイム性を阻害していたとした

ら，通信監視ミドルウェアが当該パケットの優先度を下げることによって，リアルタイム性の制御を行うこと

ができる．あるいは，あるノードでデッドラインミスが発生してしまった場合，その通信パケットの優先度を

途中の経路で上げることにより（特にホットスポットで優先度を上げると効果的），次回からのデッドライン

ミスを防ぐことが可能となる．

14.7 優先度に従った経路制御

優先度に従って専用回線や迂回路を設けたり，データの流量の制御を行なうことができるように，全く同じ

ネットワークアドレスを持つ通信パケットの経路を優先度によって別の経路に設定することができるようにし

ている．そのために，基本的にはネットワークアドレスと優先度の組でルーティングテーブルを参照する．

優先度ごとに必ずルーティングテーブルを設定しなければならないと煩雑であるので，デフォルトルートを

設けることができる．ネットワークアドレスは同じであるが優先度が一致する組合わせ（経路）がルーティン

グテーブル上に無い場合には，最も優先度の低い優先度 0の経路がデフォルト経路となるようになっている．

つまり，

1. ネットワークアドレスと優先度の両方が一致すればその経路が第一優先

2. ネットワークアドレスは一致するが優先度が一致しない場合，優先度 0の経路

となる．ここで，優先度 0の経路はデフォルト経路となるので，途中で経路が消滅してしまわないようにルー

ティングテーブルに必ず登録する必要がある．

図 14.7は，2次元格子の交点に通信ノードがあるとし，全く同じ送信元から送信先に対して異なる優先度

の通信パケットを同時に通信している状態を示す．例えば，優先度 0のイベントリンクの経路上は別の通信

ノードからの通信パケットも同じ経路を通って送信先に通るように設定しておき，優先度 3の経路は送信元と

送信先の優先度 3の通信パケットしか通らないように設定しておくことにより，他の通信パケットと衝突が起

きない専用回線を実現することができる．Responsive Linkには優先度による追い越し機構があるが，衝突が

あると追い越しのために多少のオーバヘッドが生じてしまうので，このように優先度を用いてパケットの衝突

が全くない専用回線を設定することにより，非常にレイテンシ及びジッタが小さいリアルタイム経路の実現を

可能とする．また，優先度が異なる経路を複数設定することによってマルチリンクを実現し，バンド幅を広げ

ることも同時に可能とする．

472 第 14章 Responsive Link

Source

Destination

Data (Priority0)

Event (Priority3)

Data (Priority1)

Event (Priority0)

Figure 14.7: Responsive Linkの優先度付経路

制御用の分散システムでは図 14.8のような木構造を採る場合が多い．図 14.8において通信ノード 0から通

信ノード 5に通信する場合，優先度 0の通信パケットは途中に通信ノード１と通信ノード 2という中間ノー

ドを経由して通信を行なうが，優先度 1の通信パケットは通信ノード 0から直接通信ノード 5へ通信を行な

うことができる．これは，例えばヒューマノイドロボットを開発した際に，当初は頭モジュール，肩モジュー

ル，肘モジュール，指モジュールと接続しそれらの経路をホップして通信を行っていたが，設計後にどうして

も頭モジュールと指モジュール間の通信レイテンシが間に合わないと判明した場合，後付で頭モジュールと指

モジュールを直接接続し優先度を変えて通信することにより，容易に通信経路（この場合は専用回線）の増設

を可能とする．この機能は，実システムを構築する際に手助けとなる．

14.8. 低レベル通信 473

Source

Destination

Data (Priority0)

Node0

Node1

Node2 Node3 Node4

Node5 Node6 Node7 Node8 Node9 Node10

Data (Priority1)

Figure 14.8: Responsive Linkの優先度付木構造経路

14.8 低レベル通信

Responsive Linkは分散制御用途であるので，必ずエラー訂正を行わなければならない．その際，できるだ

けエラー訂正によってリアルタイム性が損なわれないようにする必要がある．

ここで，パケット単位で CRCを付加しエラー訂正を行う方法では，パケット全体を受信しないとエラー訂

正できない．その場合，ホップ毎にレイテンシが積算されていくので，リアルタイム通信用のエラー訂正とし

ては好ましくない．そこで，レスポンシブリンクでは 1ホップごとにフレーム（図 14.2参照）単位でエラー訂

正を行い，1フレーム (8bitデータ+4bit冗長符号) につき 1bitのエラーであれば，再送することなしにハー

ドウェアで誤り訂正を行うようにする．

14.8.1 CODEC

Responsive Linkの CODECは，8bitの情報ビット列に，誤り訂正用の 4bitの冗長ビット列を加えた 12bit

を 1フレームとして通信を行う．本 CODECで行われる符合化は，以下のような流れとなる．

1. 巡回組織ハミング符合化（冗長ビット列を加える誤り訂正符合化）

2. Bit Stuffing（連続した 1の符合に 0を挿入）

3. NRZI符合化

以下，各符合化について説明を行う．

14.8.2 巡回組織ハミング符号化

誤り訂正符合として，生成多項式が x4 + x+1の巡回組織ハミング符合を採用する．この符合化では，8bit

データの下位 (LSB)側に 4bitの冗長ビット列を付加することで，12bit中の任意の 1bitの誤りを受信側で訂

474 第 14章 Responsive Link

正することを可能にし，表 14.1より誤りの位置を特定できる．送信時には，これら 12bitのビット列は，MSB

側から 1bitずつ送信を行う．

Table 14.1: シンドロームとエラーの位置
Syndrome Error Position (4 Meaning

redundancy bits)

0000 00000000 0000 No error

0001 00000000 0001 Redundancy-bit error

0010 00000000 0010 Redundancy-bit error

0100 00000000 0100 Redundancy-bit error

1000 00000000 1000 Redundancy-bit error

0011 00000001 0000 0bit error

0110 00000010 0000 1bit error

1100 00000100 0000 2bit error

1011 00001000 0000 3bit error

0101 00010000 0000 4bit error

1010 00100000 0000 5bit error

0111 01000000 0000 6bit error

1110 10000000 0000 7bit error

14.8.3 Bit Stuffing

1が長時間連続することによって引き起こされるリンクへの直流成分が発生や，受信側のビット同期への支

障を回避するために，通信データ中に 5つの連続した 1が現れた場合には，その後ろに 0を挿入する．

14.8.4 NRZI符合化

最終的に送信される際に NRZI(Non Return to Zero Inverted) 符合化を行う．NRZI符合化は，0を送る場

合にはリンクのデータビットを反転し，1を送る場合にはデータビットの状態を前のまま保持する．

14.8.5 セットアップパターン

電源投入直後や，予期できないバースト的なリンクエラーなどの後は，送受信インタフェース間でフレーム

同期がとれない場合がある．そのような場合，明示的にリンクの初期化を行うようにする．具体的には，以下

に示すセットアップパターンを受信側に送信する．

セットアップパターン：000001111110

このパターンは，連続した 1が 6個以上は連続しないという bit stuffingの規則に反しているため，いかなる

通常のパケットとも区別される．受信側では，このパターンを受信するとその後，最初に認識したフレーム

を，新しいパケットの第 1フレームとして解釈する．

14.8. 低レベル通信 475

Table 14.3: 通信速度とケーブル
Speed (Mbaud) 100 200 400

Maximum Length (m) 100 80 60

Recommendable Cable Cat5e Cat5e Cat6

14.8.6 DPLLを用いたビット同期

受信側に DPLL(Digital Phase Lock Loop) 機構を設計し，受信用クロックの立ち上がりエッジに同期

して受信信号をサンプリングする．1bit 転送あたりのサンプリング数はソフトウェアの設定によって可変

(4,8,16,32,64,128,256)にする．DPLLでは設定された周期ごとに受信用クロックを生成し，受信信号のエッ

ジを検出することにより，信号のエッジ間の中央で受信用クロックが立ち上がるように，受信用クロックの周

期を微調整を行う．表 14.2に DPLLのモードを示す．なお，Mode 1は EXT RL CLKが有効な場合のみ設

定可能である．

モード名 p mode2 p mode1 p mode0 d clk周期/1bit転送

Mode1 1 1 0 1

Mode2 1 1 1 2

Mode4 0 0 0 4

Mode8 0 0 1 8

Mode16 0 1 0 16

Mode32 0 1 1 32

Table 14.2: DPLLモードの設定

14.8.7 エラーの取扱い

Responsive Linkでは，誤り訂正符合化によって 1[bit/frame]の誤りまでは自動的にエラー訂正を行うこと

ができる．エラーの箇所を受信側で特定するために，図 14.2のトレイラ部の Dirtyビットを立てる．具体的

には，データリンクの場合ワード (4byte)単位で，イベントリンクの場合バイト単位で，エラーのあった場所

のDirtyビットを立てる．エラーがハードウェアによって訂正されても，訂正しきれなくてもDirtyビットは

立てるようにする．また，そのパケット中に 1箇所でもエラー訂正が行われハードウェアで訂正しきれた場

合，トレイラ部の Correctビットを立てる．エラー訂正不可能だった場合，Fatalビットを立てる．受信側の

アプリケーションでは，これらを参考にし，例えば，受信データを本当に制御に使用してよいかどうか等を判

断することを可能にする．

14.8.8 通信速度

Responsive Linkの通信（変調）速度は，様々な環境（コンフィギュレーション，アプリケーション）を想

定し，400, 200, 100, 50, 12.5, 6.25 [Mbaud] の範囲で段階的に可変とする．

表 14.3に，通信速度と最大通信距離，推奨ケーブルの関係を示す．例えば，最大変調速度 400[Mbaud]で通

信する場合，ケーブルには Category6を使用し，最大通信距離は 60[m]以内である．この場合，DPLLの基

準周波数にはデューティ比が 1対 1の 800[MHz]のアップダウンエッジを使用し，サンプリング数 4でDPLL

を行うことによって実現する．

レスポンシブプロセッサは組み込み用途を想定しているので，消費電力が大きな問題となる．一般に通信速

度（動作周波数）を速くすれば消費電力が大きくなり，遅くすれば小さくなる．通信速度の変更は，受信ク

476 第 14章 Responsive Link

ロックを変更するのではなく DPLLのサンプリング数を変更することによって行う．従って，通信速度が遅

い場合の通信は，通信速度が遅くなることによる安定性の増加と DPLLのサンプリング数が増加することに

よる安定性の増加という 2重の恩恵を受ける．

14.9 メモリマップ

レスポンシブリンク部のアドレスマップは以下の通りである．

デコードアドレス 接続される I/O

0xfffe 0xxx レスポンシブリンク内部レジスタ

0xfffe 1xxx レスポンシブリンク用 IRC (r/w)

0xfffe 2xxx ルーティングテーブルアドレス部 (r/w)

0xfffe 3xxx ルーティングテーブルリンク部 (r/w)

0xC0xx xxxx イベント入力用 DPM (r)

0xC4xx xxxx イベント出力用 DPM (r/w)

0xC8xx xxxx データ入力用 DPM (r)

0xCCxx xxxx データ出力用 DPM (r/w)

Initial Address: 0xfffe0000

14.10 レジスタマップ

14.10.1 SDRAMモードレジスタ

Offset: 0x0000

31 2

30’h0

1 0

SDMODE

Responsive Linkは，パケット追い越し用に外付けの SDRAMを付けることができる．SDMODE(SDram

MODE)レジスタは，パケット追い越し用外付けDDR SDRAMの有無と大きさを示す．外付け SDRAMを搭

載しない場合は，内蔵の追い越しバッファ（各リンク 8パケット分）のみで優先度付きパケットの追越を行う．

Field Name Function

29’h0 0

SDMODE Default 000

000 : 外付け SDRAMなし

001 : 外付け SDRAMあり，容量： 8MB

010 : 外付け SDRAMあり，容量： 16MB

011 : 外付け SDRAMあり，容量： 32MB

100 : 外付け SDRAMあり，容量： 64MB

101 : 外付け SDRAMあり，容量： 128MB

110 : 外付け SDRAMあり，容量： 256MB

111 : 外付け SDRAMあり，容量： 512MB

14.10. レジスタマップ 477

14.10.2 レスポンシブリンク速度設定レジスタ

Offset: 0xfffe 0004

属性 リード／ライト

31 28

-

27 25

Data4

24 22

Data3

21 19

Data2

18 16

Data1

15 12

-

11 9

Event4

8 6

Event3

5 3

Event2

2 0

Event1

RSL(Responsive Link Speed): Default 000

本レジスタはレスポンシブリンクの変調速度を示す．
110 : Mode1

111 : Mode2

000 : Mode4

001 : Mode8

010 : Mode16

011 : Mode32

Field Name Function

Data4 Data Link 4用 RSL

Data3 Data Link 3用 RSL

Data2 Data Link 2用 RSL

Data1 Data Link 1用 RSL

Event4 Event Link 4用 RSL

Event3 Event Link 3用 RSL

Event2 Event Link 2用 RSL

Event1 Event Link 1用 RSL

14.10.3 レスポンシブリンク初期化レジスタ

Offset: 0xfffe 0008

属性 リード／ライト

31 29

-

28 25

EDINIT

24

EMI

23 21

-

20 17

EEINIT

16

E s

15 13

-

12 9

DDINIT

8

DMI

7 5

-

4 1

DEINIT

0

D s

RLINIT(Responsive Link INITialization)レジスタはレスポンシブリンクのスイッチの初期化およびエン

コーダ／デコーダ部分，デュアルポートメモリの初期化を行なう．
0: 通常動作

1: 初期化

478 第 14章 Responsive Link

Field Name Function

EDINIT Event Linkのデコーダの初期化
EDINIT[4]: RLINIT[28]: Event link4の初期化

EDINIT[3]: RLINIT[27]: Event link3の初期化

EDINIT[2]: RLINIT[26]: Event link2の初期化

EDINIT[1]: RLINIT[25]: Event link1の初期化

EMI Event Link用のデュアルポートメモリコントローラの初期化（メモリの内容

は保持される）

ELINIT Event linkの各エンコーダの初期化
EEINIT[4]: RLINIT[20]: Event link4の初期化

EEINIT[3]: RLINIT[19]: Event link3の初期化

EEINIT[2]: RLINIT[18]: Event link2の初期化

EEINIT[1]: RLINIT[17]: Event link1の初期化

E s Event link switchの初期化

DDINIT Data linkの各デコーダの初期化
DDINIT[4]: RLINIT[12]: Data link4の初期化

DDINIT[3]: RLINIT[11]: Data link3の初期化

DDINIT[2]: RLINIT[10]: Data link2の初期化

DDINIT[1]: RLINIT[9]: Data link1の初期化

DMI Data Link用のデュアルポートメモリコントローラの初期化（メモリの内容は

保持される）

DEINIT Data linkの各エンコーダの初期化
DEINIT[4]: RLINIT[4]: Data link4の初期化

DEINIT[3]: RLINIT[3]: Data link3の初期化

DEINIT[2]: RLINIT[2]: Data link2の初期化

DEINIT[1]: RLINIT[1]: Data link1の初期化

D s Data link switchの初期化

14.10.4 レスポンシブリンク割り込みクリアレジスタ

Offset: 0xfffe 000c 属性 ライト

31 7

-

6 1

RLIC

0

-

本レジスタのオフセットはデコーダリセット割り込みクリアレジスタのオフセットと同じである．Re-

sponsive Link の IRQ1-6 のいずれかがイネーブルになったときのみ，本レジスタに書き込み可能となる．

RLIC(Responsive Link Irq Clear)レジスタはイベントリンクの割り込み要求のクリアを行なう．

Default 0
0: 通常動作

1: クリア

14.10. レジスタマップ 479

Field Name Function

RLIC[1] Data-Out EOP(End Of Packet) IRQ Clear: データパケットが DPMの設定

した範囲から送信された場合に生じる割り込みのクリア

RLIC[2] Event-Out EOP IRQ Clear: イベントパケットが DPMの設定した範囲から

送信された場合に生じる割り込みのクリア

RLIC[3] Data-In EOP IRQ Clear: データパケットがDPMの設定した範囲に受信され

た場合に生じる割り込みのクリア

RLIC[4] Event-In EOP IRQ Clear: イベントパケットが DPMの設定した範囲に受信

された場合に生じる割り込みのクリア

RLIC[5] Data Packet-In IRQ Clear: 割り込みビットの設定されたデータパケットが到

着した場合に生じる割り込みのクリア

RLIC[6] Event Packet-In IRQ Clear: 割り込みビットの設定されたイベントパケットが

到着した場合に生じる割り込みのクリア

14.10.5 デコーダリセット割り込みクリアレジスタ

Offset: 0xfffe 000c 属性 リード／ライト

31 21

-

20 16

Event

15 5

-

4 0

Data

本レジスタのオフセットはレスポンシブリンク割り込みクリアレジスタのオフセットと同じである．Responsive

Link の IRQ1-6のすべてがディスエーブルになったときのみ，本レジスタに読み書き可能となる．デコーダ

リセット割り込み要求のクリアを行なう．

Default 0
0: クリア

1: 割り込み発生（デバッグ用）

Field Name Function

Event Event Linkのデコーダリセット割り込み
Event[4]: Event link4のデコーダリセット割り込み

Event[3]: Event link3のデコーダリセット割り込み

Event[2]: Event link2のデコーダリセット割り込み

Event[1]: Event link1のデコーダリセット割り込み

Event[0]: Event link0のデコーダリセット割り込み

Data Data Linkのデコーダリセット割り込み
Data[4]: Data link4のデコーダリセット割り込み

Data[3]: Data link3のデコーダリセット割り込み

Data[2]: Data link2のデコーダリセット割り込み

Data[1]: Data link1のデコーダリセット割り込み

Data[0]: Data link0のデコーダリセット割り込み

480 第 14章 Responsive Link

14.10.6 レスポンシブリンク送信停止割り込みクリアレジスタ

Offset: 0xfffe 0010 属性 リード／ライト

31 21

-

20 16

DWIRQC

15 5

-

4 0

EWIRQC

Responsive Linkはパケット追い越し用 SDRAMを使用している際には追い越し用 SDRAMが溢れそうに

なると送信停止割り込みを自動生成する．同様に，追い越し用 SDRAMを使用していない際には，追い越し

用バッファが溢れそうになると送信停止割り込みを自動生成する．本WIRQC(Wait IRQ Clear)レジスタは

レスポンシブリンク送信停止割り込み要求のクリアを行なう．

Default 0
0: 通常動作

1: クリア

Field Name Function

DWIRQC Data link WIRQC

DWIRQC[4]: WIRQC[20]: Data link4

DWIRQC[3]: WIRQC[19]: Data link3

DWIRQC[2]: WIRQC[18]: Data link2

DWIRQC[1]: WIRQC[17]: Data link1

DWIRQC[0]: WIRQC[16]: Data link0(CPU)

EWIRQC Event link WIRQC

EWIRQC[4]: WIRQC[4]: Event link4

EWIRQC[3]: WIRQC[3]: Event link3

EWIRQC[2]: WIRQC[2]: Event link2

EWIRQC[1]: WIRQC[1]: Event link1

EWIRQC[0]: WIRQC[0]: Event link0(CPU)

14.10.7 レスポンシブリンク継続割り込みクリアレジスタ

Offset: 0xfffe 0014 属性 リード／ライト

31 21

-

20 16

DCIC

15 5

-

4 0

ECIC

Responsive Linkは，SDRAMに退避されたパケットがスイッチに書き戻された（再度送信された）際にレ

スポンシブリンク継続割り込み CI(Coutinuous Irq) を発生する．CIC(Continuous Irq Clear)レジスタはそ

の割り込み要求 CIのクリアを行なう．

Default 0
0: 通常動作

1: クリア

14.10. レジスタマップ 481

Field Name Function

DCIC Data CIC
DCIC[4]: CIC[20]: Data link4

DCIC[3]: CIC[19]: Data link3

DCIC[2]: CIC[18]: Data link2

DCIC[1]: CIC[17]: Data link1

DCIC[0]: CIC[16]: Data link0(CPU)

ECIC Event CIC
ECIC[4]: CIC[4]: Event link4

ECIC[3]: CIC[3]: Event link3

ECIC[2]: CIC[2]: Event link2

ECIC[1]: CIC[1]: Event link1

ECIC[0]: CIC[0]: Event link0(CPU)

14.10.8 レスポンシブリンク致命的エラー割り込みクリアレジスタ

Offset: 0xfffe 0018 属性 リード／ライト

31 21

-

20 16

DFIC

15 5

-

4 0

EFIC

Responisve Linkは，各リンクの受信パケットにハードウェアで回復不可能なエラーがあった場合にレスポ

ンシブリンク致命的エラー割り込み FI(Fatal Irq)を発生する．FIC(Fatal Irq Clear)レジスタは，その割り込

み要求 FIのクリアを行なう．

Default 0
0: 通常動作

1: クリア

Field Name Function

DFIC Data FIC
DFIC[4]: FIC[20]: Data link4

DFIC[3]: FIC[19]: Data link3

DFIC[2]: FIC[18]: Data link2

DFIC[1]: FIC[17]: Data link1

DFIC[0]: FIC[16]: Data link0(CPU)

EFIC Event FIC
EFIC[4]: FIC[4]: Event link4

EFIC[3]: FIC[3]: Event link3

EFIC[2]: FIC[2]: Event link2

EFIC[1]: FIC[1]: Event link1

EFIC[0]: FIC[0]: Event link0(CPU)

482 第 14章 Responsive Link

14.10.9 レスポンシブリンクルーティングテーブル割り込みクリアレジスタ

Offset: 0xfffe 001c 属性 リード／ライト

31 2

-

1 0

RTIRQC

Responsive Linkは， ルーティングテーブルにマッチするエントリが無かった場合にレスポンシブリンク

ルーティングテーブル割り込み (RTIRQ)を発生する．RTIRQC(Routing Table IRQ Clear)レジスタは，そ

の割り込み要求 RTIRQのクリアを行なう．

Default 0
0: 通常動作 (r)／割り込みクリア (w)

1: 割り込み状態 (r)／割り込み発生（デバッグ用）(w)

