
Responsive Multithreaded Processor仕様書
第 0版

平成18 年 10 月 30 日
慶應義塾大学 理工学部 山崎研究室

— NY0002 —

http://www.ny.ics.keio.ac.jp/research/rmt/

1

目 次

第 1章 概要 9

1.1 Overview . 9
1.2 設計ポリシ . 9
1.3 全体構成 . 10
1.4 Responsive Multithreaded Processing Unit . 11

1.4.1 命令発行ユニット . 11
1.4.2 命令演算ユニット . 13
1.4.3 キャッシュユニット . 14

1.5 Responsive Link . 15

第 2章 PIN配置 17

第 3章 命令セット 69
3.1 MIPS互換の命令 . 69

3.1.1 Load / Store命令 . 70
3.1.2 演算命令 . 88
3.1.3 Jump / 分岐命令 . 100
3.1.4 浮動小数点命令 . 110
3.1.5 その他の命令 . 123

3.2 MIPS命令と動作の異なる命令 . 130
3.2.1 演算命令 . 130
3.2.2 浮動小数点命令 . 141
3.2.3 その他の命令 . 144
3.2.4 サポートしていないMIPS II命令 . 144

3.3 Responsive Multithreaded Processor固有の命令 . 145
3.3.1 Load / Store 命令 . 146
3.3.2 演算命令 . 149
3.3.3 転送命令 . 160
3.3.4 システム制御命令 . 161
3.3.5 スレッド制御命令 . 164
3.3.6 SIMD演算命令 . 175
3.3.7 同期命令 . 209
3.3.8 整数ベクトル命令 . 216
3.3.9 浮動小数点ベクトル命令 . 310

第 4章 アドレスデコーダ 365

4.1 レジスタインターフェース . 365
4.2 アドレスマップ . 367

2

第 5章 MMU 369
5.1 TLBエントリ . 369
5.2 MMUの制御 . 373
5.3 MMUが発生させる例外 . 377

第 6章 CACHE 381

6.1 キャッシュシステム . 381
6.1.1 概要 . 381
6.1.2 キャッシュ制御 . 382
6.1.3 victim buffer . 382
6.1.4 wait buffer . 382
6.1.5 キャッシュのコントロールレジスタ . 383

第 7章 システムレジスタ 387
7.1 レジスタマップ . 387

7.1.1 Status Register . 390
7.1.2 Thread Table Register . 391
7.1.3 Thread ID Register . 392
7.1.4 Instruction Counter Register . 392
7.1.5 Count Register . 393
7.1.6 Compare Register . 393
7.1.7 Floating-Point Control Register . 393
7.1.8 Issue Mode Register . 394
7.1.9 CPU Count Register . 395
7.1.10 MMU Register . 396
7.1.11 Exception PC Register . 396
7.1.12 Exception Cause Register . 396
7.1.13 Interruption Wait Register (スレッド毎) . 397
7.1.14 External Interruption Level Register (スレッド毎) 397
7.1.15 Interruption Pending Register . 398
7.1.16 Interruption Clear Register . 398
7.1.17 Exception Base Address Register . 398
7.1.18 Event Link In Register . 398
7.1.19 Event Link Out Register . 398
7.1.20 Instruction Cache Control Register . 398
7.1.21 Data Cache Control Register . 398
7.1.22 ROM Status . 399
7.1.23 EXT Status . 399
7.1.24 Multiplexer Arbitor Mode 256bit Bus . 399
7.1.25 Multiplexer Arbitor Mode 32bit Bus . 400
7.1.26 Multiplexer Watchdog Timer 256bit Bus Enable 400
7.1.27 Multiplexer Watchdog Timer 256bit Bus Mode . 400
7.1.28 Multiplexer Watchdog Timer 256bit Bus Reset . 400
7.1.29 Multiplexer Watchdog Timer 256bit Bus Count . 400
7.1.30 Multiplexer Error Handler State 256bit Bus . 400
7.1.31 Multiplexer Error Handler State 32bit Bus . 401

3

7.1.32 Multiplexer Error Handler Instruction Cache . 401
7.1.33 Multiplexer Error Handler Data Cache . 401
7.1.34 Multiplexer Error Handler DMAC0 . 401
7.1.35 Multiplexer Error Handler DMAC1 . 401
7.1.36 Multiplexer Error Handler DMAC2 . 401
7.1.37 Multiplexer Error Handler PCI . 401
7.1.38 Multiplexer Error Handler Bus Interface Unit . 401
7.1.39 Multiplexer Error Handler MDMAC256 . 401
7.1.40 Address Decoder Control Register . 401
7.1.41 Multiplexer Watchdog Timer 32bit Bus Enable . 401
7.1.42 Multiplexer Watchdog Timer 32bit Bus Mode . 402
7.1.43 Multiplexer Watchdog Timer 32bit Bus Reset . 402
7.1.44 Multiplexer Watchdog Timer 32bit Bus Count . 402
7.1.45 Multiplexer Error Handler MDMAC32 . 402
7.1.46 Own Status Register . 402
7.1.47 Own Thread Table Register . 402
7.1.48 Own Thread ID Register . 402
7.1.49 Own Instruction Count Register . 402
7.1.50 Own Count Register . 402
7.1.51 Own Compare Register . 402
7.1.52 Own Floating-Point Control Register . 402
7.1.53 Own Bad Virtual Address Register . 403
7.1.54 Own Exception PC Register . 403
7.1.55 Own Exception Cause Register . 403
7.1.56 Own Interruption Wait Register . 403
7.1.57 Own External Interruption Level Register . 403

第 8章 例外処理 405
8.1 割り込みコントローラ (IRC) . 405

8.1.1 レジスタマップ . 405
8.1.2 Trigger Mode Register . 405
8.1.3 Request Sense Register . 406
8.1.4 Request Clear Register . 406
8.1.5 Mask Register . 406
8.1.6 IRL Latch/Clear . 407
8.1.7 IRC Mode Register . 407

8.2 動作/使用方法 . 407
8.2.1 IRC . 407
8.2.2 RMT固有機能 . 408
8.2.3 例外処理プロセス . 409

第 9章 クロックジェネレータ 411
9.1 接続図 . 411
9.2 制御レジスタ . 412

9.2.1 Clock Enable . 412
9.2.2 Soft Reset . 412

4

9.2.3 Divider Ratio . 413
9.2.4 Clock Synchronization . 413
9.2.5 All Reset . 414

第 10章 スレッド制御 415

10.1 スレッドの種類 . 415
10.2 スレッド制御命令 . 415

10.2.1 作成・削除 . 415
10.2.2 状態制御 . 416
10.2.3 転送 . 416

10.3 状態遷移 . 417

第 11章 同期 419

11.1 共有レジスタ . 419
11.2 同期命令 . 419

第 12章 Vector Unit 423
12.1 概要 . 423

12.1.1 Vector Execution Unit . 424
12.1.2 命令フォーマット . 424

12.2 Reserve/Release命令 . 425
12.3 Status Register . 427
12.4 複合演算命令 . 427

第 13章 Responsive Link 433
13.1 概要 . 433
13.2 Responsive Linkのインタフェース . 434
13.3 パケットフォーマット . 435

13.3.1 固定長（64B）のデータパケット . 436
13.3.2 固定長（16B）のイベントパケット . 437
13.3.3 優先度による追い越し機構 . 437

13.4 フレームフォーマット . 439
13.5 ルーティング・テーブル . 440
13.6 パケットの加減速制御 . 441
13.7 優先度に従った経路制御 . 441
13.8 低レベル通信 . 443