Field Name Function

RTIC[0] Event Routing Table IRQ Clear

RTIC[1] Data Routing Table IRQ Clear

14.10.10 レスポンシブリンク SDRAMバスリクエストレジスタ

Offset: 0xfffe 0020 属性 リード／ライト

31 1

-

0

RLSDBREQ

Responsive Linkの追い越し用 SDRAMのバスには，Responsive Linkとプロセッサバスの 2つのバスマス

タが接続されている．通常，プロセッサ側から追い越し用 SDRAMにアクセスする際には，データのトランザ

クション毎に，バス権の調停が行われている．プロセッサ側からバースト的に追い越し用 SDRAMをアクセ

スしたい場合には，本ビットを有効にすることで，追い越し用 SDRAMバスのバス権をプロセッサ側（プロ

セッサやDMAC等）が常に得ることができる．（本ビットを設定しなくてもアクセス可能である．）Responsive

Link側が追い越し用 SDRAMバスを参照できなくなる (パケットの退避・復帰ができなくなる)という副作用

がある．

Field Name Function

RLSDBREQ RLSDBREQ (Responsive Link SDram-Bus REQuest) : Default 1

本ビットはレスポンシブリンクの SDRAMバスへの明示的なバスリクエスト

を行なう．
0: バスリクエストイネーブル

1: バスリクエストディスエーブル

14.10.11 レスポンシブリンク SDRAMバスグラントレジスタ

Offset: 0xfffe 0024 属性 リード／ライト

14.10. レジスタマップ 483

31

MSG

30 21

-

20 16

DSG

15 5

-

4 0

ESG

RLSDBGRNT(Responsive Link SDram Bus GRaNT)レジスタは，追い越し用 SDRAM バスのバスグラ

ント（どのバスマスタがバス権を有しているか）を示す．
0: バス権獲得

1: バス権開放

Field Name Function

MSG Mpu Sdram bus Grant: MPUがバス権を得ている

DSG Data link Sdram bus Grant: Data Linkがバス権を得ている
DSG[4]: RLSDBGRNT[20]: Data link4

DSG[3]: RLSDBGRNT[19]: Data link3

DSG[2]: RLSDBGRNT[18]: Data link2

DSG[1]: RLSDBGRNT[17]: Data link1

DSG[0]: RLSDBGRNT[16]: Data link0(CPU)

ES Event link Sdram bus Grant: Event Linkがバス権を得ている
ESG[4]: RLSDBGRNT[4]: Event link4

ESG[3]: RLSDBGRNT[3]: Event link3

ESG[2]: RLSDBGRNT[2]: Event link2

ESG[1]: RLSDBGRNT[1]: Event link1

ESG[0]: RLSDBGRNT[0]: Event link0(CPU)

14.10.12 レスポンシブリンクルーティングテーブルバスリクエストレジスタ

Offset: 0xfffe 0028 属性 ライト

31 1

-

0

BRQ

Responsive Linkのルーティングテーブルのバスには，Responsive Linkとプロセッサバスの 2つのバスマ

スタが接続されているが，デフォルトのバスマスタは Responsive Linkである．プロセッサ側からルーティン

グテーブルをアクセスしたい場合には，本ビットを有効にすることで，ルーティングテーブルバスのバス権を

プロセッサ側（プロセッサや DMAC等）が得ることができる．Responsive Link側がルーティングテーブル

を参照できなくなる（パケットのルーティングができなくなる）という副作用がある．

Field Name Function

BRQ RLTBLBREQ (Responsive Link rouging TaBLe Bus REQuest): Default 1

本ビットはレスポンシブリンクのルーティングテーブルバスへのバスリクエス

トを行なう．
0: バスリクエストイネーブル

1: バスリクエストディスエーブル

484 第 14章 Responsive Link

Offset: 0xfffe 0028 属性 リード

31

MRR

30 21

-

20 16

DRR

15 5

-

4 0

ERR

本ビットはプロセッサバス側からレスポンシブリンクのルーティングテーブルバスへのバスリクエストを示

す．
0: バスリクエスト有

1: バスリクエスト無

Field Name Function

MRR Mpu Routing table bus Request

DRR Data link Routing table bus Request

DRR[4]: RLTBLBREQ[20]: Data link4

DRR[3]: RLTBLBREQ[19]: Data link3

DRR[2]: RLTBLBREQ[18]: Data link2

DRR[1]: RLTBLBREQ[17]: Data link1

DRR[0]: RLTBLBREQ[16]: Data link0(CPU)

ER Event link Routing table bus Request

ERR[4]: RLTBLBREQ[4]: Event link4

ERR[3]: RLTBLBREQ[3]: Event link3

ERR[2]: RLTBLBREQ[2]: Event link2

ERR[1]: RLTBLBREQ[1]: Event link1

ERR[0]: RLTBLBREQ[0]: Event link0(CPU)

14.10.13 レスポンシブリンクルーティングテーブルバスグラントレジスタ

Offset: 0xfffe 002c 属性 リード

31

MRG

30 21

-

20 16

DRG

15 5

-

4 0

ERG

RLTBLBGRNT (Responsive Link routing TaBLe Bus GRaNT)レジスタは，レスポンシブリンクのルー

ティングテーブルバスのバスグラント（どのバスマスタがバス権を有しているか）を示す．
0: バス権獲得

1: バス権開放

14.10. レジスタマップ 485

Field Name Function

MRG Mpu Routing table bus Grant: MPUがバス権を得ている

DRG Data link Routing table bus Grant: Data Linkがバス権を得ている
DRG[4]: RLTBLBGRNT[20]: Data link4

DRG[3]: RLTBLBGRNT[19]: Data link3

DRG[2]: RLTBLBGRNT[18]: Data link2

DRG[1]: RLTBLBGRNT[17]: Data link1

DRG[0]: RLTBLBGRNT[16]: Data link0(CPU)

ERG Event link Routing table bus Grant: Event Linkがバス権を得ている
ERG[4]: RLTBLBGRNT[4]: Event link4

ERG[3]: RLTBLBGRNT[3]: Event link3

ERG[2]: RLTBLBGRNT[2]: Event link2

ERG[1]: RLTBLBGRNT[1]: Event link1

ERG[0]: RLTBLBGRNT[0]: Event link0(CPU)

14.10.14 イベントリンクLRUアドレスレジスタ

Offset: 0xfffe 0030 属性 リード

31 10

-

9 0

ELLRUA

Field Name Function

ELLRUA ELLRUA (Event Link LRU Address) レジスタはイベントリンクのルーティ

ングテーブル中で，最も近くに使用されたテーブルの格納されているアドレス

を示す．

14.10.15 データリンクLRUアドレスレジスタ

Offset: 0xfffe 0034 属性 リード

31 10

-

9 0

DLLRUA

Field Name Function

DLLRUA DLLRUA (Data Link LRU Address) レジスタはデータリンクのルーティング

テーブル中で，最も近くに使用されたテーブルの格納されているアドレスを示

す．

486 第 14章 Responsive Link

14.10.16 レスポンシブリンク用割り込みコントローライネーブルレジスタ

Offset: 0xfffe 0038 属性 リード

31 1

-

0

RLICE

Field Name Function

RLICE RLICE (Responsive Link Interrupt Controller Enable) レジスタはレスポンシ

ブリンク用割り込みコントローラ RLIRCのイネーブルビットを示す．1のと

き，RLIRCは出力を行っている．

14.10.17 イベントリンク用 SDRAMループカウントレジスタ

Offset: 0xfffe 0040 属性 リード／ライト

31 8

-

7 0

ELSDCNT

追い越し用 SDRAMに退避されたイベントパケットを Responsive Linkイベントスイッチに再度送信して

よいかどうかを調べる間隔を指定する．短すぎると消費電力が大きくなり，長すぎるとリアルタイム性が損な

われる．

Field Name Function

ELSDCNT ELSDCNT (Event Link SDram loop CouNTer)レジスタの設定により，追い

越し用 SDRAMに退避されているイベントパケットをイベントスイッチに再

送しようとするリトライの間隔を 1パケット分の送信時間を単位として指定す

る．(1 - 40)

Default: 32

14.10.18 データリンク用 SDRAMループカウントレジスタ

Offset: 0xfffe 0044 属性 リード／ライト

31 4

-

3 0

DLSDCNT

追い越し用 SDRAMに退避されたデータパケットを Responsive Linkデータスイッチに再度送信してよい

かどうかを調べる間隔を指定する．短すぎると消費電力が大きくなり，長すぎるとリアルタイム性が損なわ

れる．

14.10. レジスタマップ 487

Field Name Function

DLSDCNT DLSDCNT (Data Link SDram loop CouNTer) レジスタの設定により，追い

越し用 SDRAMに退避されているデータパケットをデータスイッチに再送し

ようとするリトライの間隔を 1パケット分の送信時間を単位として指定する．

(1 - 95)

Default: 4

14.10.19 レスポンシブリンクスイッチモードレジスタ

Offset: 0xfffe 0048 属性 リード／ライト

31 2

-

1 0

RLSM

RLSM(Responsive Link Switch Mode)レジスタの設定により，レスポンシブリンクのスイッチの動作を変

更する．
0: Cut Through Mode レイテンシ的に有利であるがパケットの追い越しをしにくい

1: Store and Forward Mode レイテンシ的に不利であるがパケットの追越しをしやすい
Default: 0

Field Name Function

RLSM[0] Event Link Switchの設定

RSLM[1] Data Link Switchの設定

14.10.20 レスポンシブリンク用オフラインレジスタ

Offset: 0xfffe 004c 属性 リード

31 21

-

20 16

DRLOL

15 5

-

4 0

ERLOL

Responsive Linkは Plug&Playをサポートするために，リンクアップしていたリンクがリンクダウンする

とオフライン割り込みを発生し，リンクダウンしていたリンクがリンクアップするとオンライン割り込みを発

生する．

RLOL(Responsive Link OffLine)レジスタをリードすることにより，どのリンクがオフライン／オンライ

ンかを調べることができる．
1: Offline

0: Online

488 第 14章 Responsive Link

Field Name Function

DRLOL Data linkの RLOLレジスタ
DRLOL[4]: RLOL[20]: Data link4

DRLOL[3]: RLOL[19]: Data link3

DRLOL[2]: RLOL[18]: Data link2

DRLOL[1]: RLOL[17]: Data link1

DRLOL[0]: RLOL[16]: Data link0(CPU)

ERLOL Event linkの RLOLレジスタ
ERLOL[4]: RLOL[4]: Event link4

ERLOL[3]: RLOL[3]: Event link3

ERLOL[2]: RLOL[2]: Event link2

ERLOL[1]: RLOL[1]: Event link1

ERLOL[0]: RLOL[0]: Event link0(CPU)

Offset: 0xfffe 004c 属性 ライト

31 2

-

1 0

RLOL

本ビットの設定により，レスポンシブリンクのオフライン割り込み及びオンライン割り込みをクリアできる．
1: 割り込みクリアを行わない

0: 割り込みクリア

Field Name Function

RLOL[0] Responsive Link Down IRQ Clear: オフライン割り込みのクリア

RLOL[1] Responsive Link Wakeup IRQ Clear: オンライン割り込みのクリア

14.10.21 パラレルモードレジスタ

Offset: 0xfffe 0050 属性 リード／ライト

31 5

-

4 1

Port

00

-

Responsive Link の各ポートがパラレル／シリアルモードのどちらで動作するかを設定する．
1: パラレル

0: シリアル

14.10. レジスタマップ 489

Field Name Function

Port Responsive Link の各ポート
Port[3]: ポート 4

Port[2]: ポート 3

Port[1]: ポート 2

Port[0]: ポート 1

14.10.22 エラーパケットヘッダレジスタ

Offset: Event Link : 0xfffe 0054 属性 リード

Offset: Data Link : 0xfffe 0058 属性 リード

31 0

Header Value

Routing Tableに該当しないパケットのヘッダの値が入る．

14.10.23 エラーヘッダポインタレジスタ

Offset: Event Link : 0xfffe 005c 属性 リード

31 3

-

2 0
Err Header Ptr

エラーパケットの数を格納する．ただし，直前のエラーパケット同一のヘッダである場合はインクリメント

されない（デバッグ用）．

Default 0

14.10.24 エラーパケットモードレジスタ

Offset: Event Link : 0xfffe 0060 属性 リード／ライト

31 8

-

7 0

Err Header Mode E

Offset: Data Link : 0xfffe 0064 属性 リード／ライト

31 8

-

7 0

Err Header Mode D

本レジスタはエラーヘッダポインタレジスタのために存在する（デバッグ用）．

490 第 14章 Responsive Link

14.10.25 SDRAM回復イネーブルレジスタ

Offset: Event Link : 0xfffe 0068 属性 リード／ライト

31 2

-

1 0

sdram restore en

（デバッグ用）

14.10.26 通信コーデック設定レジスタ

Offset: Event Link : 0xfffe 006c 属性 リード／ライト

Offset: Data Link : 0xfffe 0070 属性 リード／ライト

31 24

CH4

23 16

CH3

15 8

CH2

7 0

CH1

Responsive Link各チャネルのコーデックを設定する．チャネル毎の設定項目のビットマップを以下に示す．

7

RS

6

-

5 4

ECC

3

-

2 0

Line Code

Field Name Function

CH*[7] 本ビットをセットすると Reed Solomon符号によるエラー訂正が有効になる．

CH*[5:4] バイト毎の ECCを設定する．
00: ECCなし

01: Hamming符号

10: BCH符号

CH*[2:0] 伝送路符号を設定する．
001: NRZI+BitStuffing

010: 8B10B

100: 4B10B

14.10.27 レスポンシブリンク用EXT RL CLK イネーブルレジスタ

Offset: 0xfffe 0074 属性 リード／ライト

31 29

-

28 25

DSCLK

24 21

-

20 17

ESCLK

16 5

-

4 1

EXRLCLK

0

-

Responsive Linkの EXT RL CLKの設定を行う．本レジスタは EXT RL CLKを使用可能な設定の時に

マッピングされる．

さらに，DSCLK, ESCLKは SHARED D CLKが有効な時に設定可能となり，各通信リンクに d clkを流し，

もう一方の通信リンクではその d clkを用いてデコードを行うことがチャネルごとに可能となる．

14.10. レジスタマップ 491

例えば ESCLK[4]を有効にすると Event link4に d clkが流れ，チャネル 4の接続先ノードで Data linkのデ

コードを行う際に Event linkから流れてきた d clkを用いてデコードを行う．

SHARED D CLKを行う際には同時に EXRLCLKの対応するビットも有効にする必要がある．
0: EXT RL CLKを無効にする

1: EXT RL CLKを有効にする

Field Name Function

DSCLK Data Linkを SHARED D CLKとして利用する
DSCLK[4]: Data link4

DSCLK[3]: Data link3

DSCLK[2]: Data link2

DSCLK[1]: Data link1

ESCLK Event Linkを SHARED D CLKとして利用する
ESCLK[4]: Event link4

ESCLK[3]: Event link3

ESCLK[2]: Event link2

ESCLK[1]: Event link1

EXRLCLK EXT RL CLKを有効にする
EXRLCLK[4]: ポート 4の EXT RL CLKの設定

EXRLCLK[3]: ポート 3の EXT RL CLKの設定

EXRLCLK[2]: ポート 2の EXT RL CLKの設定

EXRLCLK[1]: ポート 1の EXT RL CLKの設定

14.10.28 レスポンシブリンク用オフライン割り込みマスクレジスタ

Offset: 0xfffe 0080 属性 リード／ライト

31 21

-

20 16

DOLM

15 5

-

4 0

EOLM

Responsive Linkのオンライン割り込み及びオフライン割り込みのマスクを通信リンク，チャネルごとに行

う．
0: 割り込みマスクを無効にする

1: 割り込みマスクを有効にする

492 第 14章 Responsive Link

Field Name Function

DOLM Data Linkのオンライン/オフライン割り込みマスク設定
DOLM[4]: Data link4

DOLM[3]: Data link3

DOLM[2]: Data link2

DOLM[1]: Data link1

DOLM[0]: Data link0(CPU)

EOLM Event Linkのオンライン/オフライン割り込みマスク設定
EOLM[4]: Event link4

EOLM[3]: Event link3

EOLM[2]: Event link2

EOLM[1]: Event link1

EOLM[0]: Event link0(CPU)

14.10.29 送信用DPLLモード設定レジスタ

Offset: 0xfffe 0084 属性 リード／ライト

31 28

-

27 25

DTXM4

24 22

DTXM3

21 19

DTXM2

18 16

DTXM1

15 12

-

11 9

ETXM4

8 6

ETXM3

5 3

ETXM2

2 0

ETXM1

Responsive Linkの送信用の通信速度設定をチャネル毎，通信リンク毎に行う．

本レジスタの設定は，送信用通信速度・コーデックイネーブルレジスタで有効にしたチャネル・通信リンクに

のみ適用され，受信用の DPLLモードは従来のレジスタで設定したものが用いられる．
110 : Mode1

111 : Mode2

000 : Mode4

001 : Mode8

010 : Mode16

011 : Mode32

Field Name Function

DTXM[1-4] Data Linkの送信用 DPLLの設定
DTXM4: Data link4 用 RSL

DTXM3: Data link3 用 RSL

DTXM2: Data link2 用 RSL

DTXM1: Data link1 用 RSL

ETXM[1-4] Event Linkの送信用 DPLLの設定
ETXM4: Event link4 用 RSL

ETXM3: Event link3 用 RSL

ETXM2: Event link2 用 RSL

ETXM1: Event link1 用 RSL

14.10. レジスタマップ 493

14.10.30 送信用通信コーデック設定レジスタ

Offset: Event Link : 0xfffe 0088 属性 リード／ライト

Offset: Data Link : 0xfffe 008c 属性 リード／ライト

31 24

CH4

23 16

CH3

15 8

CH2

7 0

CH1

Responsive Link各チャネル対応する通信リンクの送信用通信コーデックを設定する．本レジスタの設定は，

送信用通信速度・コーデックイネーブルレジスタで有効にしたチャネル・通信リンクにのみ適用され，受信用

のコーデックは従来のレジスタで設定したものが用いられる．

チャネル毎の設定項目のビットマップを以下に示す．

7

RS

6

-

5 4

ECC

3

-

2 0

Line Code

Field Name Function

CH*[7] 本ビットをセットすると Reed Solomon符号によるエラー訂正が有効になる．

CH*[5:4] バイト毎の ECCを設定する．
00: ECCなし

01: Hamming符号

10: BCH符号

CH*[2:0] 伝送路符号を設定する．
001: NRZI+BitStuffing

010: 8B10B

100: 4B10B

14.10.31 送信用通信速度・コーデックイネーブルレジスタ

Offset: 0xfffe 0090 属性 リード／ライト

31 29

-

28 25

DTCE

24 21

-

20 17

DTME

16 13

-

12 9

ETCE

8 5

-

4 1

ETME

0

-

Responsive Linkの送信用の通信速度・コーデックの設定を有効にする．

本レジスタで送信用の通信速度を有効にすると，送信用 DPLLモード設定レジスタの対応するチャネルの通

信リンクの送信用 DPLLモードが適用される．

本レジスタで送信用の通信コーデックを有効にすると，送信用通信コーデック設定レジスタの対応するチャネ

ルの通信リンクの送信用 DPLLモードが適用される．

本レジスタで送信用通信速度・コーデックの設定を有効にしていないチャネル・通信リンクについては，レス

ポンシブリンク速度設定レジスタおよび通信コーデック設定レジスタにおける設定が送受信共に適用される．
0: 送信用mode/codecを無効にする

1: 送信用mode/codecを有効にする

494 第 14章 Responsive Link

Field Name Function

DTCE Data Linkの送信用 codec設定を有効にする
DTCE4: Data link4

DTCE3: Data link3

DTCE2: Data link2

DTCE1: Data link1

DTME Data Linkの送信用 DPLL設定を有効にする
DTME4: Data link4

DTME3: Data link3

DTME2: Data link2

DTME1: Data link1

ETCE Event Linkの送信用 codec設定を有効にする
ETCE4: Event link4

ETCE3: Event link3

ETCE2: Event link2

ETCE1: Event link1

ETME Event Linkの送信用 DPLL設定を有効にする
ETME4: Event link4

ETME3: Event link3

ETME2: Event link2

ETME1: Event link1

14.10.32 モード 1用サンプリングエッジ設定レジスタ

Offset: 0xfffe 0094 属性 リード／ライト

31 21

-

20 17

DD1M

16 5

-

4 1

ED1M

0

-

Responsive Linkのモード 1設定時に，クロックの立ち上がりエッジと立ち下がりエッジどちらでサンプリ

ングを行うか設定する．
0: クロックの立ち上がりエッジを使用する．

1: クロックの立ち下がりエッジを使用する．

Field Name Function

DD1M Data Linkのサンプリングエッジの設定
DD1M[4]: Data link4

DD1M[3]: Data link3

DD1M[2]: Data link2

DD1M[1]: Data link1

ED1M Event Linkのサンプリングエッジの設定
ED1M[4]: Event link4

ED1M[3]: Event link3

ED1M[2]: Event link2

ED1M[1]: Event link1

14.10. レジスタマップ 495

14.10.33 Routing Table ECC設定レジスタ

Offset: 0xfffe 0098 属性 リード／ライト

31 1

-

0

E

Responsive Linkの Routing Tableに付属している ECCのオンオフを設定する．

0: Disable．

1: Enable．

Field Name Function

E Routing Tableの ECCのオンオフを設定する．

14.10.34 タイムアウト設定レジスタ

Offset: 0xfffe 009c 属性 リード／ライト

31 2

-

1 0

TE

イベントリンク出力用 DPM，データリンク出力用 DPMに有効なデータが存在し，後述のタイムアウト

カウント設定レジスタで設定したカウント数だけアクセスがなかった場合，RL EVENT TIMEOUT割込み，

RL DATA TIMEOUT割込みをそれぞれ発生させるかを設定する．

0: Disable．

1: Enable．

Field Name Function

TE タイムアウト割込みを発生させるかを設定する．
0: EVENT LINK．

1: DATA LINK．

14.10.35 イベントリンクタイムアウトカウント設定レジスタ

Offset: 0xfffe 00a0 属性 リード／ライト

31 0

Timeout Count

イベントリンク出力用 DPMに有効なデータが書き込まれてから，RL EVENT TIMEOUT割込みが発生

するまでの時間を設定する．

DPMに書き込み後，指定した時間が経過するより早くDPMにアクセスがあった場合，割込みは発生しな

い．

496 第 14章 Responsive Link

Field Name Function

Timeout

Count

タイムアウト割込みを発生させるまでの時間を設定する．

単位は clock cycle．

14.10.36 データリンクタイムアウトカウント設定レジスタ

Offset: 0xfffe 00a4 属性 リード／ライト

31 0

Timeout Count

データリンク出力用 DPMに有効なデータが書き込まれてから，RL DATA TIMEOUT割込みが発生する

までの時間を設定する．

DPMに書き込み後，指定した時間が経過するより早くDPMにアクセスがあった場合，割込みは発生しない．

Field Name Function

Timeout

Count

タイムアウト割込みを発生させるまでの時間を設定する．

単位は clock cycle．

14.10.37 オートリンクアップ設定レジスタ

Offset: 0xfffe 00a8 属性 リード／ライト

31 21

-

20 17

DALU

16 5

-

4 1

EALU

0

-

リンクの初期化による通信の確立を自動で行う，オートリンクアップ機能の設定を行う．

オートリンクアップ機能を有効にすると，リンクの初期化を明示的に行わなくとも，イニシャルパケットを自

動で送信し，リンクアップを行う．
0: オートリンクアップを無効にする．

1: オートリンクアップを有効にする．

Field Name Function

DALU Data Linkのオートリンクアップの設定
DALU[4]: Data link4

DALU[3]: Data link3

DALU[2]: Data link2

DALU[1]: Data link1

EALU Event Linkのオートリンクアップの設定
EALU[4]: Event link4

EALU[3]: Event link3

EALU[2]: Event link2

EALU[1]: Event link1

14.11. DPM (Dual Port Memory) 497

14.11 DPM (Dual Port Memory)

Responsive Linkとプロセッサは基本的にDPMを介してデータの送受信を行う．DPMはその名の通り 2port

を有しており，片方はプロセッサバスに接続され，もう片方は Responsive Linkの Link0に接続されている．

Data in/out control registerおよび，Event in/out control registerを設定することでパケットの送信/受信

方法を決定することができる．イベントパケットの送信および，受信には Event packet in/out専用の DPM

を用い，データパケットの送信および，受信には Data packet in/out専用の DPMを使用する．

以下に Event in/out，Data in/outそれぞれの DPMについて説明する．

14.11.1 Event Output

図 14.9にイベントリンク出力用DPMの構成を示す．Event out control register（図 14.10参照）に対して，

開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word address)を

設定することにより，複数パケットを一度に送信できる．From Addrと To Addrは人間に分かりやすいよう

にこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されている．From Addr,

To Addr共に，設定された word addressのアドレスにDPM のプロセッサバス側からデータが書かれた瞬間

に，DPMから Link0に対して出力を開始する．

例えば，Mode0を使用し，From Addrを 0x00に設定しTo Addrを 0x07 (byte address: 0x1c)に設定した

とする．プロセッサバス側からDMACもしくはプロセッサによって Payload0, Payload1の順にDPMにデー

タが書かれたとすると，DPMのプロセッサ側から 0x06番地にデータが書かれた瞬間にDPMからResponsive

Linkの Link0に出力を開始する．（この場合，実際には From Addrには意味がない．）

あるいは，Mode0を使用し，From Addrを 0x1f(byte address 0x3c)に設定しTo Addrを 0x2f(byte address:

0x7c)に設定し，さらにDMACを continuous modeで使用すると，Payload0～3の領域と Payload4～7の領

域を使用して，主記憶等に用意したDPMよりも大きな連続データをハードウェアのみで自動送信することが

できる．（DPMのアドレスデコードの範囲内では，シャドウアドレスでも CSが生成され DPMにアクセスで

きるように設計しているため．）

498 第 14章 Responsive Link

DPM for Event Output

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 4

Control & Status

Source Addr. Destination Addr.