13.8.1 CODEC . 443
13.8.2 巡回組織ハミング符号化 . 443
13.8.3 Bit Stuffing . 444
13.8.4 NRZI符合化 . 444
13.8.5 セットアップパターン . 444
13.8.6 DPLLを用いたビット同期 . 445
13.8.7 エラーの取扱い . 445
13.8.8 通信速度 . 445

13.9 メモリマップ . 446
13.10レジスタマップ . 446

5

13.10.1SDRAMモードレジスタ . 446
13.10.2レスポンシブリンク速度設定レジスタ . 447
13.10.3レスポンシブリンク初期化レジスタ . 447
13.10.4レスポンシブリンク割り込みクリアレジスタ . 448
13.10.5レスポンシブリンク送信停止割り込みクリアレジスタ 449
13.10.6レスポンシブリンク継続割り込みクリアレジスタ 450
13.10.7レスポンシブリンク致命的エラー割り込みクリアレジスタ 451
13.10.8レスポンシブリンクルーティングテーブル割り込みクリアレジスタ 452
13.10.9レスポンシブリンク SDRAMバスリクエストレジスタ 452
13.10.10レスポンシブリンク SDRAMバスグラントレジスタ 453
13.10.11レスポンシブリンクルーティングテーブルバスリクエストレジスタ 454
13.10.12レスポンシブリンクルーティングテーブルバスグラントレジスタ 455
13.10.13イベントリンク LRUアドレスレジスタ . 456
13.10.14データリンク LRUアドレスレジスタ . 456
13.10.15レスポンシブリンク用割り込みコントローライネーブルレジスタ 457
13.10.16イベントリンク用 SDRAMループカウントレジスタ 457
13.10.17データリンク用 SDRAMループカウントレジスタ 457
13.10.18レスポンシブリンクスイッチモードレジスタ . 458
13.10.19レスポンシブリンク用オフラインレジスタ . 458

13.11DPM (Dual Port Memory) . 459
13.11.1Event Output . 460
13.11.2Event Input . 462
13.11.3Data Output . 465
13.11.4Data Input . 467

13.12通信方法 . 469
13.12.1手順 . 469
13.12.2相互通信の際の注意点 . 470

第 14章 DMAC 471

14.1 レジスタマップ . 471
14.1.1 DMA制御レジスタ . 472
14.1.2 DMA割り込みクリアレジスタ . 472
14.1.3 ポート／ソースアドレスレジスタ . 472
14.1.4 メモリ／デスティネーションアドレスレジスタ . 473
14.1.5 転送レングスレジスタ . 473
14.1.6 データバッファレジスタ . 473
14.1.7 転送モード制御レジスタ . 474
14.1.8 ステータスレジスタ . 476

第 15章 バスサイジング機能付きDMA 477

15.1 本 DMAの特徴 . 477
15.2 制御レジスタ . 477
15.3 制御レジスタ詳細 . 477

15.3.1 PSAレジスタ . 477
15.3.2 MDAレジスタ . 478
15.3.3 LENGTHレジスタ . 478

6

15.3.4 MODEレジスタ . 478
15.4 注意事項 . 479

第 16章 パルスカウンタ 481
16.1 パルスカウンタ概要 . 481
16.2 レジスタインタフェース . 481

16.2.1 パルスカウンタ制御レジスタ . 481
16.2.2 コンペアデータレジスタ . 483
16.2.3 カウンタレジスタ . 484
16.2.4 タイマレジスタ . 484

第 17章 PWM発生器 487
17.1 PWM発生器概要 . 487
17.2 PWMコントロールレジスタ . 487
17.3 PWMサイクルレジスタ . 488
17.4 PWM出力反転制御レジスタ . 489

第 18章 DDR SDRAM I/F 491

18.1 レジスタマップ . 491
18.1.1 主記憶 I/F幅設定レジスタ . 492
18.1.2 I/F起動レジスタ . 492
18.1.3 メモリモジュール設定レジスタ . 492
18.1.4 EMRS設定レジスタ . 493
18.1.5 MRS設定レジスタ . 493
18.1.6 DDR設定レジスタ 1 . 494
18.1.7 DDR設定レジスタ 2 . 494
18.1.8 リフレッシュインターバル設定レジスタ . 494