Payload 5

Control & Status

Payload 0

Payload 1

Payload 2

offset address
 0xC400_00XX

0x00

0x10

0x20

0x00

0x08

0x10

0x60

Source Addr. Destination Addr.

Payload 3

Control & Status

Source Addr. Destination Addr.

Payload 6

Control & Status

Source Addr. Destination Addr.

Payload 7

Control & Status

0x30

0x40

0x50

0x60

0x70

Payload 3

Payload 4

Payload 5

0x18

0x20

0x28

Payload 6

Payload 7

0x30

0x38

0x40

0x48

0x50

0x58

0x68

0x70

0x78

Payload 8

Payload 9

Payload 10

Payload 11

Payload 12

Payload 13

Payload 14

Source Addr. Destination Addr.

Control & Status

Figure 14.9: DPM for Event Output

14.11. DPM (Dual Port Memory) 499

Control Register
for Event Output

offset address
 0xFFFE_F40X

From Addr. To Addr.

DMA Counter

Current Packet Number

mode dreq int

0x0

0x4

0x8

Figure 14.10: Event Out Control Register

DPM制御レジスタ

DPMの制御レジスタ（図 14.10参照）に以下を設定することで，送信の制御を行う．

制御レジスタ (r/w)

• Mode0: mode bitに 0を設定．すべてのパケットに headrと trailerを付加する．

• Mode1: mode bitに 1を設定．最後に共通の headerと trailerを付加する (すべてのパケットの宛

先が同一となる)．

• Int: 本ビットを 1に設定すると，終了時に EOP(End Of Packet) 割り込みを生成する．

• Dreq: 本ビットを 1に設定すると，DMA Counterに設定した回数分だけ DMAを行う．

• From Addr: 設定された word addressのアドレスに DPM のプロセッサバス側からデータが書か

れた瞬間に DPMから Link0に対して出力を開始する．

• To Addr: 設定された word addressのアドレスに DPM のプロセッサバス側からデータが書かれ

た瞬間に DPMから Link0に対して出力を開始する．

DMA Counter (r/w) DMAの回数を指定する

Current Packet Number (r) 現在送信されているパケット番号（図 14.9の payload番号に相当）を示す

14.11.2 Event Input

図 14.11にイベントリンク入力用DPMの構成を示す．Event in control register（図 14.12参照）に対して，

開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word address)を

設定することにより，複数パケットを一度に受信できる．From Addrと To Addrは人間に分かりやすいよう

にこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されている．From Addr,

To Addr共に，設定された word addressのアドレスに DPM の Responsive Link側からデータが書かれた瞬

間に，DPMからプロセッサバス側に対して出力 (DMA転送)を開始する (dreq bitが設定されている場合）．

int bitの割り込みを利用して，ソフトウェアで受信することもできる．

例えば，Mode0を使用し，From Addrを 0x00に設定しTo Addrを 0x07 (byte address: 0x1c)に設定した

とする．Responsive Link側から Payload0, Payload1の順にDPMに受信データが書かれていく．Responsive

Link側から DPM の 0x06番地にデータが書かれた瞬間に DPMからプロセッサバス側に出力（DMA転送）

を開始する．（この場合，実際には From Addrには意味がない．）

500 第 14章 Responsive Link

あるいは，Mode0を使用し，From Addrを 0x1f(byte address 0x3c)に設定しTo Addrを 0x2f(byte address:

0x7c)に設定し，さらにDMACを continuous modeで使用すると，Payload0～3の領域と Payload4～7の領

域を使用して，主記憶等に用意したDPMよりも大きなメモリ領域（サイクリックバッファ等）に対して，受

信データをハードウェアのみで連続的に自動受信することができる．（DPMのアドレスデコードの範囲内で

は，シャドウアドレスでも CSが生成され DPMにアクセスできるように設計しているため．）

14.11. DPM (Dual Port Memory) 501

DPM for Event Input

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 4

Control & Status

Source Addr. Destination Addr.

Payload 5

Control & Status

Payload 0

Source Addr. Destination Addr.

Control & Status

Payload 1

Payload 2

offset address
 0xC000_00XX

0x00

0x10

0x20

0x00

0x08

0x10

0x60

Source Addr. Destination Addr.

Payload 3

Control & Status

Source Addr. Destination Addr.

Payload 6

Control & Status

Source Addr. Destination Addr.

Payload 7

Control & Status

0x30

0x40

0x50

0x60

0x70

Payload 3

Payload 4

Payload 5

0x18

0x20

0x28

Payload 6

Payload 7

0x30

0x38

Source Addr. Destination Addr.

Control & Status

0x40

Source Addr. Destination Addr.

Control & Status

0x48

Source Addr. Destination Addr.

Control & Status

0x50

Source Addr. Destination Addr.

Control & Status

0x58

Source Addr. Destination Addr.

Control & Status

0x68

Source Addr. Destination Addr.

Control & Status

0x70

Source Addr. Destination Addr.

Control & Status

0x78

Figure 14.11: DPM for Event Input

502 第 14章 Responsive Link

Control Registers
 for Event Input

From Addr. To Addr.

Current Packet Number

mode dreq int

0x0

0x4

0x8

Packet Valid Status0xC

offset address
 0xFFFE_F00X

Figure 14.12: Event in control register

DPM制御レジスタ

DPMの制御レジスタ（図 14.12参照）に以下を設定することで，受信の制御を行う．

制御レジスタ (r/w)

• Mode0: mode bitに 0を設定．すべてのパケットそれぞれに headerと trailerが付加された状態で

DPMに受信される．

• Mode1: mode bitに 1を設定．ヘッダとペイロードを図 14.11のように分離して受信．

• Int: 本ビットを 1に設定すると，受信終了時にプロセッサに受信完了割り込みを発生する．

• Dreq: 本ビットを 1に設定すると，From Addrか To Addrに設定した word addressにパケット

を受信した際に，DMAに対して DREQを発生する．

• From Addr: 設定された word addressのアドレスに DPM の Responsive Link側からデータが書

かれた瞬間に DPMからプロセッサバス側に対して出力を開始する．

• To Addr: 設定されたword addressのアドレスにDPM のResponsive Link側からデータが書かれ

た瞬間に DPMからプロセッサバス側に対して出力を開始する．

Current Packet Number (r) 現在受信しているパケット番号（図 14.11の payload番号に相当）を示す

Packet Valid Status ハードウェアデバッグ用レジスタ

14.11.3 Data Output

図 14.13にデータリンク出力用 DPMの構成を示す．Data out control register（図 14.14参照）に対して，

開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word address)を

設定することにより，複数パケットを一度に送信できる．From Addrと To Addrは人間に分かりやすいよう

にこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されている．From Addr,

To Addr共に，設定された word addressのアドレスにDPM のプロセッサバス側からデータが書かれた瞬間

に，DPMから Link0に対して出力を開始する．

例えば，Mode0を使用し，From Addrを 0x000に設定し To Addrを 0x01f (byte address: 0x07c)に設定

したとする．プロセッサバス側からDMACもしくはプロセッサによって Payload0, Payload1の順にDPMに

データが書かれたとすると，DPMのプロセッサ側から word address 0x01e番地にデータが書かれた瞬間に

DPM から Responsive Linkの Link0に出力を開始する．（この場合，実際には From Addrには意味がない．）

14.11. DPM (Dual Port Memory) 503

あるいは，Mode0を使用し，From Addrを 0x0ff(byte address 0x3fc)に設定し To Addrを 0x1ff(byte ad-

dress: 0x7fc)に設定し，さらにDMACを continuous modeで使用すると，Payload0～15の領域とPayload16

～31の領域を使用して，主記憶等に用意した DPMよりも大きな連続データをハードウェアのみで自動送信

することができる．（DPMのアドレスデコードの範囲内では，シャドウアドレスでも CSが生成され DPMに

アクセスできるように設計しているため．）

DPM for Data Output

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 30

Control & Status

Source Addr. Destination Addr.

Payload 31

Control & Status

Payload 0

Source Addr. Destination Addr.

Control & Status

Payload 1

Payload 2

Payload 34

Payload 35

offset address
 0xCC00_0XXX

0x000

0x040

0x080

0x0C0

0x780

0x7C0

0x000

0x038

0x070

0x770

0x7A8

0x7E0

0x7F8

0x7FC

Figure 14.13: DPM for Data Output

504 第 14章 Responsive Link

Control Register
for Data Output

offset address
 0xFFFE_FC0X

From Addr. To Addr.

DMA Counter

Current Packet Number

mode dreq int

0x0

0x4

0x8

Figure 14.14: Data Out Control Register

DPM制御レジスタ

DPMの制御レジスタ（図 14.14参照）に以下を設定することで，送信の制御を行う．

制御レジスタ (r/w)

• Mode0: (r/w) mode bitに 0を設定．すべてのパケットに headrと trailerを付加する．

• Mode1: (r/w) mode bitに 1を設定．最後に共通の headerと trailerを付加する (すべてのパケッ

トの宛先が同一となる)．

• Int: (r/w) 本ビットを 1に設定すると，終了時に EOP(End Of Packet) 割り込みを生成する．

• Dreq: (r/w) 本ビットを 1に設定すると，DMA Counterに設定した回数分だけ DMAを行う．

• From Addr: (r/w) 設定された word addressのアドレスに DPM のプロセッサバス側からデータ

が書かれた瞬間に DPMから Link0に対して出力を開始する．

• To Addr: (r/w) 設定されたword addressのアドレスにDPM のプロセッサバス側からデータが書

かれた瞬間に DPMから Link0に対して出力を開始する．

DMA Counter (r/w) DMAの回数を指定する

Current Packet Number (r) 現在送信されているパケット番号（図 14.13の payload番号に相当）を示す

14.11.4 Data Input

図 14.15にデータリンク入力用DPMの構成を示す．Data in control register（図 14.16参照）に対して，開

始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word address)を設

定することにより，複数パケットを一度に受信できる．From Addrと To Addrは人間に分かりやすいように

このような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されている．From Addr,

To Addr共に，設定された word addressのアドレスに DPM の Responsive Link側からデータが書かれた瞬

間に，DPMからプロセッサバス側に対して出力 (DMA転送)を開始する (dreq bitが設定されている場合）．

int bitの割り込みを利用して，ソフトウェアで受信することもできる．

例えば，Mode0 を使用し，From Addr を 0x000 に設定し To Addr を 0x01f (byte address: 0x07c) に設

定したとする．Responsive Link 側から Payload0, Payload1,... の順に DPM に受信データが書かれていく．

Responsive Link側から DPMの word address 0x1e番地にデータが書かれた瞬間に DPMからプロセッサバ

ス側に出力（DMA転送）を開始する．（この場合，実際には From Addrには意味がない．）

14.11. DPM (Dual Port Memory) 505

あるいは，Mode0を使用し，From Addrを 0x0ff(byte address 0x3fc)に設定し To Addrを 0x1ff(byte ad-

dress: 0x7fc)に設定し，さらにDMACを continuous modeで使用すると，Payload0～15の領域とPayload16

～31の領域を使用して，主記憶等に用意した DPMよりも大きなメモリ領域（サイクリックバッファ等）に

対して，受信データをハードウェアのみで連続的に自動受信することができる．（DPMのアドレスデコードの

範囲内では，シャドウアドレスでも CSが生成され DPMにアクセスできるように設計しているため．）

DPM for Data Input

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 30

Control & Status

Source Addr. Destination Addr.

Payload 31

Control & Status

Payload 0

Source Addr. Destination Addr.

Control & Status 31

Payload 1

Payload 2

offset address
 0xC800_0XXX

0x000

0x040

0x080

0x0C0

0x780

0x7C0

0x000

0x038

0x070

0x7F8

0x7FC

Source Addr. Destination Addr.

Control & Status 1

0x708

Source Addr. Destination Addr.

Control & Status 0

0x700

Payload 31
0x070

0x0A8

Figure 14.15: DPM for Data Input

506 第 14章 Responsive Link

Control Registers
 for Data Input

From Addr. To Addr.

Current Packet Number

mode dreq int

0x0

0x4

0x8

Packet Valid Status0xC

offset address
 0xFFFE_F80X

Figure 14.16: Data In Control Register

DPM制御レジスタ

DPMの制御レジスタ（図 14.16参照）に以下を設定することで，受信の制御を行う．

制御レジスタ (r/w)

• Mode0: mode bitに 0を設定．すべてのパケットそれぞれに headerと trailerが付加された状態で

DPMに受信される．

• Mode1: mode bitに 1を設定．ヘッダとペイロードを図 14.15のように分離して受信．

• Int: 本ビットを 1に設定すると，受信終了時にプロセッサに受信完了割り込みを発生する．

• Dreq: 本ビットを 1に設定すると，From Addrか To Addrに設定した word addressにパケット

を受信した際に，DMAに対して DREQを発生する．

Current Packet Number (r) 現在受信しているパケット番号（図 14.15の payload番号に相当）を示す

Packet Valid Status ハードウェアデバッグ用レジスタ

14.12 通信方法

14.12.1 手順

1. 通信速度の設定—Responsive Link速度設定レジスタ

2. リンクの初期化—Responsive Link初期化レジスタ

3. ルーティングテーブルのバスリクエスト—Responsive Link　バスリクエストレジスタ

4. ルーティングテーブルの設定

5. ルーティングテーブルのバスリリース—Responsive Link　バスリクエストレジスタ

6. DPMの設定—Event in/out control レジスタおよび，Data in/out control レジスタ

7. DPMにデータを書き込む　→　パケット送信

14.13. Responsive Link の割り込みコントローラ 507

DMAを用いた送信

DPMの容量には当然限界がある．しかし，レスポンシブリンクでは，DMAと DPMが協調して動作する

ことで，DPMの容量を越えるような大きなデータを一度に送信することが可能である．その際の手順は以下

の通りである．ただし，総データ量は N packet分であることを仮定する．

DPMの設定

1. Nの約数のうち最大のものを fとする．ただし，データリンクでは f<36，イベントリンクでは f<15で

あるとする．

2. DPMの DMA Counterを (N/f)-1に設定する．

3. DPMのMODE1 HEADER及びMODE1 TRAILERに宛先およびパケットの持つべき性質 (受信側で

の割込みなど)を設定する．

4. DPMのコントロールレジスタを mode 1,from(0),to(f*0xe+0xd),DREQに設定する．(mode 0で送信

する場合，DMAの転送元にはパケットの形でデータが存在している必要がある．ただし，この場合手

順３は必要無い．)

DMAの設定

1. DMAの送信元を送信したいデータの格納されているメモリの先頭アドレスに設定する．

2. DMAの送信先を送信用 DPMの先頭のアドレスにする．

3. DMAの送信先を送信用 DPMの先頭のアドレスにする．

4. DMAのコントロールレジスタは SAU, RL, MTM, STを ONにする． (この STによる起動が DMA

Counterの設定時に差し引いた 1回に相当する)

14.12.2 相互通信の際の注意点

　相互通信をする際に注意すべきは，二つのボードをつなげてから，まずそれぞれのボードにおいて「通信

速度の設定」を行い，さらに，それぞれのボードにおいて「リンクの初期化」を行う．

当然，通信速度は同じでなければならない．また，リンクの初期化はボードをつなげてから行わないと相互

通信ができないので注意すること．その他の設定は個別に各ボードで行う．（モニタでの相互通信には，リン

クの初期化モジュールを作成し，ボードをつなげたあと，そのモジュールを実行することにより相互通信を

行う．）

14.13 Responsive Link の割り込みコントローラ

IRQ1∼4はDPMのコントロールレジスタの from addrと to addrまでパケットが到達した時の割込みであ

る．また，IRQ1∼6はレスポンシブリンク割込みクリアレジスタ (0xfffe 000c)に対応している．

Initial Address: Responsive Link IRC: 0xfffe1000

508 第 14章 Responsive Link

14.13.1 レジスタマップ

offset 31 24 23 16 15 8 7 0
0x00 31ch 30ch 29ch 28ch 27ch 26ch 25ch 24ch 23ch 22ch 21ch 20ch 19ch 18ch 17ch 16ch
0x04 15ch 14ch 13ch 12ch 11ch 10ch 9ch 8ch 7ch 6ch 5ch 4ch 3ch 2ch 1ch 0x00
0x08 Request Sense Register 0
0x0c Request Clear Register 0
0x10 Mask Register MI

0x14 26’h0 CL IRL Latch
0x18 31’h0 Mode

Table 14.4: Responsive Link レジスタマップのオフセット
Offset Name

0x00 RL IRC TMR0 OFFSET

0x04 RL IRC TMR1 OFFSET

0x08 RL IRC RSR OFFSET

0x0c RL IRC RCR OFFSET

0x10 RL IRC MR OFFSET

0x14 RL IRC ICR OFFSET

0x18 RL IRC MOD OFFSET

Table 14.5: Responsive Link IRC割り込みマップ
IRQ Name

IRQ31∼IRQ14 Reserved

IRQ17 RL EVENT TIMEOUT IRC

IRQ16 RL DATA TIMEOUT IRC

IRQ15 RL ROUTING FATAL IRC

IRQ13 RL DEC RESET IRC

IRQ12 RL IRQ DOWN

IRQ11 RL IRQ WAKEUP

IRQ10 RL IRQ FATAL

IRQ9 RL IRQ TABLE

IRQ8 RL IRQ WAIT

IRQ7 RL IRQ CONT

IRQ6 RL IRQ EVP IN

IRQ5 RL IRQ DAP IN

IRQ4 RL IRQ EV INEOP

IRQ3 RL IRQ DA INEOP

IRQ2 RL IRQ EV OUTEOP

IRQ1 RL IRQ DA OUTEOP

14.13. Responsive Link の割り込みコントローラ 509

IRQ Name Description

RL EVENT TIMEOUT IRC Event Timeout IRQ Event Input DPMに有効なデータが入っている状

態で設定した時間だけアクセスがないと発生

RL DATA TIMEOUT IRC Data Timeout IRQ Data Input DPMに有効なデータが入っている状

態で設定した時間だけアクセスがないと発生

RL ROUTING FATAL IRC Routing Table ECC致

命的エラー割込み (Fa-

tal IRQ)

Routing Tableに回復不可能なエラーが存在する

場合に発生

RL DEC RESET IRC - デコーダーリセットしたときの割込み

RL IRQ DOWN - リンクダウンしたら発生

RL IRQ WAKEUP - リンクアップしたら発生

RL IRQ FATAL 致命的エラー割込み FI

(Fatal IRQ)

受信パケットに回復不可能なエラーが存在する場

合に発生

RL IRQ TABLE ルーティングテーブル

割込み RTIRQ (Rout-

ing IRQ)

ルーティングテーブルにマッチするエントリが存

在しない場合に発生

RL IRQ WAIT 送信停止割込み WIRQ

(Wait IRQ)

パケット追い越し用 SDRAMを使用している際に，

追い越し用 SDRAMが溢れそうになると送信停止

割込みを自動生成する

RL IRQ CONT レスポンシブリンク継

続割込み CI (Continu-

ous IRQ)

SDRAMに退避されたパケットがスイッチに書き

戻された（再送信された）際に発生

RL IRQ EVP IN Event Packet-In IRQ 割込みフラグ付きの eventパケットを受信した際

に発生

RL IRQ DAP IN Data Packet-In IRQ 割込みフラグ付きの dataパケットを受信した際に

発生

RL IRQ EV INEOP Event-In End of Packet Event-In DPMで設定した場所までパケットを受

信した際に発生

RL IRQ DA INEOP Data-In End of Packet Data-In DPMで設定した場所までパケットを受信

した際に発生

RL IRQ EV OUTEOP Event-Out End of

Packet

Event-Outで DPMからパケットを発射した際に

発生

RL IRQ DA OUTEOP Data-Out End of

Packet

Data-OutでDPMからパケットを発射した際に発

生

511

15

DMAC

• 32/16/8 bit I/F

• 入力チャネル：４

• 優先順位：固定優先度及びラウンドロビン

• Memory to memory転送機能

• Bus sizing機能 (8, 16bit I/O用)

• Bus swapping機能 (8, 16bit I/O用)

15.1 レジスタマップ

DMAC 初期アドレス

DMAC0 FFFF0000

DMAC1 FFFF1000

DMAC2 FFFF2000

DMAC3 FFFF3000

DMAC4 FFFF4000

DMAC DIAG FFFF5000

offset 31 24 23 16 15 8 7 0
0x800 - PRI

0x804 - IC

0x40*(x)+0x04 PSA<31:0>
0x40*(x)+0x08 MDA<31:0>
0x40*(x)+0x10 - DASSAUBM RL PCIMTMMR32P16P 8P S16 S8 IERIED ST

0x40*(x)+0x14 - ER ED

0x40*(x)+0x18 LN<31:0>

512 第 15章 DMAC

15.1.1 DMA制御レジスタ

ライト／リード

Offset: 0x800

31 1

-

0
PRI

Field Name Function

PRI PRIority :Default 0 本ビットは DMAチャネルのプライオリティを示す 0:プ

ライオリティはラウンドロビン 1:プライオリティは ch0>ch1>ch2>ch3

15.1.2 DMA割り込みクリアレジスタ

Offset: 0x804

31 1

-

0
IC

Field Name Function

IC Interrupt Clear 本ビットは DMA割り込みのクリアを行う． 0:割り込みクリ

ア

15.1.3 ポート／ソースアドレスレジスタ

Offset: 0x40*(x) +0x04

31 0

PSA<31:0>

Field Name Function

PSA<31:0> Port/Source Address :Default X チャネル xのDMAに対し，本ビットはメモ

リから I/Oへの転送の時（MODEレジスタのMTMビットが０）ポートアド

レスを示し，メモリからメモリへの転送の時（MODEレジスタのMTMビッ

トが１）ソースアドレスを示す．

15.1.4 メモリ／デスティネーションアドレスレジスタ

Offset: 0x40*(x) +0x08

15.1. レジスタマップ 513

31 0

MDA<31:0>

Field Name Function

MDA<31:0> Memory/Destination Address :Default X チャネル xのDMAに対し，本ビッ

トはメモリから I/Oへの転送の時（MODEレジスタのMTMビットが０）メモ

リアドレスを示し，メモリからメモリへの転送の時（MODEレジスタのMTM

ビットが１）デスティネーションアドレスを示す．

15.1.5 転送モード制御レジスタ

Offset: 0x40*(x) +0x10

31 15

-

14
DAS

13
SAU

12
BM

11
RL

10
PCI

9
MTM

8
MR

7
32P

6
16P

5
8P

4
S16

3
S8

2
IER

1
IED

0
ST

ライト／リード

514 第 15章 DMAC

Field Name Function

DAS Destination Address Update :Default X 0:メモリアドレスレジスタで設定し

たアドレスが次の転送にも使用される． 1:メモリアドレスレジスタの値は，最

後に転送を行ったアドレスより１ワード先を示す．

SAU Source Address Update :Default X 0:ポートアドレスレジスタで設定したア

ドレスが次の転送にも使用される． 1:ポートアドレスレジスタの値は，最後に

転送を行ったアドレスより１ワード先を示す．

BM Burst Mode :Default X 0:バースト転送長を Auto Negotiationで決定する．

1:強制的にバースト転送する．基本的に Onにはしないこと

RL Responsive Link :Default X 1:レスポンシブリンク用DPMに対するDMA転

送を行う．

PCI PCI :Default X 1:PCIに対して DMA転送を行う．

MTM Memory To Memory transfer :Default X 0:ポートアドレスレジスタで設定し

た I/Oとメモリ間の DMA転送であることを示す．転送方向はMRビットに

て指定する． 1:ソースアドレスからデスティネーションアドレスへ，レングス

レジスタで設定したバイト数のデータをDMA転送を行う．アドレスカウンタ

は UP方向のみのカウントとする．また，4バイトバウンダリでない転送領域

及びレングスの DMA転送はMemory To Memoryではサポートしない．

MR MR Memory Read :Default X 0:I/Oからメモリへの転送であることを示す．

1:メモリから I/Oへの転送であることを示す．

32P 32bit I/O Port :Default X 0:don ’t care 1:MTMビットが 0の時 32bitの

I/Oポートとの転送であることを示す．この時，ポートアドレスのビット 1，0

は無視される．

16P 16P 16bit I/O Port :Default X 0:don’t care 1:MTMビットが 0の時 16bitの

I/Oポートとの転送であることを示す．この時，ポートアドレスのビット 0は

無視され，ビット１によりどのデータバスに接続されるか（D31-16 or D15-0）

を示す．

8P 8P 8bit I/O Port :Default X 0:don ’t care 1:MTMビットが 0の時 8bitの

I/Oポートとの転送であることを示す．この時，ポートアドレスのビット 1，0

によりどのデータバスに接続されるか（D31-24 or D23-16 or D15-8 or D7-0）

を示す．

S16 Swap at 16bit :Default X 0:don’t care 1: 16bit単位でデータのスワップを

行う． 31 A B C D 0 → 31 C D A B 0

S8 Swap at 8bit :Default X 0:don’t care 1: 8bit単位でデータのスワップを行

う． 31 A B C D 0 → 31 B A D C 0

S16=1,S8=1をセットすると以下のようにスワップされる．

31 A B C D 0 → 31 D C B A 0

IER Interrupt enable of ER-bit :Default 0 0:割込みを発生しない． 1:割込み発生

を許可する．

IED Interrupt enable of ED-bit :Default 0 0:割込みを発生しない． 1:割込み発生

を許可する．

ST Start :Default 0 0:DMA転送を停止させる．0をライト後DMACは初期化さ

れる． 1:DMA転送を起動する．

本レジスタで設定できるモードは次ページの通りであり，それ以外の設定では動作の保証はしない．

15.2. I/O DMAリクエスト 515

転送モード スワップなし スワップあり スワップあり リトルエンディアン

(S16=0,S8=0) (S16=0,S8=1) (S16=1,S8=0) (S16=1,S8=1)

メモリ (32bit) メモリ (32bit) ○ × × ○

メモリ (32bit) I/O 32bit(D31-0) ○ ○ ○ ○

I/O 16bit(D31-16) ○ × × ○

I/O 16bit(D15-0) ○ × × ○

I/O 8bit(D31-24) ○ × × ○

I/O 8bit(D23-16) ○ × × ○

I/O 8bit(D15-8) ○ × × ○

I/O 8bit(D7-0) ○ × × ○

メモリ (D31-16) I/O8bit(D31-24) ○ × × ○

15.1.6 ステータスレジスタ

Offset: 0x40*(x)+0x14 ライト／リード

31 2

-

1
ER

0
ED

Field Name Function

ER Error :Default 0 0:don ’t care 1:DMA転送中にエラーが発生して DMA転

送が停止したことを示す．本ビットは 0をライトするとクリアされる．

ED END :Default 0 0:don’t care 1:DMA転送が終了すると 1に設定される．本

ビットは 0をライトするとクリアされる．

15.1.7 転送レングスレジスタ

Offset: 0x40*(x) +0x18

31 0

LN<31:0>

Field Name Function

LN<31:0> transfer LeNgth :Default X チャネル xのDMAに対し，本レジスタは転送レ

ングスを示す．単位はバイトである．

15.2 I/O DMAリクエスト

DMACの各チャネルには I/Oからの DMAリクエストを受けて転送を自動で開始する機能が存在する．

516 第 15章 DMAC

DMAC0 ch0 reserved

ch1 reserved

ch2 reserved

ch3 reserved

DMAC1 ch0 Extbus0

ch1 ExtBus1

ch2 reserved

ch3 reserved

DMAC2 ch0 RL event in

ch1 RL data in

ch2 RL event out

ch3 RL data out

DMAC3 ch0 SPI0

ch1 SPI1

ch2 ExtBus2

ch3 ExtBus3

DMAC4 ch0 UART0 RX

ch1 UART0 TX

ch2 UART1 RX

ch3 UART1 TX

517

16

DMACDIAG

• 32/16/8 bit I/F

• 入力チャネル：1

• 優先順位：固定優先度及びラウンドロビン

• Memory to memory転送機能

• Bus sizing機能 (8, 16bit I/O用)

• Bus swapping機能 (8, 16bit I/O用)

• DMACモード/Write Onlyモード/Read with Compareモード/Write and Read with Compareモード

DMAC DIAGはDMA Controllerにメモリチェック機能を追加したモジュールである．通常のDMA Con-

torollerの機能に加えて 3種類のメモリチェックモードを持つ．表 16.1に各転送モードの概要を示す．

Table 16.1: DMAC DIAGの転送モード
転送モード 概要

DMACモード 通常の DMA Controllerと同様の転送を行う

Write Onlyモード データバッファの値をサイクリックに書き込む

Read with Compareモード 読み込んだ値とデータバッファの値を比較する

Write and Read データバッファの値をサイクリックに書き込んだ後，

with Compareモード 同じアドレスに対して読み出しを行い，データバッファの値と比較する．

16.1 レジスタマップ

ベースアドレス

DMAC DIAG 0xFFFF5000

518 第 16章 DMACDIAG

offset 31 24 23 16 15 8 7 0
0x800 - PRI

0x804 - IC

0x808 AE - cmp err

0x80C Current Error Address
0x810, 0x818 Error Address
0x814, 0x81C Error Data
0xC00 - 0xC1C Data

0x04 PSA< 31 : 0 >
0x08 MDA< 31 : 0 >
0x10 - DM BL OTEOTMDASSAUBM RL PCIMTMMR32P16P 8P S16 S8 IERIED ST

0x14 - ER ED

0x18 LN< 31 : 0 >
0x400 - Reset
0x404 - AN

0x408 - Compare

16.1.1 DMA制御レジスタ

ライト／リード

Offset: 0x800

31 1

-

0
PRI

Field Name Function

PRI PRIority :Default 0 本ビットは DMAチャネルのプライオリティを示す 0:プ

ライオリティはラウンドロビン 1:プライオリティは ch0 > ch1 > ch2 > ch3

DMAC DIAGのチャンネルは 1つのみであるが、本ビットは DMACとの互

換性を保つため残されている

16.1.2 DMA割り込みクリアレジスタ

Offset: 0x804

31 1

-

0
IC

Field Name Function

IC Interrupt Clear 本ビットは DMA割り込みのクリアを行う． 0:割り込みクリ

ア

16.1. レジスタマップ 519

16.1.3 コンペアリザルトレジスタ

Offset: 0x808

31
AE

30 8

-

7 0
cmp err

Field Name Function

AE All Compare Error: 本ビットはメモリチェックで発生したエラー状況を示す．

0: 全てのメモリチェックが正常 1: 1箇所以上メモリチェックエラーが発生

cmp err Compare Error データバッファとの比較結果を示す． 0: 正常 1: ビット位置

に対応する Data Bufferとの比較時にエラーが発生

16.1.4 カレントエラーアドレスレジスタ

Offset: 0x80C

31 0

Current Error Address

Field Name Function

Current Er-

ror Address

本レジスタはメモリチェックでエラーが発生した最新のアドレスを示す．

16.1.5 エラーアドレスレジスタ

Offset: 0x810, 0x818

31 0

Error Address

Field Name Function

Error Ad-

dress

本レジスタはメモリチェックでエラーが発生したアドレスを示す．

16.1.6 エラーデータレジスタ

Offset: 0x814, 0x81C

31 0

Error Data

520 第 16章 DMACDIAG

Field Name Function

Error Ad-

dress

本レジスタはメモリチェックでエラーが発生した時の読み込んだ値を示す．

16.1.7 データバッファレジスタ

Offset: 0xC00 - 0xC1C

31 0

Data

Field Name Function

Data DMA転送用のバッファ．本バッファを用いて書き込みや比較を行う．

16.1.8 ポート／ソースアドレスレジスタ

Offset: 0x04

31 0

PSA< 31 : 0 >

Field Name Function

PSA< 31 :

0 >

Port/Source Address :Default X チャネル xのDMAに対し，本ビットはメモ

リから I/Oへの転送の時（MODEレジスタのMTMビットが０）ポートアド

レスを示し，メモリからメモリへの転送の時（MODEレジスタのMTMビッ

トが１）ソースアドレスを示す．

16.1.9 メモリ／デスティネーションアドレスレジスタ

Offset: 0x08

31 0

MDA< 31 : 0 >

Field Name Function

MDA< 31 :

0 >

Memory/Destination Address :Default X チャネル xのDMAに対し，本ビッ

トはメモリから I/Oへの転送の時（MODEレジスタのMTMビットが０）メモ

リアドレスを示し，メモリからメモリへの転送の時（MODEレジスタのMTM

ビットが１）デスティネーションアドレスを示す．

16.1. レジスタマップ 521

16.1.10 転送モード制御レジスタ

Offset: 0x10

31 21

-

20 19

DM

18 17

BL

16
OTE

15
OTM

14
DAS

13
SAU

12
BM

11
RL

10
PCI

9
MTM

8
MR

7
32P

6
16P

5
8P

4
S16

3
S8

2
IER

1
IED

0
ST

ライト／リード

522 第 16章 DMACDIAG

Field Name Function

DM Diag Mode : Default 0x0 DMAC DIAG の動作モードを設定する． 0x0:

DMAC Mode（通常の DMACの動作と等しい）0x1: Write Only Mode 0x2:

Read with Compare Mode 0x3: Write and Read with Compare Mode

BL Burst Length : Default 0x0 最大バースト長を設定する． 0x0: 8バースト

0x1: 4バースト 0x3: シングル転送

OTE One Time End : Default 0x0 本ビットが 1の時，One Time Modeでの転送

が終了したことを示す．

OTM One Time Mode : Default 0x0 DMAC DIAGの転送回数を設定する． 0:

DMAC DIAGを通常通り使用する 1: DMAC DIAGを 1度のみ使用する

DAS Destination Address Update :Default X 0:メモリアドレスレジスタで設定し

たアドレスが次の転送にも使用される． 1:メモリアドレスレジスタの値は，最

後に転送を行ったアドレスより１ワード先を示す．

SAU Source Address Update :Default X 0:ポートアドレスレジスタで設定したア

ドレスが次の転送にも使用される． 1:ポートアドレスレジスタの値は，最後に

転送を行ったアドレスより１ワード先を示す．

BM Burst Mode :Default X 0:バースト転送しない． 1:バースト転送する．

RL Responsive Link :Default X 1:レスポンシブリンク用DPMに対するDMA転

送を行う．

PCI PCI :Default X 1:PCIに対して DMA転送を行う．

MTM Memory To Memory transfer :Default X 0:ポートアドレスレジスタで設定し

た I/Oとメモリ間の DMA転送であることを示す．転送方向はMRビットに

て指定する． 1:ソースアドレスからデスティネーションアドレスへ，レングス

レジスタで設定したバイト数のデータをDMA転送を行う．アドレスカウンタ

は UP方向のみのカウントとする．また，4バイトバウンダリでない転送領域

及びレングスの DMA転送はMemory To Memoryではサポートしない．

MR MR Memory Read :Default X 0:I/Oからメモリへの転送であることを示す．

1:メモリから I/Oへの転送であることを示す．

32P 32bit I/O Port :Default X 0:don ’t care 1:MTMビットが 0の時 32bitの

I/Oポートとの転送であることを示す．この時，ポートアドレスのビット 1，0

は無視される．

16P 16P 16bit I/O Port :Default X 0:don’t care 1:MTMビットが 0の時 16bitの

I/Oポートとの転送であることを示す．この時，ポートアドレスのビット 0は

無視され，ビット１によりどのデータバスに接続されるか（D31-16 or D15-0）

を示す．

8P 8P 8bit I/O Port :Default X 0:don ’t care 1:MTMビットが 0の時 8bitの

I/Oポートとの転送であることを示す．この時，ポートアドレスのビット 1，0

によりどのデータバスに接続されるか（D31-24 or D23-16 or D15-8 or D7-0）

を示す．

S16 Swap at 16bit :Default X 0:don’t care 1: 16bit単位でデータのスワップを

行う． 31 A B C D 0 → 31 C D A B 0

S8 Swap at 8bit :Default X 0:don’t care 1: 8bit単位でデータのスワップを行

う． 31 A B C D 0 → 31 B A D C 0

S16=1,S8=1をセットすると以下のようにスワップされる．

31 A B C D 0 → 31 D C B A 0

IER Interrupt enable of ER-bit :Default 0 0:割込みを発生しない． 1:割込み発生

を許可する．

IED Interrupt enable of ED-bit :Default 0 0:割込みを発生しない． 1:割込み発生

を許可する．

ST Start :Default 0 0:DMA転送を停止させる．0をライト後DMACは初期化さ

れる． 1:DMA転送を起動する．

16.1. レジスタマップ 523

本レジスタで設定できるモードは次ページの通りであり，それ以外の設定では動作の保証はしない．

転送モード スワップなし スワップあり スワップあり リトルエンディアン

(S16=0,S8=0) (S16=0,S8=1) (S16=1,S8=0) (S16=1,S8=1)

メモリ (32bit) メモリ (32bit) ○ × × ○

メモリ (32bit) I/O 32bit(D31-0) ○ ○ ○ ○

I/O 16bit(D31-16) ○ × × ○

I/O 16bit(D15-0) ○ × × ○

I/O 8bit(D31-24) ○ × × ○

I/O 8bit(D23-16) ○ × × ○

I/O 8bit(D15-8) ○ × × ○

I/O 8bit(D7-0) ○ × × ○

メモリ (D31-16) I/O8bit(D31-24) ○ × × ○

16.1.11 ステータスレジスタ

Offset: 0x14 ライト／リード

31
L0

30
L1

29
L2

28
L3

27 2

-

1
ER

0
ED

Field Name Function

ER Error :Default 0 0:don ’t care 1:DMA転送中にエラーが発生して DMA転

送が停止したことを示す．本ビットは 0をライトするとクリアされる．

ED END :Default 0 0:don’t care 1:DMA転送が終了すると 1に設定される．本

ビットは 0をライトするとクリアされる．

16.1.12 転送レングスレジスタ

Offset: 0x18

31 0

LN< 31 : 0 >

Field Name Function

LN< 31 :

0 >

transfer LeNgth :Default X チャネル xのDMAに対し，本レジスタは転送レ

ングスを示す．単位はバイトである．

525

17

バスサイジング機能付きDMA

17.1 本DMAの特徴

256 bit ⇔ 32 bitのバスサイジングをしながら転送する．転送時のアドレス及び転送長は 32byteアライン

でなければならない．端数バイトは切り捨てられる．
offset 31 24 23 16 15 8 7 0
0x00 - IC

0x04 PSA<31:0>
0x08 MDA<31:0>
0x10 - DAUSAUBM - MTMMR - IERIED ST

0x14 - ER ED

0x18 LN<31:0>

17.2 制御レジスタ詳細

17.2.1 DMA割り込みクリアレジスタ

Offset: 0x00

31 1

-

0
IC

Field Name Function

IC Interrupt Clear 本ビットは DMA割り込みのクリアを行う． 0:割り込みクリ

ア

526 第 17章 バスサイジング機能付き DMA

17.2.2 ポート／ソースアドレスレジスタ

Offset: 0x04

31 0

PSA<31:0>

Field Name Function

PSA<31:0> Port/Source Address :Default X チャネル xのDMAに対し，本ビットはメモ

リから I/Oへの転送の時（MODEレジスタのMTMビットが０）ポートアド

レスを示し，メモリからメモリへの転送の時（MODEレジスタのMTMビッ

トが１）ソースアドレスを示す．

17.2.3 メモリ／デスティネーションアドレスレジスタ

Offset: 0x08

31 0

MDA<31:0>

Field Name Function

MDA<31:0> Memory/Destination Address :Default X チャネル xのDMAに対し，本ビッ

トはメモリから I/Oへの転送の時（MODEレジスタのMTMビットが０）メモ

リアドレスを示し，メモリからメモリへの転送の時（MODEレジスタのMTM

ビットが１）デスティネーションアドレスを示す．

17.2.4 転送モード制御レジスタ

Offset: 0x10

31 15

-

14
DAU

13
SAU

12
BM

11 10

-

9
MTM

8
MR

7 3

-

2
IER

1
IED

0
ST

ライト／リード

17.2. 制御レジスタ詳細 527

Field Name Function

DAU Destination Address Update :Default X 0:メモリアドレスレジスタで設定し

たアドレスが次の転送にも使用される． 1:メモリアドレスレジスタの値は，最

後に転送を行ったアドレスより１ワード先を示す．

SAU Source Address Update :Default X 0:ポートアドレスレジスタで設定したア

ドレスが次の転送にも使用される． 1:ポートアドレスレジスタの値は，最後に

転送を行ったアドレスより１ワード先を示す．

BM Burst Mode :Default X 0:バースト転送しない． 1:バースト転送する．32bit-

DMACとは異なり、これがないと bmreqを出さないため、基本的には 1にす

る

MTM Memory To Memory transfer :Default X 0:ポートアドレスレジスタで設定し

た I/Oとメモリ間の DMA転送であることを示す．転送方向はMRビットに

て指定する． 1:ソースアドレスからデスティネーションアドレスへ，レングス

レジスタで設定したバイト数のデータをDMA転送を行う．アドレスカウンタ

は UP方向のみのカウントとする．また，4バイトバウンダリでない転送領域

及びレングスの DMA転送はMemory To Memoryではサポートしない．

MR MR Memory Read :Default X 0:I/Oからメモリへの転送であることを示す．

1:メモリから I/Oへの転送であることを示す．

IER Interrupt enable of ER-bit :Default 0 0:割込みを発生しない． 1:割込み発生

を許可する．

IED Interrupt enable of ED-bit :Default 0 0:割込みを発生しない． 1:割込み発生

を許可する．

ST Start :Default 0 0:DMA転送を停止させる．0をライト後DMACは初期化さ

れる． 1:DMA転送を起動する．

17.2.5 ステータスレジスタ

Offset: 0x14 ライト／リード

31 2

-

1
ER

0
ED

Field Name Function

ER Error :Default 0 0:don ’t care 1:DMA転送中にエラーが発生して DMA転

送が停止したことを示す．本ビットは 0をライトするとクリアされる．

ED END :Default 0 0:don’t care 1:DMA転送が終了すると 1に設定される．本

ビットは 0をライトするとクリアされる．

17.2.6 転送レングスレジスタ

Offset: 0x18

528 第 17章 バスサイジング機能付き DMA

31 0

LN<31:0>

Field Name Function

LN<31:0> transfer LeNgth :Default X チャネル xのDMAに対し，本レジスタは転送レ

ングスを示す．単位はバイトである．

529

18

パルスカウンタ

18.1 パルスカウンタ概要

• 位相（2入力）による Up-Down Counter（いわゆるマウスカウンタ）

• Z相によるリセット／割り込み機能（ソフトウェアで選択可能）

• bit幅：32bit

• パルスカウント機能：カウント数がコンペアレジスタにあらかじめ設定されている数になるとパルス（割
り込み）を発生

• 上記パルス発生の許可レジスタ及びステータスレジスタ

• 外部入力

• チャネル数：4

18.2 レジスタインタフェース

18.2.1 パルスカウンタ制御レジスタ

アドレス パルスカウンタ制御レジスタ　

0xFFFF7000 PLSCTRL[0]

0xFFFF7020 PLSCTRL[1]

0xFFFF7040 PLSCTRL[2]

0xFFFF7060 PLSCTRL[3]