第 19章 PCI I/F 497
19.1 アドレスマップ . 497

19.1.1 Local Bus . 497
19.1.2 PCI Bus . 498

19.2 PCI I/F レジスタマップ . 500
19.2.1 割り込み制御レジスタ . 500
19.2.2 プログラム制御レジスタ . 502
19.2.3 MailboxA . 503
19.2.4 MailboxB . 503
19.2.5 Local AD . 504
19.2.6 Local Bus Access Port . 504
19.2.7 PCI Bus Access Port . 505
19.2.8 Current Local AD . 505

19.3 Master Transaction用 DMAレジスタマップ . 505
19.3.1 Address Register . 506
19.3.2 Data Count Register . 506
19.3.3 DMA Control Register . 507
19.3.4 DMA Stop/Reset Register . 508

7

19.3.5 FIFO Data Register . 509
19.3.6 FIFO Request Paremter Register . 509
19.3.7 FIFO Control Register . 510
19.3.8 FIFO Stop/Reset Register . 511

19.4 動作/使用方法 . 511
19.4.1 Target Transaction (PCI → Local) . 511
19.4.2 Master Transaction(Local → PCI) . 512

第 20章 IEEE1394 513
20.1 概要 . 513
20.2 レジスタ一覧 . 514

20.2.1 レジスタ内容 . 514

第 21章 Universal Asynchronous Receiver/Transmitter 529
21.1 アドレスマップ . 529

21.1.1 Receiver Buffer (RB) / Transmitter Holding Register (THR) 529
21.1.2 Interrupt Enable Register (IER) . 530
21.1.3 Interrupt Identification Register (IIR) . 530
21.1.4 FIFO Control Register (FCR) . 531
21.1.5 Line Control Register (LCR) . 532
21.1.6 Modem Control Register (MCR) . 533
21.1.7 Line Status Register (LSR) . 534
21.1.8 Modem Status Register (MSR) . 536
21.1.9 Divisor Latches (DL) . 536

21.2 動作/使用方法 . 537
21.2.1 Initialization . 537

第 22章 更新履歴 539

9

1
概要

1.1 Overview

RMT Processorは，分散リアルタイムシステムを実現するために，リアルタイム通信・処理・制御を同
時にハードウェアレベルで行うことを目的にして設計を行ったシステム LSIである．分散リアルタイムシ
ステムを容易かつ効率的に実現するには，リアルタイム通信及びリアルタイム処理を行なうための基本機

能を有した共通プラットホームを用意し，それらをブロックを組み立てるように組み合わせてシステムを

構築できるようにすれば良いと考えられる．プラットホームに必要な機能としては，リアルタイム処理機

能，リアルタイム通信機能，コンピュータ用周辺機能，各種周辺制御機能が考えられる．プラットホーム

として様々なシステムの中に容易に組み込んで使用できるようにするために，RMT Processorは以下の機
能を全て 1チップに集積 (System-on-a-chip)している．

• リアルタイム処理機能 (RMT Processing Unit)

• リアルタイム通信機能 (Responsive Link)

• コンピュータ用周辺機能 (PCI-X, IEEE1394, DDR SDRAM I/Fs, DMAC, etc.)

• 各種周辺制御機能 (PWM Generators，Pulse Counters, etc.)