リード／ライト時

31
INT

30 12

-

11
IPCE

10
IZE

9
ZF

8
RFZ

7
ST

6
TI

5
SEL

4 3
MD

2
IE

1
CLR

0
CE

530 第 18章 パルスカウンタ

Field Name Function

INT Interrupt :Default 0 ro 0:割込みの発生なし．1:割込みが発生している．割り

込みはパルスカウンタ割り込み，タイマ割り込み，Z相割り込みのいずれかの

要因で発生する．本レジスタをリードすると，パルスカウンタ割り込みとタイ

マ割り込みがクリアされる．

IPCE Int Pulse Counter Enable :Default 0 0：パルスカウンタによる割り込みを発

生させない．1：パルスカウンタによる割り込みを発生させる．カウンタ値が

コンペアデータレジスタの値と等しくなると割り込みを発生する．

IZE Int Z Enable :Default 0 0：Z相入力があった際に，割り込みを発生させない．

1：Z相入力があった際に，割り込みを発生させる．

ZF Z Flag :Default 0 0：現状態は Z相ではない．1：Z相入力があった際に 1に

設定される．クリアする際には 0を書く．Z相割り込み (IZE)を有効にしてい

る場合，0を書くと Z相割り込みをクリアする．

RFZ Reset Flag by phaze Z :Default 0 0：Z相入力によるカウンタのリセットを行

わない．1：Z相入力によるカウンタのリセットを行う．

ST START :Default 0 0：内部タイマをリセットして，停止させる．1：内部タイ

マを起動させる．

TI Timer Interrupt :Default 0 0：内部タイマによる周期割り込みを発生させない．

1：内部タイマによる周期割り込みを発生させる．

SEL Select :Default 0 カウンタのラッチの動作モードの選択を行う．0：カウンタ

値のラッチを行わない．1：内部タイマにより設定された値によって，周期的

にカウンタ値をラッチする．

MD<4:3> Mode :Default 0 00：1逓倍でカウントアップする．01：2逓倍でカウントアッ

プする．10,11：4逓倍でカウントアップする．

IE Interrupt Enable :Default 0 0:割り込み禁止 1:割り込み許可

CLR counter CLear :Default 1 0:カウンタをクリアする 1:don ’t care

CE Count Enable :Default 0 0:カウンタを停止する 1:カウンタを起動する

18.2.2 コンペアデータレジスタ

アドレス コンペアデータレジスタ

0xFFFF7004 CMP[0]

0xFFFF7024 CMP[1]

0xFFFF7044 CMP[2]

0xFFFF7064 CMP[3]

リード／ライト時

31 0

CMP<31:0>

Field Name Function

CMP<31:0> Compare Data :Default X カウンタ値と比較す比較データを格納する．SEL

bitが 0の場合，カウンタがこの値と等しくなると割込みを発生する．

18.2. レジスタインタフェース 531

18.2.3 カウンタレジスタ

アドレス カウンタレジスタ

0xFFFF7008 CNT[0]

0xFFFF7028 CNT[1]

0xFFFF7048 CNT[2]

0xFFFF7068 CNT[3]

リード時

31 0

CNT<31:0>

Field Name Function

CNT<31:0> Count Data :Default X ラッチパルスが入力された時にカウンタの値が本レジ

スタにラッチされる．

18.2.4 タイマレジスタ

アドレス タイマレジスタ

0xFFFF700C TIMER[0]

0xFFFF702C TIMER[1]

0xFFFF704C TIMER[2]

0xFFFF706C TIMER[3]

リード／ライト時

31 0

TIMER<31:0>

Field Name Function

TIMER<31:0> Timer Data :Default X 周期割り込みに使用するタイマ値を設定する．カウン

タクロックをカウントし本タイマ値と等しくなると，SEL bitが 1の場合，割

り込みを発生させる．

533

19

PWM発生器

19.1 PWM発生器概要

• PWM出力：内部レジスタの設定によってデューティ比の異なる矩形波を出力

• Bit幅：32bit

• ノコギリ波を用いて PWMを発生するノコギリ波モードと三角波を用いた三角波モード

• デッドタイムの設定

• 正論理，負論理の設定

• PWMチャネルをグルーピングしてグループ毎に同期可能

• PWMの周期毎の割り込み可能

• 汎用出力としても利用可能

• チャネル数：12

図 19.1にノコギリ波モード，図 19.2に三角波モードの PWM波形を示す．

デッドタイム付反転出力は，隣の PWM発生器から出力することができるようにサイクリックにカスケー

ド接続されている．具体的には，PWM発生器 Nのデッドタイム付反転出力は，REV bitを立てることによ

り，PWM発生器 N+1で利用することができる．

また，カウンタのスタートが同期した PWMのグループを作ることができる．

534 第 19章 PWM発生器

19.2 PWMコントロールレジスタ

アドレス CTRLレジスタ　

0xFFFF7200 PWMCTRL[0]

0xFFFF7220 PWMCTRL[1]

0xFFFF7240 PWMCTRL[2]

0xFFFF7260 PWMCTRL[3]

0xFFFF7280 PWMCTRL[4]

0xFFFF72A0 PWMCTRL[5]

0xFFFF72C0 PWMCTRL[6]

0xFFFF72E0 PWMCTRL[7]

0xFFFF7300 PWMCTRL[8]

0xFFFF7320 PWMCTRL[9]

0xFFFF7340 PWMCTRL[10]

0xFFFF7360 PWMCTRL[11]

リード／ライト

31 10

0

9
INT

8
SYN

7
INV

6
M

5
REV

4
DEN

3
D

2
P

1
CLR

0
CEN

19.2. PWMコントロールレジスタ 535

Field Name Function

INT Invert: Default 0

0: 割り込みを発生させない

1: 割り込みを発生させる

割り込みは，周期の開始時に発生される．

SYN Invert: Default 0

0: カウントの開始を同期しない（CENのみを使用する）

1: カウントの開始を同期する（本 PWM発生器より一つ若い番号の PWM発

生器で生成されたスタート信号を使用する）

本 PWMのカウンタのスタート信号は，CENが 1になった時，または本 SYN

が 1かつ本PWM発生器より一つ若い番号のスタート信号が入力されたときに

アクティブとなる．したがって，ある PWM発生器の CENを，引き続く複数

の PWM発生器で使用することができ，カウンタのスタートが同期した PWM

のグループを作ることができる．

INV Invert: Default 0

0: PWM波をそのまま出力する

1: PWM波を出力する最終段において PWM波を反転して出力する

最も優先度が高い

M Mode: Default 0

0: ノコギリ波で PWMを生成するノコギリ波モード

1: 三角波で PWMを生成する三角波モード

REV Reverse mode enable: Default 0

0: 本 PWM発生器で生成された PWM波を出力する通常モード

1: 本 PWM発生器より一つ若い番号の PWM発生器で生成された PWM波の

デッドタイム付反転出力を出力するモード（本 PWM発生器内のカウンタは

使用しない）

DENより優先度が高い

DEN Data Enable: Default 0

0: 生成した PWM波を出力する

1: D bitに設定された値（一定値）を出力する

REVより優先度が低い

D Data: Default 0

DENが 1の時，本 D bitに設定された値（一定値）を出力する

P Positive: Default 0

PWM波の論理を決定する（図 19.1, 19.2参照）．

0: 負論理

1: 正論理

CLR Counter clear: Default 0

0: 通常動作

1: カウンタをクリアする

CEN Count Enable: Default 0

0: カウンタを停止する

1: カウンタを起動する

536 第 19章 PWM発生器

19.3 PWM周期制御レジスタ

アドレス PWM正転制御レジスタ

0xFFFF7204 FWCNT[0]

0xFFFF7224 FWCNT[1]

0xFFFF7244 FWCNT[2]

0xFFFF7264 FWCNT[3]

0xFFFF7284 FWCNT[4]

0xFFFF72A4 FWCNT[5]

0xFFFF72C4 FWCNT[6]

0xFFFF72E4 FWCNT[7]

0xFFFF7304 FWCNT[8]

0xFFFF7324 FWCNT[9]

0xFFFF7344 FWCNT[10]

0xFFFF7364 FWCNT[11]

リード／ライト

31 0

FWCNT<31:0>

Field Name Function

FWCNT Forward Counter: Default 0

PWMの周期を決定するカウンタレジスタである．

Modeが 0(ノコギリ波モード)の時には，PWMの周期を決定する．PWM用

カウンタが 0から FWCNTまでカウントアップすると，次のクロックで 0に

戻るようなノコギリ波を生成する（図 19.1参照）．

Modeが 1(三角波モード)の時には，PWMの半周期を決定する．PWM用カ

ウンタが 0から FWCNTまでカウントアップすると，次のクロックから 0に

カウントダウンするような三角波を生成する（図 19.2参照）．

19.4. PWM反転制御レジスタ 537

19.4 PWM反転制御レジスタ

アドレス PWM反転制御レジスタ

0xFFFF7208 REVCNT[0]

0xFFFF7228 REVCNT[1]

0xFFFF7248 REVCNT[2]

0xFFFF7268 REVCNT[3]

0xFFFF7288 REVCNT[4]

0xFFFF72A8 REVCNT[5]

0xFFFF72C8 REVCNT[6]

0xFFFF72E8 REVCNT[7]

0xFFFF7308 REVCNT[8]

0xFFFF7328 REVCNT[9]

0xFFFF7348 REVCNT[10]

0xFFFF7368 REVCNT[11]

リード／ライト

31 0

REVCNT<31:0>

Field Name Function

REVCNT Reverse Counter: Default 0

PWM出力を反転する時間を決定するレジスタである．カウンタ値が本レジス

タ値と同じになったら PWM出力は反転する（図 19.1, 19.2参照）．

19.5 デッドタイムレジスタ

アドレス デッドタイムレジスタ

0xFFFF720C DT[0]

0xFFFF722C DT[1]

0xFFFF724C DT[2]

0xFFFF726C DT[3]

0xFFFF728C DT[4]

0xFFFF72AC DT[5]

0xFFFF72CC DT[6]

0xFFFF72EC DT[7]

0xFFFF730C DT[8]

0xFFFF732C DT[9]

0xFFFF734C DT[10]

0xFFFF736C DT[11]

リード／ライト

538 第 19章 PWM発生器

31 16

0

15 0

DT<15:0>

Field Name Function

DT<15:0> Reverse Counter :Default 0

デッドタイムを指定するレジスタである．カウンタ値が本レジスタ値と同じに

なったら PWM出力は反転する（図 19.1, 19.2参照）．

19.5. デッドタイムレジスタ 539

Figure 19.1: ノコギリ波モード

540 第 19章 PWM発生器

Figure 19.2: 三角波モード

541

20

PWM入力器

20.1 PWM入力器概要

• PWM入力のデューティ比を Highカウンタと Lowカウンタの比に数値化

• Bit幅：32bit

• チャネル数：3

• クロックジェネレータ（9章参照）で生成した基準クロックによってカウント

• 複数周期のデューティ比を求めて平均化する機構

• 割り込み発生機能

20.2 PWMINコントロールレジスタ

アドレス PWMINコントロールレジスタ　

0xFFFF7400 PWMINCTRL[0]

0xFFFF7420 PWMINCTRL[1]

リード／ライト

31 10

-

9 6
LP

5 2
LPO

1
CLR

0
IEN

542 第 20章 PWM入力器

Field Name Function

IEN Interrupt Enable :Default 0 r/w 0: 割り込みを発生しない．1: 設定した周期

分のデューティ比をカウント後に毎回割り込みを発生させる．

CLR Interrupt Clear :Default 0 r/w 0:割り込みをクリアしない．1:割り込みをクリ

アする．割り込みクリア完了後に 0にリセットされる．

LPO Loop Original :Default 1 r/w 何周期分のデューティ比を平均化するか，その

周期を設定する（1から 15まで，0は禁止）．

LP Loop :Default 1 ro 現在実行している周期を示す．

20.3 PWMIN HIGHレジスタ

アドレス PWMIN HIGHレジスタ

0xFFFF7404 HIGH[0]

0xFFFF7424 HIGH[1]

リード

31 0

HIGH<31:0>

Field Name Function

HIGH<31:0> High :Default X 指定した PWM周期分合計の Highの期間．単位は，クロッ

クジェネレータでプログラマブルに設定した PWMIN用クロックのサイクル

数．

20.4 PWMIN LOWレジスタ

アドレス PWMIN LOWレジスタ

0xFFFF7408 LOW[0]

0xFFFF7428 LOW[1]

リード／ライト

31 0

LOW<31:0>

Field Name Function

LOW<31:0> Low :Default X 指定した PWM周期分合計の Lowの期間．単位は，クロック

ジェネレータでプログラマブルに設定した PWMIN用クロックのサイクル数．

543

21

Ext Timer

21.1 概要

タイマは一定時間毎に割り込みを発生させるユニットである．

ワード長以外でのアクセスはサポートしない．

21.2 レジスタマップ

21.2.1 アドレスマップ

TIMER 初期アドレス

TIMER0 FFFF7800

TIMER1 FFFF7820

TIMER2 FFFF7840

TIMER3 FFFF7860

Table 21.1: 制御レジスタのアドレスマップ

名称 オフセット アクセス 詳細

Control 0x0 R/W コントロール

Interrupt 0x4 R/W 割り込み

Expiration 0x8 R/W 満了値

Counter 0xC R/W カウンタ

544 第 21章 Ext Timer

offset 31 24 23 16 15 8 7 0
0x00 - P S

0x04 - I

0x08 EXPR
0x0c COUNT

21.2.2 ビットマップ

Control : コントロール

Offset: 0x00

31 2

Reserved

1

P

0

S

Field Name Function

P この bitが 0の場合タイマはワンショットタイマとして動作し，この bitが 1

の場合タイマはピリオディックタイマとして動作する．

S この bitに 1がセットされた場合タイマが動作する．

Interrupt : 割り込み

Offset: 0x04

31 1

Reserved

0

I

Field Name Function

Interrupt (I) タイマが満了すると自動的にセットされる．この bitが 1の場合割り込みが発

生する．

Expiration : 満了値

Offset: 0x08

31 0

EXPR

21.2. レジスタマップ 545

Field Name Function

Expiration

(EXPR)

カウンタがこの値に達した場合に割り込みを発生させる．

Counter : カウンタ

Offset: 0x0c

31 0

COUNTER

Field Name Function

Counter

(COUNTER)

カウンタが満了値に達した場合に割り込みを発生させる．

547

22

64-bit Ext Timer

22.1 概要

タイマは一定時間毎に割り込みを発生させるユニットである．

ワード長以外でのアクセスはサポートしない．

22.2 レジスタマップ

22.2.1 アドレスマップ

TIMER 初期アドレス

TIMER0 FFFF7A00

TIMER1 FFFF7A20

TIMER2 FFFF7A40

TIMER3 FFFF7A60

Table 22.1: 制御レジスタのアドレスマップ

名称 オフセット アクセス 詳細

Control 0x0 R/W コントロール

Interrupt 0x4 R/W 割り込み

Expiration 0x8 R/W 満了値

Counter 0xC R/W カウンタ

548 第 22章 64-bit Ext Timer

offset 31 24 23 16 15 8 7 0
0x00 - P S

0x04 - I

0x08 EXPR (HIGH)

0x0c EXPR (LOW)

0x10 COUNT (HIGH)

0x14 COUNT (LOW)

22.2.2 ビットマップ

Control : コントロール

Offset: 0x00

31 2

Reserved

1

P

0

S

Field Name Function

P この bitが 0の場合タイマはワンショットタイマとして動作し，この bitが 1

の場合タイマはピリオディックタイマとして動作する．

S この bitに 1がセットされた場合タイマが動作する．

Interrupt : 割り込み

Offset: 0x04

31 1

Reserved

0

I

Field Name Function

Interrupt (I) タイマが満了すると自動的にセットされる．この bitが 1の場合割り込みが発

生する．

Expiration : 満了値

Offset: 0x08, 0x0c

31 0

EXPR

22.2. レジスタマップ 549

Field Name Function

Expiration

(EXPR)

カウンタがこの値に達した場合に割り込みを発生させる．

Counter : カウンタ

Offset: 0x10, 0x14

31 0

COUNTER

Field Name Function

Counter

(COUNTER)

カウンタが満了値に達した場合に割り込みを発生させる．

551

23

DDR SDRAM I/F

• 主記憶

– 32/128 bit I/Fのいずれかを選択可能

• Link SDRAM

– 32 bit I/F

• 2/2.5/3の CAS Latencyに対応

• tWTR(Internal Write to Read Command Delay)が 1の DDRチップにのみ対応

• 設定レジスタはワードアクセスのみ有効

23.1 レジスタマップ

DDR SDRAM I/F 初期アドレス

主記憶 I/F FFFFF000

Link SDRAM FFFFE000

offset 31 24 23 16 15 8 7 0
0x0 - State S
0x4 - CS - RAS - CAS
0x8 - EMRS
0xC - MRS2 - MRS1
0x10 -

0x14 - RFC - RP - RCD - MRD
0x18 - RASmax - RASmin
0x1C - REFRESH
0x20 - W

552 第 23章 DDR SDRAM I/F

23.1.1 主記憶 I/F幅設定レジスタ

Offset: 0x20

31 1

-

0

W

Field Name Function

W Width :Default 0 本ビットで主記憶 I/Fのビット幅を設定する．本レジスタ

は主記憶 I/Fでのみ有効である． 0: 32 bit 1: 128 bit

23.1.2 I/F起動レジスタ

Offset: 0x0

31 8

-

7 1

State

0

S

Field Name Function

State State (Read Only) 本ビットは I/Fの内部状態を示す．

S Start :Default 1 本ビットで I/Fの起動/停止を設定する． 0: I/F起動 1: I/F

停止

23.1.3 メモリモジュール設定レジスタ

Offset: 0x4

31 18

-

17 16

CS

15 12

-

11 8

RAS

7 4

-

3 0

CAS

Field Name Function

State CS: Default 2(主記憶 128 bit I/F) 2(主記憶 32 bit I/F) 1(Link SDRAM I/F)

本ビットは各 I/Fの CS出力信号の接続本数を設定する．

RAS Row Address Width: Default 12(主記憶 128 bit I/F) 13(主記憶 32 bit I/F)

13(Link SDRAM I/F)本ビットは各 I/Fに接続されているDDRチップのRow

Address幅を設定する．

CAS Column Address Width: Default 10(主記憶 128 bit I/F) 9(主記憶 32 bit I/F)

9(Link SDRAM I/F) 本ビットは各 I/F に接続されている DDR チップの

Column Address幅を設定する．

23.1. レジスタマップ 553

23.1.4 EMRS設定レジスタ

Offset: 0x8

31 12

-

11 0

EMRS

Field Name Function

EMRS Extended Mode Register Set: Default 0 本レジスタは I/Fの起動時に，DDR

チップの Extended Mode Reigister Set に書き込む値を設定する．

23.1.5 MRS設定レジスタ

Offset: 0xC

31 28

-

27 16

MRS2

15 12

-

11 0

MRS1

Field Name Function

MRS2 Mode Register Set 2: Default 0x21 本レジスタは I/Fの起動時に，DDRチッ

プのMode Reigister Set に二度目に書き込む値を設定する．

MRS1 Mode Register Set 1: Default 0x121 本レジスタは I/Fの起動時に，DDRチッ

プのMode Reigister Set に最初に書き込む値を設定する．

23.1.6 DDR設定レジスタ 1

Offset: 0x14

31 28

-

27 24

RFC

23 20

-

19 16

RP

15 12

-

11 8

RCD

7 4

-

3 0

MRD

554 第 23章 DDR SDRAM I/F

Field Name Function

RFC tRFC: Default 9 本レジスタは，I/Fに接続されている DDRチップの tRFC

値をサイクル単位で指定する．サイクルの周期はDDRチップに与えているク

ロックと同じである．

RP tRP: Default 2 本レジスタは，I/Fに接続されているDDRチップの tRP値を

サイクル単位で指定する．サイクルの周期は DDRチップに与えているクロッ

クと同じである．

RCD tRCD: Default 1 本レジスタは，I/Fに接続されている DDRチップの tRCD

値をサイクル単位で指定する．サイクルの周期はDDRチップに与えているク

ロックと同じである．

MRD tMRD: Default 1 本レジスタは，I/Fに接続されているDDRチップの tMRD

値をサイクル単位で指定する．サイクルの周期はDDRチップに与えているク

ロックと同じである．

23.1.7 DDR設定レジスタ 2

Offset: 0x18

31 30

-

29 16

RASmax

15 14

-

13 0

RASmin

Field Name Function

RASmax tRAS max: Default 0x2328 本レジスタは，I/Fに接続されている DDRチッ

プの tRASmax値をサイクル単位で指定する．サイクルの周期はDDRチップ

に与えているクロックと同じである．

RASmin tRAS min: Default 6 本レジスタは，I/F に接続されている DDR チップの

tRASmin値をサイクル単位で指定する．サイクルの周期は DDRチップに与

えているクロックと同じである．

23.1.8 リフレッシュインターバル設定レジスタ

Offset: 0x18

31 16

-

15 0

REFRESH

Field Name Function

REFRESH REFRESH: Default 0x48a8 本レジスタは，I/Fに接続されている DDRチッ

プのリフレッシュ周期をサイクル単位で指定する．サイクルの周期はDDRチッ

プに与えているクロックと同じである．

23.2. ECC制御レジスタマップ 555

23.2 ECC制御レジスタマップ

DDR SDRAM I/Fの ECC機能を制御する．SRMTPでは 128bit I/F に置いて, 128bit のデータに 16bit

のReedSolomon符号を付与し, 1Biyteのブロックエラー訂正及び 2byteのブロックエラーの検知が可能となっ

ている.

ベースアドレス FFFFF400

offset 31 24 23 16 15 8 7 0
0x0 - E
0x4 - C F
0x8 - Next Error Ptr
0xc Current Error Address -

23.2.1 ECC設定レジスタ

Offset: 0x00

31 1

-

0

E

Field Name Function

E ECC Enable : Default 0 本ビットでは ECCの on/offを設定する． 0: off 1:

on

23.2.2 Fatal/Correctレジスタ

Offset: 0x04

31 2

-

1

C

0

F

Field Name Function

C Correct : 本ビットが 1の場合，エラーが発生したがエラー訂正に成功したこ

とを示す．

F Fatal : 本ビットが 1の場合，訂正できないエラーが発生したことを示す．

556 第 23章 DDR SDRAM I/F

23.2.3 カレントエラーアドレスレジスタ

Offset: 0x08

31 5

Current Error Address

4 0

-

Field Name Function

Current Er-

ror Address

エラーが発生した最新のアドレスを格納する．アドレスは 8wordアラインで

保持される.

23.2.4 ネクストエラーアドレスポインタレジスタ

Offset: 0x0C

31 4

-

3 0

Next Error Ptr

Field Name Function

Next Error

Ptr

次にエラーが発生した場合にエラーアドレスを格納するエラーアドレスバッ

ファの番号を示す． 本レジスタの値 - 1が最新のエラーアドレスを格納する

エラーアドレスバッファである．

23.3 エラーアドレスバッファ

エラーの発生したアドレスを保持するリングバッファ. 最大 8つのエラー情報を保持する.

ベースアドレス FFFFF500 - FFFFF570

offset 31 24 23 16 15 8 7 0
0x0 Error Address -

0x4 - H L
0xc - H L

23.3. エラーアドレスバッファ 557

23.3.1 エラーアドレスバッファレジスタ

Offset: 0x0

31 5

Error Address

4 0

-

Field Name Function

Error Ad-

dress

エラーが発生したアドレスを格納する．アドレスは 8wordアラインで保持さ

れる.

23.3.2 訂正可能エラーバッファレジスタ

Offset: 0x0

31 2

-

1

H

0

L

Field Name Function

H High: 本ビットが 1の場合, 上位 128bitでエラー訂正に成功したことを示す.

L Low: 本ビットが 1の場合, 下位 128bitでエラー訂正に成功したことを示す.

23.3.3 訂正不可能エラーバッファレジスタ

Offset: 0x0

31 2

-

1

H

0

L

Field Name Function

H High: 本ビットが 1の場合, 上位 128bitで訂正できないエラーが発生したこと

を示す.

L Low: 本ビットが 1の場合, 下位 128bitで訂正できないエラーが発生したこと

を示す.

559

24

SRAMコントローラ

24.1 概要

SRAMの機能を制御する．ECC機能の on/offやエラー発生状況などを確認することが可能である．

24.2 SRAMコントローラレジスタマップ

ベースアドレス ffff7c00

offset 31 24 23 16 15 8 7 0
0x0 - E
0x4 - C F
0x8 - Next Error Ptr
0xc - Current Error Address -

24.2.1 ECC設定レジスタ

Offset: 0x00

31 1

-

0

E

560 第 24章 SRAMコントローラ

Field Name Function

E ECC Enable : Default 0 本ビットでは SRAMの ECCの on/offを設定する．

0: off 1: on

24.2.2 Fatal/Correctレジスタ

Offset: 0x04

31 2

-

1

C

0

F

Field Name Function

C Correct : 本ビットが 1の場合，エラーが発生したがエラー訂正に成功したこ

とを示す．

F Fatal : 本ビットが 1の場合，訂正できないエラーが発生したことを示す．

24.2.3 ネクストエラーアドレスポインタレジスタ

Offset: 0x08

31 4

-

3 0

Next Error Ptr

Field Name Function

Next Error

Ptr

次にエラーが発生した場合にエラーアドレスを格納するエラーアドレスバッ

ファの番号を示す． 本レジスタの値 - 1が最新のエラーアドレスを格納する

エラーアドレスバッファである．

24.2.4 カレントエラーアドレスレジスタ

Offset: 0x0c

31 19

-

18 5

Current Error Address

4 0

-

Field Name Function

Current Er-

ror Address

エラーが発生した最新のアドレスを格納する．SRAM内のオフセットを示す

ため実際のアドレスはこれに SRAMのベースアドレス (0x98000000)を足した

ものとなる。

24.3. エラーアドレスバッファ 561

24.3 エラーアドレスバッファ

エラーの発生したアドレスを保持するリングバッファ. 最大 8つのエラー情報を保持する.

ベースアドレス FFFFFD00 - FFFFFD70

offset 31 24 23 16 15 8 7 0
0x0 Error Address -

0x4 - Fatal error map

0xc - Correct error map

24.3.1 エラーアドレスバッファレジスタ

Offset: 0x0

31 5

Error Address

4 0

-

Field Name Function

Error Ad-

dress

エラーが発生したアドレスを格納する．アドレスは 8wordアラインで保持さ

れる.

24.3.2 訂正不可エラーバッファレジスタ

Offset: 0x4

31 8

-

7 0

Fatal error map

Field Name Function

Fatal error

map

上記のエラーアドレスで示された 8word中, 訂正不可エラーの発生した箇所を

示す.

562 第 24章 SRAMコントローラ

24.3.3 訂正可能エラーバッファレジスタ

Offset: 0x8

31 2

-

7 0

Correct error map

Field Name Function

Correct error

map

上記のエラー

アドレスで示

された 8word

中, 訂正可能

エラーの発生

した箇所を示

す.

563

25

Flash I/F

25.1 概要

Flash I/F.フラッシュからのブートとフラッシュへのアクセスについて．

25.2 アドレス空間

Flashと ROMは out cs toggle 信号によりアドレス空間が変動する．

out cs toggle 信号がHighのときはROMのアドレス空間は EXT 0(0x00000000 ～ 0x00ffffff)，Flashのア

ドレス空間は EXT 1(0x40000000 ～ 0x4fffffff)となる．out cs toggle 信号が LowのときはROMのアドレス

空間が EXT 1に，Flashのアドレス空間が EXT 0になる．

Flashからブートさせる場合は out cs toggle 信号を Lowにする．

Flashを EXT 1に接続する場合，システムレジスタ 0x8f の 13bit目を 1にセットする必要がある (Default

設定のままでよい)．それ以外の I/Oを接続する場合は 0に設定しなければならない．

25.3 アクセス

フラッシュに対してソフトウェアでコマンド発行することにより，読み書きを行う．フラッシュはM29W128G

が 32ビットバスに 2つ接続されている．32ビット単位，16ビット単位，8ビット単位でのアクセスが可能．

デフォルトでは 16bitモードで接続されており，後述の設定レジスタにより 8bitモードへの変更が可能．コ

マンドの詳細はM29W128Gのマニュアルを参照．

通常書き込み (ワードアクセス，バイトアクセス)に関してのみ，後述の設定レジスタ (Auto Write Enable)

を利用することでハードウェアにより書き込みコマンドを発行する．その場合はデータ書き込み前に必要とな

るコマンドの発行は不要となり，直接アドレスを指定して書き込むことができる．

25.4 Flash I/F の設定レジスタ

Flash I/F の設定レジスタのアドレスマップは，EXT 8(0x27000000 ～ 0x27ffffff) に割り当てられている．

EXT 8は I/O インターフェースの設定レジスタ専用のアドレス空間であり，外部への制御信号は存在し

ない．

564 第 25章 Flash I/F

Auto Write Enable offset: 0x00

31 1

Reserved

00

EN

Field Name Range Description

EN 0 Default : 0　　

bitが 1の場合は，通常ソフトウェアから行われるWriteコマンドの発行

をハードウェアにより行う．Flashを含む DMA転送を行う場合は，こ

の bitを必ず 1にセットしなければならない．

Byte Mode offset: 0x04

31 1

Reserved

00

Byte

Field Name Range Description

Byte 0 Default : 1　　

バイト単位での書き込みを行う場合は 0にセットしなければならない．

それ以外 (16, 32bit書き込み)の場合は 1にセットしなければならない．

565

26

Universal Asynchronous Receiver/Transmitter

Initial Address: Channel0:0xffff6000 + 0x80 * CH (0 - 3)

26.1 アドレスマップ
offset 31 24 23 16 15 8 7 0
0x0000 RB
0x0000 THR
0x0000 DL1
0x0004 IER
0x0004 DL2
0x0008 IIR
0x0008 FCR
0x000c LCR
0x00010 MCR
0x0014 LSR
0x0018 MSR

26.1.1 Receiver Buffer (RB) / Transmitter Holding Register (THR)

Offset: 0x0000

7 0

Field Name Function

7-0 送信 FIFO の入力および受信 FIFO の出力．

566 第 26章 Universal Asynchronous Receiver/Transmitter

26.1.2 Interrupt Enable Register (IER)

Offset: 0x0004

7 6 5 4 3 2 1 0

Field Name Function

0 Received Data availble interrupt. (Buffer trigger)

‘ 0 ’- Disabled.

‘ 1 ’- Enabled.

1 Received Data availble interrupt. (Time out)

‘ 0 ’- Disabled.

‘ 1 ’- Enabled.

2 Transmitter Holding Register empty interrupt.

‘ 0 ’- Disabled.

‘ 1 ’- Enabled.

3 Receiver Line Status Interrupt.

‘ 0 ’- Disabled.

‘ 1 ’- Enabled.

4 Modem Status Interrupt.

‘ 0 ’- Disabled.

‘ 1 ’- Enabled.

5 Create DMA-request when recieved data available. (UART 0,1 only)

‘ 0 ’- Disabled.

‘ 1 ’- Enabled.

6 Create DMA-request when transmitter holding register empty. (UART 0,1

only)

‘ 0 ’- Disabled.

‘ 1 ’- Enabled.

7 Reserved. Should be logic‘ 0 ’.

26.1.3 Interrupt Identification Register (IIR)

Offset: 0x0008

7 6 5 4 3 1 0

26.1. アドレスマップ 567

Field Name Function

0 When this is‘ 0’, an interrupt is pending. When this is‘ 1’, no interrupt

is pending.

3-1 The following table displays the list of possible interrupts along with the bits

they enable, priority, and their source and reset control.

Prio- Interrupt Interrupt Source Interrupt Reset

rity Type Control

011 1th Receiver Parity, Overrun or Reading the Line

Line Framing errors or Status Register

Status Break Interrupt

010 2nd Receiver FIFO trigger level FIFO drops below

Data reached trigger level

available

110 2nd Timeout There’s at least 1 Reading from the

Indication character in the FIFO FIFO (Receiver

but no character has Buffer Register)

been input to the

FIFO or read from

it for the last 4

char times.

001 3rd Transmitter Transmitter Holding Writing to the

Holding Register Empty Transmitter Holding

Register Register or reading

empty the IIR

000 4th Modem CTS, DSR, RI or Reading the Modem

Status DCD Status Register

5-4 Reserved. Should be logic‘ 0 ’.

7-6 Reserved. Should be logic‘ 1 ’for compatibility reason.

26.1.4 FIFO Control Register (FCR)

Offset: 0x0008

7 6 5 3 2 1 0

568 第 26章 Universal Asynchronous Receiver/Transmitter

Field Name Function

0 Ignored(Used to enable FIFOs in NS16550D). Since this UART only supports

FIFO mode, this bit is ignored.

1 Writing a‘ 1 ’to bit 1 clears the Receiver FIFO and resets its logic. But

it doesn ’t clear the shift register, i.e. receiving of the current character

continues.

2 Writing a‘ 1 ’ to bit 2 clears the Transmitter FIFO and resets its logic.

The shift register is not clreared, i.e. transmitting of the current character

continues.

5-3 Ignored.

7-6 7-6 Define the Receiver FIFO Interrupt trigger level.

‘ 00 ’- 1 bytes

‘ 01 ’- 4 bytes

‘ 10 ’- 8 bytes

‘ 11 ’- 16 bytes

26.1.5 Line Control Register (LCR)

Offset: 0x000c

7 6 5 4 3 2 1 0

26.1. アドレスマップ 569

Field Name Function

1-0 Select number of bits in each character.

‘ 00 ’- 5 bits

‘ 01 ’- 6 bits

‘ 10 ’- 7 bits

‘ 11 ’- 8 bits

2 Specify the number of generated stop bits.

‘ 0 ’- 1 stop bit.

‘ 1’- 1.5 stop bits when 5-bit character length selected and 2 bits otherwise.

Note that the receiver always checks the first stop bit only.

3 Parity Enable.

‘ 0 ’- No parity

‘ 1 ’- Parity bit is generated on each outgoing character and is checked on

each incoming one.

4 Even Parity select.

‘ 0’- Odd number of‘ 1’is transmitted and checked in each word (data

and parity combined). In other words, if the data has an even number of‘ 1’

in it, then the parity bit is‘ 1 ’.

‘ 1 ’- Even number of‘ 1 ’is transmitted in each word.

5 Stick Parity bit.

‘ 0 ’- Stick Parity disabled.

‘ 1’- If bits 3 and 4 are logic‘ 1’, the parity bit is transmitted and checked

as logic‘0’. If bit 3 is‘1’and bit 4 is‘0’then the parity bit is transmitted

and checked as‘ 1 ’.

6 Break Control bit.

‘ 1 ’- The srial out is forced into logic‘ 0 ’(break state).

‘ 0 ’- Break is disabled.

7 Divisor Latch Access bit.

‘ 1 ’- The divisor latches can be accessed.

‘ 0 ’- The normal registers are accessed.

26.1.6 Modem Control Register (MCR)

Offset: 0x0010

7 5 4 3 2 1 0

570 第 26章 Universal Asynchronous Receiver/Transmitter

Field Name Function

0 Data Terminal Ready (DTR) signal control.

‘ 0 ’- DTR is‘ 1 ’

‘ 1 ’- DTR is‘ 0 ’

1 Request To Send (RTS) signal control

‘ 0 ’- RTS is‘ 1 ’

‘ 1 ’- RTS is‘ 0 ’

2 Out1. In loopback mode, connected Ring Indicator (RI) signal input.

3 Out2. In loopback mode, connected to Data Carrier Detect (DCD) input.

4 Loopback mode.

‘ 0 ’- normal operation.

‘ 1 ’- loopback mode. When in loopback mode, the Serial Output Signal

(STX PAD O) is set to logic‘1‘ . The signal of the transmitter shift register

is internally connected to the input of the receiver shift register.

The following connections are made:

DTR → DSR

RTS → CTS

Out1 → RI

Out2 → DCD

7-5 Ignored.

26.1.7 Line Status Register (LSR)

Offset: 0x0014

7 6 5 4 3 2 1 0

26.1. アドレスマップ 571

Field Name Function

0 Data Ready (DR) indicator.

‘ 0 ’- No characters in the FIFO.

‘ 1 ’- At least one character has been received and is in the FIFO.

1 Overrun Error (OE) INDICATOR.

‘1’- If the FIFO is full and another character has been received in the receiver

shift register. If another character is starting to arrive, it will overwrite the

data in the shift register but the FIFO will remain intact. The bit is cleared

upon reading from the register. Generates Receiver Line Status interrupt.

‘ 0 ’- No overrun state.

2 Parity Error (PE) indicator.

‘ 1 ’ - The character that is currently at the top of the FIFO has been

received with parity error. The bit is cleared upon reading from the register.

Generate Receiver Line Status interrupt.

‘ 0 ’- No parity error in the current character.

3 Framing Error (FE) indicator.

‘1’- The received character at the top of the FIFO did not have a valid stop

bit. The UART core tries re-synchronizing by assuming that the bit received

was a start bit. Of course, generally, it might be that all the following data

is corrupt. The bit is cleared upon reading from the register. Generates

Receiver Line Status interrupt.

‘ 0 ’- No framing error in the current character.

4 Break Interrupt (BI) indicator.

‘ 1 ’- A break condition has been reached in the current character. The

break occurs when the line is held in logic 0 for a time of one character (start

bit + data + parity + stop bit). In that case, one zero character enters the

FIFO and the UART waits for a valid start bit to receive next character.

The bit is cleared upon reading from the register. Generates Receiver Line

Status interrupt.

‘ 0 ’- No break condition in the current character.

5 Transmit FIFO is empty.

‘ 1 ’ - The transmitter FIFO is empty. Generates Transmitter Holding

Register Empty interrupt. The bit is cleared in the following cases: The

LSR has been read, the IIR has been read or data has been written to the

transmitter FIFO.

‘ 0 ’- Otherwise.

6 Transmitter Empty indicator.

‘ 1 ’- Both the transmitter FIFO and transmitter shift register are empty.

The bit is cleared upon reading from the register or upon writing data to the

transmit FIFO.

‘ 0 ’- Otherwise.

7 ‘ 1’- At least one parity error, framing error or break indications have been

received and are inside the FIFO. The bit is cleared upon reading from the

register.

‘ 0 ’- Otherwise.

572 第 26章 Universal Asynchronous Receiver/Transmitter

26.1.8 Modem Status Register (MSR)

Offset: 0x0018

7 6 5 4 3 2 1 0

Field Name Function

0 Delta Clear To Send (DCTS) indicator.

‘ 1 ’- The CTS line has changed its state.

1 Delta Data Set Ready (DDSR) indicator.

‘ 1 ’- The DSR line has changed its state.

2 Trailing Edge of Ring Indicator (TERI) detector. The RI line has changed

its state from low to high state.

3 Delta Data Carrier Detect (DDCD) indicator.

‘ 1 ’- The DCD line has changed its state.

4 Complement of the CTS input or equals to RTS in loopback mode.

5 Complement of the DSR input or equals to DTR in loopback mode.

6 Complement of the RI input or equals to Out1 in loopback mode.

7 Complement of the DCD input or equals to Out2 in loopback mode.

26.1.9 Divisor Latches (DL)

Offset: 0x0000(DL1), 0x0004(DL2)

The divisor latches can be accessed by setting the 7th bit of LCR to‘ 1’. You should restore this bit to

‘ 0 ’after setting the divisor latches in order to restore access to the other registers that occupy the same

addresses.

7 0

DL1

7 0

DL2

26.2. 動作/使用方法 573

Field Name Function

DL1, DL2 The 2 bytes form one 16-bit register, which is internally accessed as a single

number. You should therefore set all 2 bytes of the register to ensure normal

operation. The register is set to the default value of 0 on reset, which disables

all serial I/O operations in order to ensure explicit setup of the register in

the software. The value set should be equal to (system clock speed) / (16

times desired baud rate). The internal counter starts to work when the LSB

of DL is written, so when setting the divisor, write the MSB first and the

LSB last.

26.2 動作/使用方法

This UART core is very similar in operation to the standard 16550 UART chip with the main exception

being that only the FIFO mode is supported. The scratch register is removed, as it serves no purpose.

26.2.1 Initialization

Upon reset the core performs the following tasks:

• The receiver and transmitter FIFOs are cleared.

• The receiver and transmitter shift registers are cleared.

• The Divisor Latch register is set to 0.

• The Line Control Register is set to communication of 8 bits of data, no parity, 1 stop bit.

• All interrupts are disabled in the Interrupt Enable Register.

For proper operation, perform the following:

• Set the Line Control Register to the desired line control parameters. Set bit 7 to‘ 1’to allow access

to the Divisor Latches.

• Set the Divisor Latches, MSB first, LSB next.

• Set bit 7 of LCR to 0 to disable access to Divisor Latches. At this time the transmission engine starts

working and data can be sent and received.

• Set the FIFO trigger level. Generally, higher trigger level values produce less interrupt to the system,

so setting it to 14 bytes is recommended if the system responds fast enough.

• Enable desired interrupts by setting appropriate bits in the Interrupt Enable register.

Remember that (Input Clock Speed)/(Divisor Latch value) = 16 × the communication baud rate. Since

the protocol is asynchronous and the sampling of the bits is performed in the perceived middle of the bit

time, it is highly immune to small differences in the clocks of the sending and receiving sides, yet no such

assumption should be made calculating the Divisor Latch values.

575

27

Serial Peripheral Interface Unit

27.1 Outline

Serial Peripheral Interface Unitはクロック同期式のシリアルインターフェースであり，SPIの規格に準拠

した周辺機器を制御する．本ユニットは 4つのスレーブに対応するが，M-RMTPではチップセレクト (cs)

が 3本しか外に出ていないため，スレーブ 3の設定は意味を持たない．

27.2 Interface

27.2.1 Address Format

Serial Peripheral Interface Unitの初期ベースアドレスは 0xffffb000である．SPI Unitは 2チャンネル実装

されており，それぞれのベースアドレスは以下のようになっている．

0xffffb000 : チャネル 0

0xffffb040 : チャネル 1

SPI Unitの制御レジスタのアドレスは次のようになる．

5 0

Offset

Field Name Range Description

Offset 5:0 設定する項目を指定する．

576 第 27章 Serial Peripheral Interface Unit

27.2.2 Control Register

Serial Peripheral Interface Unitの制御を行う場合，以下に示すOffsetをアドレスのOffsetに指定すること

により，該当設定レジスタにアクセスする．

Slave Control offset: 0x00

Slaveの設定を行う．

31 5

Reserved

4 1

SS

0

A

Field Name Range Description

Auto (A) 0 1に設定すると FIFOに最初に書き込まれたデータを繰り返し転送する．

0を設定すると，マニュアルで SPIの転送を行う．

Slave Select (SS) 4:1 Auto bitが 0の場合は，アクセスする Slaveを指定する．複数の bitが

0の場合，下位の bitが優先される．Auto bitが 1の場合は，自動でア

クセス Slaveを指定する．複数の bitが 0の場合，下位の bitから順番に

アクセスを行う．

27.2. Interface 577

FIFO Control offset: 0x04

FIFOの設定を行う．

31 10

Reserved

9 8

CLR

7 4

DREQ

3 0

INTR

Field Name Range Description

Interrupt (INTR) 3:0 1を設定した場合，要因により割り込みを発生させる．
0: 受信 FIFOにデータが半分たまると割り込みを発生させる．

1: 受信 FIFOがいっぱいになると割り込みを発生させる

2: 送信 FIFOのデータが半分未満になると割り込みを発生させる．

3: 送信 FIFOが空になると割り込みを発生させる．

DMA Request

(DREQ)

7:4 1を設定した場合，要因により DMA Requestを発生させる．
4: 受信 FIFOにデータが半分たまると DMA Requestを発生させる．

5: 受信 FIFOがいっぱいになると DMA Requestを発生させる．

6: 送信 FIFOのデータが半分より少くなると DMA Requestを発生させる．

7: 送信 FIFOがからになると DMA Requestを発生させる．

Clear (CLR) 9:8 1にすると FIFOをクリアする．この bitは自動的に 0になる．
8: 受信 FIFOをクリアする．

9: 送信 FIFOをクリアする．

FIFO Status offset: 0x08 (Read Only)

31 6

Reserved

5

TF

4

TH

3

TE

2

RF

1

RH

0

RE

Field Name Range Description

Rx Empty (RE) 0 受信 FIFOが空の場合 1になる．

Rx Half (RH) 1 受信 FIFOに半分以上データがたまっている場合 1になる．

Rx Full (RF) 2 受信 FIFOがいっぱいの場合 1になる．

Tx Empty (RE) 3 送信 FIFOが空の場合 1になる．

Tx Half (RH) 4 送信 FIFOに半分以上データがたまっている場合 1になる．

Tx Full (RF) 5 送信 FIFOがいっぱいの場合 1になる．

578 第 27章 Serial Peripheral Interface Unit

FIFO offset: 0x0c

31 0

FIFO

Field Name Range Description

FIFO 31:0 書き込みの場合は送信 FIFOに値が書き込まれる．Slave Controlレジス

タのAuto bitが 0の場合，値を書き込むことにより，データの転送を開

始する．読み込みの場合は受信 FIFOから値が読み出される．

Interrupt offset: 0x10

割り込みの要因を示す．1を書き込むことにより，その bitをクリアする．

31 4

Reserved

3

TE

2

TH

1

RF

0

RH

Field Name Range Description

Rx Half (RH) 0 受信 FIFOに半分以上データがたまっている．

Rx Full (RF) 1 受信 FIFOがいっぱいである．

Tx Half (RH) 2 送信 FIFOのデータが半分未満になった．

Tx Empty (RE) 3 送信 FIFOが空である．

Interval offset: 0x14

31 0

Interval

Field Name Range Description

Interval 31:0 Slave ControlレジスタのAuto bitが 1の場合，Slaveに対する一連のア

クセスが終わった後の待ち時間を指定する．

27.2. Interface 579

Mode0 offset: 0x20

Slave Select0用の設定を行なう．

31

W

30

R

29

L

28 24

Size

23

OL

22

HA

21 0

Clock Ratio

Field Name Range Description

Clock Ratio 21:0 同期クロックで出力するクロックの分周率を指定する．実際には指定し

た数値 × 2で SPIの内部クロックを分周し，出力する．0を指定した場

合は 222 × 2分周される．デフォルトは 0．

HA, OL 23:22 SPIの動作モードを指定する．
0x0 同期クロックは正極性．立ち上りでデータを受け取る．

0x1 同期クロックは正極性．立ち下りでデータを受け取る．

0x2 同期クロックは負極性．立ち下りでデータを受け取る．

0x3 同期クロックは負極性．立ち上りでデータを受け取る．

Size 28:24 データの転送サイズ．指定した値 + 1 bitを転送する．

LSB (L) 29 1を指定すると LSBから転送を開始する．0の場合はMSBから転送す

る．

Read Enable (R) 30 0を指定すると外部からの入力を読み込み，受信 FIFOに値を格納する．

1の場合は外部からのデータを読み込まない．

Write Enable (W) 31 0を指定すると送信 FIFOのデータを外部に転送する．1の場合はデー

タを送信しない．

580 第 27章 Serial Peripheral Interface Unit

Mode1 offset: 0x24

Slave Select1用の設定を行なう．

31

W

30

R

29

L

28 24

Size

23

OL

22

HA

21 0

Clock Ratio

Field Name Range Description

Clock Ratio 21:0 同期クロックで出力するクロックの分周率を指定する．実際には指定し

た数値 × 2で SPIの内部クロックを分周し，出力する．0を指定した場

合は 222 × 2分周される．デフォルトは 0．

HA, OL 23:22 SPIの動作モードを指定する．
0x0 同期クロックは正極性．立ち上りでデータを受け取る．

0x1 同期クロックは正極性．立ち下りでデータを受け取る．

0x2 同期クロックは負極性．立ち下りでデータを受け取る．

0x3 同期クロックは負極性．立ち上りでデータを受け取る．

Size 28:24 データの転送サイズ．指定した値 + 1 bitを転送する．

LSB (L) 29 1を指定すると LSBから転送を開始する．0の場合はMSBから転送す

る．

Read Enable (R) 30 0を指定すると外部からの入力を読み込み，受信 FIFOに値を格納する．

1の場合は外部からのデータを読み込まない．

Write Enable (W) 31 0を指定すると送信 FIFOのデータを外部に転送する．1の場合はデー

タを送信しない．

27.2. Interface 581

Mode2 offset: 0x28

Slave Select2用の設定を行なう．

31

W

30

R

29

L

28 24

Size

23

OL

22

HA

21 0

Clock Ratio

Field Name Range Description

Clock Ratio 21:0 同期クロックで出力するクロックの分周率を指定する．実際には指定し

た数値 × 2で SPIの内部クロックを分周し，出力する．0を指定した場

合は 222 × 2分周される．デフォルトは 0．

HA, OL 23:22 SPIの動作モードを指定する．
0x0 同期クロックは正極性．立ち上りでデータを受け取る．

0x1 同期クロックは正極性．立ち下りでデータを受け取る．

0x2 同期クロックは負極性．立ち下りでデータを受け取る．

0x3 同期クロックは負極性．立ち上りでデータを受け取る．

Size 28:24 データの転送サイズ．指定した値 + 1 bitを転送する．

LSB (L) 29 1を指定すると LSBから転送を開始する．0の場合はMSBから転送す

る．

Read Enable (R) 30 0を指定すると外部からの入力を読み込み，受信 FIFOに値を格納する．

1の場合は外部からのデータを読み込まない．

Write Enable (W) 31 0を指定すると送信 FIFOのデータを外部に転送する．1の場合はデー

タを送信しない．

582 第 27章 Serial Peripheral Interface Unit

Mode3 offset: 0x2c

Slave Select3用の設定を行なう．

31

W

30

R

29

L

28 24

Size

23

OL

22

HA

21 0

Clock Ratio

Field Name Range Description

Clock Ratio 21:0 同期クロックで出力するクロックの分周率を指定する．実際には指定し

た数値 × 2で SPIの内部クロックを分周し，出力する．0を指定した場

合は 222 × 2分周される．デフォルトは 0．

HA, OL 23:22 SPIの動作モードを指定する．
0x0 同期クロックは正極性．立ち上りでデータを受け取る．

0x1 同期クロックは正極性．立ち下りでデータを受け取る．

0x2 同期クロックは負極性．立ち下りでデータを受け取る．

0x3 同期クロックは負極性．立ち上りでデータを受け取る．

Size 28:24 データの転送サイズ．指定した値 + 1 bitを転送する．

LSB (L) 29 1を指定すると LSBから転送を開始する．0の場合はMSBから転送す

る．

Read Enable (R) 30 0を指定すると外部からの入力を読み込み，受信 FIFOに値を格納する．

1の場合は外部からのデータを読み込まない．

Write Enable (W) 31 0を指定すると送信 FIFOのデータを外部に転送する．1の場合はデー

タを送信しない．

Configuration offset: 0x30 (Read Only)

31 2

Reserved

1 0

FS

Field Name Range Description

FIFO Size (FS) 1:0 FIFOのサイズを示す．
0x1 : 8 Entry

0x2 : 16 Entry

0x3 : 32 Entry

27.3. Operation 583

27.3 Operation

本 SPI Unit は 4 本の Slave Select を持ち，各 Slave に対して個別の設定を行うことができる．設定は各

SlaveのModeレジスタで行う．

本 SPI Unitは Slaveへのアクセスの方法として，自動で継続的に Slaveから値を読み込むモードと，1つ 1

つ送受信を行うモードがある．

27.3.1 Manual Mode

1 つ 1 つ送受信を行う場合，Slave Control レジスタの Auto bit を 0 にし，アクセスする Slave を Slave

Controlレジスタの Slave Select bitで指定する．

値を送信したい場合は，各 SlaveのModeレジスタのW bitを 0にする．送信したい値を FIFOに書き込

むことにより，インターフェースから値が送信される．

値を受信したい場合は，各 SlaveのModeレジスタの R bitを 0にする．FIFOに値を書き込むことにより

インターフェスが動作し，Slaveから値を受信する．受信した値は受信 FIFOに書き込まれる．

SPIは送受信を同時に行うことができる．各 SlaveのModeレジスタのW bitと R bitを両方 0にするこ

とにより，送受信を同時に行う．

27.3.2 Auto Mode

Auto Modeは Slaveから自動で継続的に値を読み出す場合に使用する．Slave ControlレジスタのAuto bit

を 1にすることにより Auto Modeとして動作する．値を読み出す Slaveは Slave Controlレジスタの Slave

Select bitで指定する．

各 Slaveに対するアクセスは各 SlaveのModeレジスタの設定による．そのため，Modeレジスタの R bit

を 0にし，W bitを 1にする必要がある．

Auto Modeでは，SPI Unitは Slave Controlレジスタの Slave Select bitが 0になっている Slaveに対し

て下位側 (0番)から順番にアクセスを行う．指定された全ての Slaveに対してアクセスを行った後，Interval

レジスタで指定されているサイクル数だけ待った後，指定された Slaveに対してアクセスを開始する．

585

28

Parallel I/O Unit

28.1 Outline

Parallel I/O Unitは 8 bitの入出力を提供する．

28.2 Interface

28.2.1 Address Format

Parallel I/O Unitの初期ベースアドレスは 0xffffc000である．Parallel I/O Unitの制御レジスタのアドレ

スは次のようになる．

4 0

Offset

Field Name Range Description

Offset 4:0 設定する項目を指定する．

28.2.2 Control Register

Parallel I/O Unitの制御を行う場合，以下に示す Offsetをアドレスの Offsetに指定することにより，該当

設定レジスタにアクセスする．

586 第 28章 Parallel I/O Unit

Data offset: 0x00

31 8

Reserved

7 0

Data

Field Name Range Description

Data 7:0 bitが入力の場合は，読むことにより外部からの入力を得る．bitが出力

の場合は，書き込むことにより外部に出力を与える．

Direction offset: 0x04

31 8

Reserved

7 0

Direction

Field Name Range Description

Direction 7:0 0の場合は入力．1の場合は出力となる．

Interrupt Enable offset: 0x08

31 8

Reserved

7 0

Interrupt Enable

Field Name Range Description

Interrupt Enable 7:0 1の場合，Dataレジスタの対応する値が変化した時に割り込みを発生させ

る．割り込み発生条件は Interrupt Upedgeレジスタ，Interrupt Downedge

レジスタで設定する．

28.2. Interface 587

Interrupt Sense offset: 0x0c

31 8

Reserved

7 0

Interrupt Sense

Field Name Range Description

Interrupt Sense 7:0 割り込みの発生要因になった bitに 1がセットされる．このレジスタに

1を書き込むと，対応する bitがクリアされる．

Interrupt Upedge offset: 0x10

31 8

Reserved

7 0

Interrupt Upedge

Field Name Range Description

Interrupt Upedge 7:0 1の場合，データが 0から 1に変化した時に割り込みを発生させる．

Interrupt Downedge offset: 0x14

31 8

Reserved

7 0

Interrupt Downedge

Field Name Range Description

Interrupt Downedge 7:0 1の場合，データが 1から 0に変化した時に割り込みを発生させる．

588 第 28章 Parallel I/O Unit

Configuration offset: 0x18 (Read Only)

31 2

Reserved

1 0

BW

Field Name Range Description

Bit Width (BW) 1:0 Parallel I/Oの Bit Widthを示す．

0x1 : 8 Bit 0x2 : 16 Bit 0x3 : 32 Bit

28.3 Operation

Parallel I/Oは 8 bitの幅を持ち，bitごとに入出力の方向を設定することができる．設定は Directionレジ

スタで行う．

入力の場合，Parallel I/Oに入力されるクロックにより，I/Oピンのデータが Dataレジスタにラッチされ

る．出力の場合，Dataレジスタの値が I/Oピンに出力される．

各 bitは指定した条件により割り込みを発生させることができる．割り込みを発生させるためには，Interrupt

Enableレジスタの対応する bitをを 1にセットする．また，割り込み発生条件により，Interrupt Upedgeレ

ジスタ，Interrupt Downedgeレジスタの対応する bitを 1にセットする．両方 1にセットした場合，値が変

化するたびに割り込みが発生する．

589

29

I2C Master Controller

29.1 Outline

I2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange

between devices. It is most suitable for applications requiring occasional communication over a short dis-

tance between many devices. The I2C standard is a true multi-master bus including collision detection and

arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

29.2 Interface

29.2.1 Address Format

I2C Master Controllerのベースアドレスは 0xffffc800である．I2C Master Controllerの制御レジスタのア

ドレスは次のようになる．

4 0

Offset

Field Name Range Description

Offset 4:0 設定する項目を指定する．

29.2.2 Control Register

I2C Master Controllerの制御を行う場合，以下に示す Offsetをアドレスの Offsetに指定することにより，

該当設定レジスタにアクセスする．

590 第 29章 I2C Master Controller

Clock Prescale (lo-byte) offset: 0x00

31 8

Reserved

7 0

scale

Clock Prescale (hi-byte) offset: 0x04

31 8

Reserved

7 0

scale

Field Name Range Description

scale 7:0 This register is used to prescale the SCL clock line. Due to the struc-

ture of the I2C interface, the core uses a 5*SCL clock internally. The

prescale register must be programmed to this 5*SCL frequency (minus

1). Change the value of the prescale register only when the ’EN’ bit is

cleared.

Example: wb clk i = 32MHz, desired SCL = 100KHz

prescale =
32MHz

5 ∗ 100KHz
− 1 = 63(dec) = 3F (hex)

Control offset: 0x08

31 8

Reserved

7

EN

6

IEN

5 0

Reserved

Field Name Range Description

I2C core enable bit

(EN)

7 When set to ’1’, the core is enabled.

When set to ’0’, the core is disable.

I2C core interrput en-

able bit (IEN)

6 When set to ’1’, interrupt is enabled.

When set to ’0’, interrupt is disable.

29.2. Interface 591

Transmit offset: 0x0c (Write Only)

31 8

Reserved

7 1

NB

0

X

Field Name Range Description

Next byte (NB) 7:0 Next byte to transmit via I2C.

X 0 In case of a data tranfer this bit represents the data’s LSB.

In case of a slave address transfer this bit represents the RW bit.

’1’ = reading from slave.

’0’ = writing to slave.

Receive offset: 0x0c (Read Only)

31 8

Reserved

7 0

LB

Field Name Range Description

Last byte (LB) 7:0 Last byte received via I2C.

592 第 29章 I2C Master Controller

Command offset: 0x10 (Write Only)

31 8

Reserved

7

STA

6

STO

5

R

4

W

3

A

2 1

Reserved

0

I

Field Name Range Description

Start (STA) 7 Generate (repeated) start condition.

Stop (STO) 6 Generate stop condition.

Read (R) 5 Read from slave.

Write (W) 4 Write to slave.

ACK (A) 3 When a receiver, sent ACK (ACK = ’0’) or NACK (ACK = ’1’).

Interrput ACK (I) 1 Interrupt acknowledge. When set, clears a pending interrupt.

The STA, STO, R, W, and I bits are cleared automatically. These bits are always read as zeros.

29.2. Interface 593

Status offset: 0x10 (Read Only)

31 8

Reserved

7

R

6

B

5

A

4 2

Reserved

1

T

0

I

Field Name Range Description

Received acknowl-

edge from slave

(R)

7 This flag represents acknowledge from the addressed slave.

’1’ = No acknowledge received.

’0’ = Acknowledge received.

I2C bus busy (B) 6 ’1’ after START signal detect.

’0’ after STOP signal detect.

Arbitration lost (A) 5 This bit is set when the core lost arbitration. Arbitration is lost when:

• a STOP signal is detected, but non requested.

• The master drives SDA high, but SDA is low.

See bus-arbitration section for more information.

Transfer in progress

(T)

1 ’1’ when transferring data.

’0’ when transfer complete.

Interrupt Flag (I) 0 This bit is set when an interrupt is pending, which will cause a processor

interrupt request if the IEN bit is set.

The Interrupt Flag is set when:

• one byte transfer has been completed.

• arbitration is lost.

Transmit Register offset: 0x14 (Read Only)

アクセス極性が異なり、Transmit register(offset: 0x0c)と同じ値となる。

31 8

Reserved

7 0

TXR

594 第 29章 I2C Master Controller

Command Register offset: 0x18 (Read Only)

アクセス極性が異なり、Command register(offset: 0x10)と同じ値となる。

31 8

Reserved

7 0

CR

HiZ Status Register offset: 0x1C (Read Only)

31 1

Reserved

0

HiZ

29.3 Operation

29.3.1 System Configuration

I2C system uses a serial data line (SDA) and a serial clock line (SCL) for data transfers. All devices

connected to these two signals must have open drain or open collector outputs. The logic AND function is

exercised on both lines with external pull-up resistors.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a byte-by-

byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the MSB

being transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the

high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must

be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted

as a command (see START and STOP signals).

29.3.2 I2C Protocol

Normally, a standard communication consists of four parts:

1. START signal generation

2. Slave address transfer

3. Data transfer

29.3. Operation 595

4. STOP signal generation

START signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are

high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to as

the S-bit, is defined as a high-to-low transition of SDA while SCL is high. The START signal denotes the

beginning of a new data transfer. A Repeated START is a START signal without first generating a STOP

signal. The master uses this method to communicate with another slave or the same slave in a different

transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus.

The core generates a START signal when the STA-bit in the Command Register is set and the RD or WR

bits are set. Depending on the current status of the SCL line, a START or Repeated START is generated.

Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave address.

This is a seven-bits calling address followed by a RW bit. The RW bit signals the slave the data transfer

direction. No two slaves in the system can have the same address. Only the slave with an address that

matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the

SDA low at the 9th SCL clock cycle.

Note: The core supports 10bit slave addresses by generating two address transfers. See the Philips I2C

specifications for more details.

The core treats a Slave Address Transfer as any other write action. Store the slave device’s address in

the Transmit Register and set the WR bit. The core will then transfer the slave address on the bus.

Data Transfer

Once successful slave addressing has been achieved, the data transfer can proceed on a byte-by-byte

basis in the direction specified by the RW bit sent by the master. Each transferred byte is followed by an

acknowledge bit on the 9th SCL clock cycle. If the slave signals a No Acknowledge, the master can generate

a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer

cycle.

If the master, as the receiving device, does not acknowledge the slave, the slave releases the SDA line for

the master to generate a STOP or Repeated START signal.

To write data to a slave, store the data to be transmitted in the Transmit Register and set the WR bit.

To read data from a slave, set the RD bit. During a transfer the core set the TIP flag, indicating that a

Transfer is In Progress. When the transfer is done the TIP flag is reset, the IF flag set and, when enabled,

an interrupt generated. The Receive Register contains valid data after the IF flag has been set. The user

may issue a new write or read command when the TIP flag is reset.

596 第 29章 I2C Master Controller

STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually

referred to as the P-bit, is defined as a low-to-high transition of SDA while SCL is at logical ’1’.

29.3.3 Arbitration Procudure

The I2C bus is a true multimaster bus that allows more than one master to be connected on it. If two or

more masters simultaneously try to control the bus, a clock synchronization procedure determines the bus

clock. Because of the wired-AND connection of the I2C signals a high to low transition affects all devices

connected to the bus. Therefore a high to low transition on the SCL line causes all concerned devices to

count off their low period. Once a device clock has gone low it will hold the SCL line in that state until

the clock high state is reached. Due to the wired-AND connection the SCL line will therefore be held low

by the device with the longest low period, and held high by the device with the shortest high period.

29.3.4 Clock Stretching

Slave devices can use the clock synchronization mechanism to slow down the transfer bit rate. After the

master has driven SCL low, the slave can drive SCL low for the required period and then release it. If the

slave’s SCL low period is greater than the master’s SCL low period, the resulting SCL bus signal low period

is stretched, thus inserting wait-states.

597

30

外部バス

30.1 外部バス仕様

内部バスアクセスと同様．ビッグエンディアン．例として，0x00000000番地は BE [3], 0x00000001番地は

BE [2], 0x00000002番地は BE [1], 0x00000003番地は BE [0]に対応．BMREQ はバーストリクエスト信号．

バーストのリクエストはバースト長で指定します．指定する値とバースト長の対応は以下の通りです．BMREQ

== 11: 1Word, BMREQ == 10: 2Word, BMREQ == 01: 4Word, BMREQ == 00: 8Word．BMACK で

はバースト可能な長さをスレーブ側が出力する．

タイミングについて以下に示す．

Figure 30.1: Read

598 第 30章 外部バス

Figure 30.2: Write

Figure 30.3: Error

30.2. EXT 0(ROM) 599

30.2 EXT 0(ROM)

EXT 0(ROM)に 8bit, 16bitモードでアクセスする場合，be[0], be[1]が下位アドレスとして使用される．

be[0]が LSB．

30.3 デフォルトメモリマップ（予定）

cs 0 0x00000000(ROM専用)

cs 1 0x40000000(FlashIF)

cs 2 0x21000000(SiP FPGA)

cs 3 0x22000000(Board FPGA)

cs 4 0x23000000(REGFILE, LED)

cs 5 0x24000000

cs 6 0x25000000

cs 7 0x26000000

但し，cs toggleを入れると，cs 0と cs 1が入れ替わる．また，auto readyが機能するのは cs 0のみ．

601

31

Real Time Clock Unit

31.1 Outline

Real Time Clock Unitは外部クロックを用いてカレンダー機能を提供するユニットである．外部から供給

されたクロックから 1秒を計測し，各カウンタを制御する．カレンダー機能では年 (下位 2ケタ)，月，日，曜

日，時，分，秒を計測する．指定した日にち，時刻に割り込みを発生させるアラーム機能を持つ．また，うる

う年に対応している．

さらに 1秒単位で設定可能なタイマ機能を持つ．

クロックは外部ピン rtc clkから入力する．デフォルトでは 32.768kHzを入力することにより 1秒を計測す

るが，他の周波数であっても Clock Compareレジスタの値を変更することにより対応可能である．

外部ピン rtc hold をアサートすることにより，プロセッサ内部バスからの信号を受け付けなくなる．これに

より，プロセッサの他の部分の電力をカットし，バスの信号が不定になった場合でも Real Time Clock Unit

は外部からの信号に影響されずに，正しく時間を計測し続けることが可能となる．

602 第 31章 Real Time Clock Unit

31.2 Interface

31.2.1 Address Map

Second offset: 0x00

31 8

Reserved

7

U

6 0

Second

Field Name Range Description

Update (U) 7 前回値をリードしてから値が更新された場合に 1がセットされる．リー

ドすることにより 0にクリアされる．

Second 6:0 秒がセットされる．値は BCDコードで表す．

Minute offset: 0x04

31 8

Reserved

7

U

6 0

Minute

Field Name Range Description

Update (U) 7 前回値をリードしてから値が更新された場合に 1がセットされる．リー

ドすることにより 0にクリアされる．

Minute 6:0 分がセットされる．値は BCDコードで表す．

31.2. Interface 603

Hour offset: 0x08

31 8

Reserved

7

U

6

0

5 0

Hour

Field Name Range Description

Update (U) 7 前回値をリードしてから値が更新された場合に 1がセットされる．リー

ドすることにより 0にクリアされる．

Hour 5:0 時がセットされる．値は BCDコードで表す．

Week offset: 0x0c

31 8

Reserved

7

U

6 0

Week

Field Name Range Description

Update (U) 7 前回値をリードしてから値が更新された場合に 1がセットされる．リー

ドすることにより 0にクリアされる．

Week 6:0 曜日がセットされる．値は 0ビット目から日曜日 6ビット目が土曜日を

示す．

604 第 31章 Real Time Clock Unit

Day offset: 0x10

31 8

Reserved

7

U

6

0

5 0

Day

Field Name Range Description

Update (U) 7 前回値をリードしてから値が更新された場合に 1がセットされる．リー

ドすることにより 0にクリアされる．

Day 5:0 日がセットされる．値は BCDコードで表す．

Month offset: 0x14

31 8

Reserved

7

U

6 5

00

4 0

Month

Field Name Range Description

Update (U) 7 前回値をリードしてから値が更新された場合に 1がセットされる．リー

ドすることにより 0にクリアされる．

Month 4:0 月がセットされる．値は BCDコードで表す．

Year offset: 0x18

31 8

Reserved

7 0

Year

Field Name Range Description

Year 7:0 年の下 2けたがセットされる．値は BCDコードで表す．

31.2. Interface 605

Second Alarm offset: 0x20

31 8

Reserved

7

D

6 0

Second

Field Name Range Description

Don’t Care (D) 7 1をセットすると，秒に関する条件を無視する．0の場合，Secondに指

定した条件にマッチした場合にアラームの割り込みが発生する．

Second 6:0 アラームの秒を指定する．値は BCDコードで表す．

Minute Alarm offset: 0x24

31 8

Reserved

7

D

6 0

Minute

Field Name Range Description

Don’t Care (D) 7 1をセットすると，分に関する条件を無視する．0の場合，Minuteに指

定した条件にマッチした場合にアラームの割り込みが発生する．

Minute 6:0 アラームの分を指定する．値は BCDコードで表す．

Hour Alarm offset: 0x28

31 8

Reserved

7

D

6

0

5 0

Hour

Field Name Range Description

Don’t Care (D) 7 1をセットすると，時に関する条件を無視する．0の場合，Hourに指定

した条件にマッチした場合にアラームの割り込みが発生する．

Hour 5:0 アラームの時を指定する．値は BCDコードで表す．

606 第 31章 Real Time Clock Unit

Week Alarm offset: 0x2c

31 8

Reserved

7

D

6 0

Week

Field Name Range Description

Don’t Care (D) 7 1をセットすると，曜日に関する条件を無視する．0の場合，Weekに指

定した条件にマッチした場合にアラームの割り込みが発生する．

Week 6:0 アラームの曜日を指定する．1を設定した曜日にアラーム割り込みを発

生させる．

Day Alarm offset: 0x30

31 8

Reserved

7

D

6

0

5 0

Day

Field Name Range Description

Don’t Care (D) 7 1をセットすると，日に関する条件を無視する．0の場合，Dayに指定

した条件にマッチした場合にアラームの割り込みが発生する．

Day 5:0 アラームの日を指定する．値は BCDコードで表す．

31.2. Interface 607

Month Alarm offset: 0x34

31 8

Reserved

7

D

6 5

00

4 0

Month

Field Name Range Description

Don’t Care (D) 7 1をセットすると，月に関する条件を無視する．0の場合，Monthに指

定した条件にマッチした場合にアラームの割り込みが発生する．

Month 4:0 アラームの月を指定する．値は BCDコードで表す．

Time offset: 0x38 (Read Only)

31 24

Reserved

23 16

Hour

15 8

Minute

7 0

Second

Field Name Range Description

Hour 23:16 Hourレジスタの内容．

Minute 15:8 Minuteレジスタの内容．

Second 7:0 Secondレジスタの内容．

608 第 31章 Real Time Clock Unit

Date offset: 0x3c (Read Only)

31 24

Week

23 16

Year

15 8

Month

7 0

Day

Field Name Range Description

Week 31:24 Weekレジスタの内容．

Year 23:16 Yearレジスタの内容．

Month 15:8 Monthレジスタの内容．

Day 7:0 Dayレジスタの内容．

Mode offset: 0x40

31 5

Reserved

4

TM

3

PT

2

TE

1

AE

0

EN

Field Name Range Description

Test Mode (TM) 4 テストモード．0に設定すること．

Periodic Timer (PT) 3 1を設定すると Periodic Timer，0を設定すると One Shot Timerにな

る．

Timer Enable (TE) 2 1 をセットするとタイマが作動する．タイマが Expire した場合，One

Shot Timerならば自動的に 0にクリアされる．

Alarm Enable (AE) 1 1をセットするとアラームが動作する．アラームに指定した時間がくる

と割り込みが発生する．

Enable (EN) 0 1をセットすると Real Time Clockが動作する．

31.2. Interface 609

Sense offset: 0x44

31 2

Reserved

1

TI

0

AI

Field Name Range Description

Timer Interrupt (TI) 1 タイマ割り込みが発生した場合に 1がセットされる．1を書き込むこと

によりクリアされる．

Alarm Interrupt (AI) 0 アラーム割り込みが発生した場合に 1がセットされる．1を書き込むこ

とによりクリアされる．

Timer Compare offset: 0x48

31 0

Timer Compare

Field Name Range Description

Timer Compare 31:0 タイマ割り込みをかける秒数を指定する．

Timer Count offset: 0x4c (Read Only)

31 0

Timer Count

Field Name Range Description

Timer Count 31:0 現在のタイマのカウント数．この値が Timer Setupになるとタイマ割り

込みが発生する．

610 第 31章 Real Time Clock Unit

Clock Compare offset: 0x50

31 0

Clock Compare

Field Name Range Description

Clock Compare 31:0 本モジュールに入力されているクロックの周波数を指定する．Clock Count

がこのレジスタの値と等しくなった場合に 1秒経過したと判定される．

Clock Count offset: 0x54 (Read Only)

31 0

Clock Count

Field Name Range Description

Clock Count 31:0 クロック毎にカウントアップされ，1秒を計測する．このレジスタの値

が Clock Compareと等しくなった場合，1秒経過したと判定される．

611

32

Trace Buffer

32.1 概要

Trace Bufferは，プロセッサが実行した命令，レジスタ，発生した例外を記録する．

32.2 アドレスマップ

Trace Bufferの初期ベースアドレスは 0x10000000である．

0x1000 0000∼0x1000 00FF : 制御レジスタ領域

0x1004 0000∼0x1004 7FFF : Trace PC Buffer領域 0

0x1004 8000∼0x1004 FFFF : Trace PC Buffer領域 1

0x100C 0000∼0x100C 7FFF : Trace Exception Buffer領域 0

0x100C 8000∼0x100C FFFF : Trace Exception Buffer領域 1

32.3 制御レジスタ領域

Trace PC Control offset: 0x20

命令トレースの制御を行う．

31 1

Reserved

0

E

Field Name Range Description

Enable (E) 0 本ビットを 1にすると，プログラムカウンタのトレースが有効になる．

612 第 32章 Trace Buffer

Trace Exception Control offset: 0x60, 0x64

例外トレースの制御を行う．

31 4

Reserved

3 1

TH

0

E

Field Name Range Description

Thread (TH) 3:1 本フィールドに設定したスレッド番号の例外をトレースする．

Enable (E) 0 本ビットを 1にすると，レジスタファイルのトレースが有効になる．

Trace Buffer Initialize offset: 0x80

トレースバッファの初期化．．

31 0

Initialize

Field Name Range Description

Initialize 0 本レジスタに書き込みを行うと，トレースバッファの初期化を行う．

32.4 Trace PC Buffer領域

SRTMPでは 2スレッドまで同時に命令トレースを行うことが可能となっている．格納されるトレース情報

のフォーマットは以下の通り．

32.4. Trace PC Buffer領域 613

Trace PC Buffer 0 offset: 0x0

31 16

CNT

15

0

14

FWE

13 9

FPR ADDR

8

GWE

7 3

GPR ADDR

2 0

TH

Field Name Range Description

Counter (CNT) 31:16 通し番号．

FPR Write En-

able(FWE)

14 浮動小数点レジスタ書き込み有効．実行した命令で浮動小数点レジスタ

に書き込みを行った場合，このビットがセットされる．

FPR Ad-

dress(FPR ADDR)

13:9 浮動小数点レジスタ番号．実行した命令で浮動小数点レジスタに書き込

みを行った場合，書き込んだレジスタ番号がセットされる．

GPR Write En-

able(GWE)

8 汎用レジスタ書き込み有効．実行した命令で汎用レジスタに書き込みを

行った場合，このビットがセットされる．

GPR Ad-

dress(GPR ADDR)

7:3 汎用レジスタ番号．実行した命令で汎用レジスタに書き込みを行った場

合，書き込んだレジスタ番号がセットされる．

Thread(TH) 2:0 スレッド番号．命令を実行したスレッドの番号が格納される．

Trace PC Buffer 1 offset: 0x4

31 0

Program Counter

Field Name Range Description

Program Counter 31:0 実行した命令のプログラムカウンタが格納される．

614 第 32章 Trace Buffer

Trace PC Buffer 2 offset: 0x8

31 0

Register Write Data 0

Field Name Range Description

Register Write Data

0

31:0 汎用レジスタに書き込みが行われた場合，そのデータが格納される．浮

動小数点レジスタに書き込みが行われた場合，そのデータの上位 32ビッ

トが格納される．いずれのレジスタへの書き込みが無い場合，このフィー

ルドは省略される．

Trace PC Buffer 3 offset: 0xC

31 0

Register Write Data 1

Field Name Range Description

Register Write Data

1

31:0 浮動小数点レジスタに書き込みが行われた場合，そのデータの下位 32

ビットが格納される．浮動小数点レジスタへの書き込みが無い場合，こ

のフィールドは省略される．

32.5 Trace Exception Buffer領域

SRTMPでは 2スレッドまで同時に例外トレースを行うことが可能となっている．格納されるトレース情報

のフォーマットは以下の通り．

32.5. Trace Exception Buffer領域 615

Trace Exception Buffer offset: 0x0

31 0

Exception PC

Field Name Range Description

Exception PC 31:0 例外の発生したプログラムカウンタが格納される．

617

33

On-Chip Emulator

33.1 Outline

On-Chip Emulatorは SPI通信でのシングルワードのリード・ライトのエミュレーター機能を提供する．

33.2 Operation

On-Chip Emulatorは適当な SPIマスターと接続して使用する．使用するデータ長は 32bitである．SPIの

動作モードは，同期クロックは正極性で立ち上がりでデータを受け取り，MSBから転送を開始するように設

定する．On-Chip Emulatorは RELOADピンを Highにすることでマスターにバスアクセスの完了を通知す

る．このピンは一度Highになると次の有効なコマンドが発行されるまで Lowにならない．SPI通信でコマン

ドを受信することによって，初期状態からライト，リードそれぞれのモードに遷移する．状態遷移はOn-Chip

Emulatorに接続された Slave Selectの Enableによって行われる．

33.2.1 Single Write

シングルライト転送は以下のように行う．Masterは SPIのマスター，Slaveは SPIのスレーブ (On-Chip

Emulatorが動作する側)である．

1. Master: SPIで On-Chip Emulatorに 32bitのコマンドデータ 0xABを入力する．

2. Master: SPIで On-Chip Emulatorにアドレスデータを 32bit入力する．

3. Master: SPIで On-Chip Emulatorにライトデータを 32bit入力する．

4. Slave: On-Chip Emulatorがシングルライト転送を開始する．

5. Slave: シングルライトが完了．

6. Slave: On-Chip Emulatorの RELOADピンを Highにし，初期状態に遷移する．

618 第 33章 On-Chip Emulator

33.2.2 Single Read

シングルリード転送は以下のように行う．Masterは SPIのマスター，Slaveは SPIのスレーブ (On-Chip

Emulatorが動作する側)である．

1. Master: SPIで On-Chip Emulatorに 32bitのコマンドデータ 0xAAを入力する．

2. Master: SPIで On-Chip Emulatorにアドレスデータを 32bit入力する．

3. Slave: On-Chip Emulatorがシングルリード転送を開始する．

4. Slave: リードが完了すると RELOADピンを Highにする．

5. Master: Slave Selectを Enableにする．

6. Slave: On-Chip Emulatorから SPIマスターへ結果を送信し，RELOADピンが Lowになる．

7. Master: 再度 Slave SelectをEnableにする．この際に受信されるデータは意味を持たないため，ダミー

として処理する必要がある点に注意する．

8. Slave: 初期状態に遷移する．

619

34

Update History

Revision Date Description

1 2016/10/01 Publication the 1st version.

2 2019/07/15 Fixed the content according to the specifications.

3 2019/09/25 Update abstract.

4 2019/12/26 Fixed figure and pin assignments. Added calculation unit latency

to abstract.

5 2020/1/18 Update abstract.

6 2020/9/28 Fixed specification about Flash I/F.

	概要
	Overview
	設計ポリシ
	全体構成
	Responsive Multithreaded Processing Unit
	命令発行ユニット
	命令演算ユニット
	キャッシュユニット

	Responsive Link

	PIN assignments
	Instruction Set
	Instructions compatible with MIPS ISA
	Load / Store Instruction
	Computational Instructions
	Jump / Branch Instructions
	Floating-Point Instructions
	Miscellaneous Instructions

	Instructions which are not compatible with MIPS ISA
	Computational Instructions
	Floating-Point Instructions
	Other Instructions
	Unsupported MIPS II Instructions

	Responsive Multithreaded Processor Specific Instructions
	Load / Store Instruction
	Arithmetic Instructions
	Data Transfer Instructions
	System Control Instruction
	Thread Control Instructio
	SIMD Arithmetic Instruction
	同期命令
	Integer Vector Instructions
	浮動小数点ベクトル命令

	Address Decoder
	Register Interface
	Address Mapping

	MMU
	TLBエントリ
	MMUの制御
	MMUが発生させる例外

	CACHE
	キャッシュシステム
	概要
	キャッシュ制御
	victim buffer
	wait buffer
	キャッシュのコントロールレジスタ

	システムレジスタ
	レジスタマップ
	Status Register
	Thread Table Register
	Thread ID Register
	Instruction Counter Register
	Count Register
	Compare Register
	Floating-Point Control Register
	Issue Mode Register
	CPU Count Register
	MMU Register
	Exception PC Register
	Exception Cause Register
	Interruption Wait Register (スレッド毎)
	External Interruption Level Register (スレッド毎)
	Interruption Pending Register
	Interruption Clear Register
	Exception Base Address Register
	Event Link In Register
	Event Link Out Register
	Instruction Cache Control Register
	Data Cache Control Register
	Multiplexer Arbitor Mode Bus
	Multiplexer Arbitor Priorty 256bit Bus
	Multiplexer Arbitor Priorty High 32bit Bus
	Multiplexer Arbitor Priorty Low 32bit Bus
	Multiplexer Watchdog Timer 256bit Bus Enable
	Multiplexer Watchdog Timer 256bit Bus Count
	Multiplexer Error Handler State 256bit Bus
	Multiplexer Error Handler State 32bit Bus
	Multiplexer Error Handler Instruction Cache
	Multiplexer Error Handler Data Cache
	Multiplexer Error Handler MDMAC256
	Multiplexer Watchdog Timer 32bit Bus Enable
	Multiplexer Error Handler Master32
	Multiplexer Error Handler Master256
	Multiplexer Watchdog Timer 32bit Bus Count
	Reservation Station Aging
	Reservation Station Aging Increment
	Reservation Station Aging Span
	PID Parameter Register
	Target IPC Register
	Fetch Bound Register
	Own Status Register
	Own Thread Table Register
	Own Thread ID Register
	Own Instruction Count Register
	Own Count Register
	Own Compare Register
	Own Floating-Point Control Register
	Own Bad Virtual Address Register
	Own Exception PC Register
	Own Exception Cause Register
	Own Interruption Wait Register
	Own External Interruption Level Register
	Own Target IPC Register
	Own Fetch Bound Register
	Special Mode Register
	NMI Mode Register
	Special Operation Register
	I Cache ECC ON Register
	I Cache ECC Mode Register
	D Cache ECC ON Register
	D Cache ECC Mode Register
	Address Decoder Control Register
	Extbus0 Status
	Extbus1 Status
	Extbus2 Status
	Extbus3 Status
	Extbus4 Status
	Extbus5 Status
	Extbus6 Status
	Extbus7 Status
	ROM Status
	E2M Status
	Extbus Mem IO
	Multiplexer Error Handler DMAC0-5
	Multiplexer Error Handler Extbus0-7

	例外処理
	割り込みコントローラ(IRC)
	レジスタマップ
	Trigger Mode Register
	Request Sense Register
	Request Clear Register
	Mask Register
	IRL Latch/Clear
	IRC Mode Register

	動作/使用方法
	IRC
	RMT固有機能
	例外処理プロセス

	クロックジェネレータ
	接続図
	制御レジスタ
	Clock Enable
	Soft Reset
	Clock Enable / Soft Reset Bit Map
	Divider Ratio
	Clock Synchronization
	All Reset
	Micro Reset
	HiZ Control

	スレッド制御
	スレッドの概要
	スレッド起床メカニズム
	スレッドの種類
	スレッド制御命令
	作成・削除
	状態制御
	転送

	状態遷移

	同期
	概要
	共有レジスタバイナリ
	バイナリセマフォレジスタ
	同期命令

	IPC Control Mechanism
	Abstract
	Configurable Parameters
	Usage
	Program Example

	Vector Unit
	概要
	Vector Execution Unit
	命令フォーマット

	ベクトルレジスタ
	ステータスレジスタ
	使用例
	複合演算命令

	Responsive Link
	概要
	Responsive Linkのインタフェース
	パケットフォーマット
	 固定長（64B）のデータパケット
	固定長（16B）のイベントパケット
	優先度による追い越し機構

	フレームフォーマット
	ルーティング・テーブル
	パケットの加減速制御
	優先度に従った経路制御
	低レベル通信
	CODEC
	巡回組織ハミング符号化
	Bit Stuffing
	NRZI符合化
	セットアップパターン
	DPLLを用いたビット同期
	エラーの取扱い
	通信速度

	メモリマップ
	レジスタマップ
	SDRAMモードレジスタ
	レスポンシブリンク速度設定レジスタ
	レスポンシブリンク初期化レジスタ
	レスポンシブリンク割り込みクリアレジスタ
	デコーダリセット割り込みクリアレジスタ
	レスポンシブリンク送信停止割り込みクリアレジスタ
	レスポンシブリンク継続割り込みクリアレジスタ
	レスポンシブリンク致命的エラー割り込みクリアレジスタ
	レスポンシブリンクルーティングテーブル割り込みクリアレジスタ
	レスポンシブリンクSDRAMバスリクエストレジスタ
	レスポンシブリンクSDRAMバスグラントレジスタ
	レスポンシブリンクルーティングテーブルバスリクエストレジスタ
	レスポンシブリンクルーティングテーブルバスグラントレジスタ
	イベントリンクLRUアドレスレジスタ
	データリンクLRUアドレスレジスタ
	レスポンシブリンク用割り込みコントローライネーブルレジスタ
	イベントリンク用SDRAMループカウントレジスタ
	データリンク用SDRAMループカウントレジスタ
	レスポンシブリンクスイッチモードレジスタ
	レスポンシブリンク用オフラインレジスタ
	パラレルモードレジスタ
	エラーパケットヘッダレジスタ
	エラーヘッダポインタレジスタ
	エラーパケットモードレジスタ
	SDRAM回復イネーブルレジスタ
	通信コーデック設定レジスタ
	レスポンシブリンク用EXT_RL_CLK イネーブルレジスタ
	レスポンシブリンク用オフライン割り込みマスクレジスタ
	送信用DPLLモード設定レジスタ
	送信用通信コーデック設定レジスタ
	送信用通信速度・コーデックイネーブルレジスタ
	モード1用サンプリングエッジ設定レジスタ
	Routing Table ECC設定レジスタ
	タイムアウト設定レジスタ
	イベントリンクタイムアウトカウント設定レジスタ
	データリンクタイムアウトカウント設定レジスタ
	オートリンクアップ設定レジスタ

	DPM (Dual Port Memory)
	Event Output
	Event Input
	Data Output
	Data Input

	通信方法
	手順
	相互通信の際の注意点

	Responsive Link の割り込みコントローラ
	レジスタマップ

	DMAC
	レジスタマップ
	DMA制御レジスタ
	DMA割り込みクリアレジスタ
	ポート／ソースアドレスレジスタ
	メモリ／デスティネーションアドレスレジスタ
	転送モード制御レジスタ
	ステータスレジスタ
	転送レングスレジスタ

	I/O DMAリクエスト

	DMACDIAG
	レジスタマップ
	DMA制御レジスタ
	DMA割り込みクリアレジスタ
	コンペアリザルトレジスタ
	カレントエラーアドレスレジスタ
	エラーアドレスレジスタ
	エラーデータレジスタ
	データバッファレジスタ
	ポート／ソースアドレスレジスタ
	メモリ／デスティネーションアドレスレジスタ
	転送モード制御レジスタ
	ステータスレジスタ
	転送レングスレジスタ

	バスサイジング機能付きDMA
	本DMAの特徴
	制御レジスタ詳細
	DMA割り込みクリアレジスタ
	ポート／ソースアドレスレジスタ
	メモリ／デスティネーションアドレスレジスタ
	転送モード制御レジスタ
	ステータスレジスタ
	転送レングスレジスタ

	パルスカウンタ
	パルスカウンタ概要
	レジスタインタフェース
	パルスカウンタ制御レジスタ
	コンペアデータレジスタ
	カウンタレジスタ
	タイマレジスタ

	PWM発生器
	PWM発生器概要
	PWMコントロールレジスタ
	PWM周期制御レジスタ
	PWM反転制御レジスタ
	デッドタイムレジスタ

	PWM入力器
	PWM入力器概要
	PWMINコントロールレジスタ
	PWMIN HIGHレジスタ
	PWMIN LOWレジスタ

	Ext Timer
	概要
	レジスタマップ
	アドレスマップ
	ビットマップ

	64-bit Ext Timer
	概要
	レジスタマップ
	アドレスマップ
	ビットマップ

	DDR SDRAM I/F
	レジスタマップ
	主記憶I/F幅設定レジスタ
	I/F起動レジスタ
	メモリモジュール設定レジスタ
	EMRS設定レジスタ
	MRS設定レジスタ
	DDR設定レジスタ1
	DDR設定レジスタ2
	リフレッシュインターバル設定レジスタ

	ECC制御レジスタマップ
	ECC設定レジスタ
	Fatal/Correctレジスタ
	カレントエラーアドレスレジスタ
	ネクストエラーアドレスポインタレジスタ

	エラーアドレスバッファ
	エラーアドレスバッファレジスタ
	訂正可能エラーバッファレジスタ
	訂正不可能エラーバッファレジスタ

	SRAMコントローラ
	概要
	SRAMコントローラレジスタマップ
	ECC設定レジスタ
	Fatal/Correctレジスタ
	ネクストエラーアドレスポインタレジスタ
	カレントエラーアドレスレジスタ

	エラーアドレスバッファ
	エラーアドレスバッファレジスタ
	訂正不可エラーバッファレジスタ
	訂正可能エラーバッファレジスタ

	Flash I/F
	概要
	アドレス空間
	アクセス
	Flash I/F の設定レジスタ

	Universal Asynchronous Receiver/Transmitter
	アドレスマップ
	Receiver Buffer (RB) / Transmitter Holding Register (THR)
	Interrupt Enable Register (IER)
	Interrupt Identification Register (IIR)
	FIFO Control Register (FCR)
	Line Control Register (LCR)
	Modem Control Register (MCR)
	Line Status Register (LSR)
	Modem Status Register (MSR)
	Divisor Latches (DL)

	動作/使用方法
	Initialization

	Serial Peripheral Interface Unit
	Outline
	Interface
	Address Format
	Control Register

	Operation
	Manual Mode
	Auto Mode

	Parallel I/O Unit
	Outline
	Interface
	Address Format
	Control Register

	Operation

	I2C Master Controller
	Outline
	Interface
	Address Format
	Control Register

	Operation
	System Configuration
	I2C Protocol
	Arbitration Procudure
	Clock Stretching

	外部バス
	外部バス仕様
	EXT_0(ROM)
	デフォルトメモリマップ（予定）

	Real Time Clock Unit
	Outline
	Interface
	Address Map

	Trace Buffer
	概要
	アドレスマップ
	制御レジスタ領域
	Trace PC Buffer領域
	Trace Exception Buffer領域

	On-Chip Emulator
	Outline
	Operation
	Single Write
	Single Read

	Update History