システム設計者は本チップに必要な I/O（センサ，アクチュエータ，ディジタルカメラ等）を接続するだ
けで必要な機能を実現できる．それら I/Oを接続し固有の機能を有した RMT Processorをそのシステム
にふさわしいトポロジで Responsive Link を用いて複数個接続することによって，分散リアルタイムシス
テムを構築する．

1.2 設計ポリシ

RMT Processorはリアルタイム処理・通信の理論をそのまま実現できることを目標にして設計されてい
る．リアルタイムスケジューラには，動的スケジューリングとして EDF(Earliest Deadline First)等があ
り，静的スケジューリングとしてRM(Rate Monotonic) 等があるが，ほぼ全てのリアルタイムスケジュー
リングは，優先度に従ってプリエンプションを行いながら実行や通信を行うことを要求する．プリエンプ

ションは，演算（処理）の場合はコンテキストスイッチに相当し，通信の場合はパケットの追い越しに相

当する．

10 第 1章 概要

従って，処理の場合は優先度付きスレッドのハードウェアによる優先実行やコンテキストスイッチのオー

バヘッドの削減等を実現する．通信の場合は，従来までの通信では実現されていなかった，優先度付きパ

ケットの追い越し機構等を実現する．

RMT Processorはこれらの機能を実装することにより，リアルタイムスケジューリング理論を背景に設
計されたリアルタイムスケジューラ（ソフトウェア）により優先度付けされた処理や通信を，そのまま理

論通りにリアルタイム処理および通信を実現することのできるハードウェアを実現している．

1.3 全体構成

図 1.1 にRMT Processorのブロック図を示す．RMT PUは，256bitのバスを介してDDR SDRAM I/F
と接続している．バンド幅の広いバスを用いてプロセッシングコアとメインメモリを接続することにより，

命令フェッチや後に述べるベクトル演算において，メモリアクセスのスループットを改善している．

Responsive Link，各種 I/O は 32bitバスに接続されている．32bitバスと 256bitバスはゲートウェイ
（GW）を介して接続されている．それぞれのバスを流れるデータはゲートウェイにおいてバスサイジング
が行われ，もう片方のバスに送られる．また，Responsive Link のイベントリンクはRMT PUのメモリア
クセスユニットに直接接続され，プロセッシングコアからはバスを介さず，制御レジスタの一部としてア

クセスすることができる．これにより，高速にイベントリンクにアクセスすることが可能である．

図 1.1: RMT Processorのブロック図

以下に RMT Processorが持つ I/Oを示す．

• Responsive Link (4ch)

1.4. Responsive Multithreaded Processing Unit 11

• PCI-X : 64bit, 66MHz (1ch)

• USB2 (1ch)

• IEEE1394 (1ch)

• UART (2ch)

• PWM Encoder

– Output (9ch)

– Pulse Counter (9ch)

• External Bus I/F (2cs, 2dreq, 2irq)

• 32bit DMA Controller (4ch × 3)

• 256/32bit DMA Controller (1ch)

• 128bit DDR SDRAM I/F (1ch)

1.4 Responsive Multithreaded Processing Unit

RMT PUは 8wayの細粒度マルチスレッディングに優先度を用いた制御を行うことにより，ハードウェ
アで様々なレベルのリアルタイム処理を支援する．マルチスレッドアーキテクチャでは複数のスレッドが

並列に実行されるため，スレッド間で演算器やキャッシュシステム等の計算資源の競合が起こる．競合が

起こった場合，RMT PUはスレッド毎に設定された優先度を基に，優先度のより高い命令に対して先に計
算資源を割り当てる．これにより並列に実行しているスレッドの中で，優先度の高いスレッドから優先的

に実行する．

図 1.2 にRMT PUのブロック図を示す．RMT PUは命令発行ユニット（Issue Unit），命令演算ユニッ
ト（Execution Unit），キャッシュユニット（Cache Unit）の大きく 3つに分かれる．命令発行ユニットは
各スレッドの実行を制御し，優先度に従って命令演算ユニットに対して各スレッドの命令を送る．命令演

算ユニットは命令発行ユニットから送られてきた命令を演算する．キャッシュユニットは命令発行ユニット

からの命令フェッチ要求，命令演算ユニットからのデータアクセス要求を処理する．

1.4.1 命令発行ユニット

命令発行ユニットの役割は各スレッドの実行を制御し，命令演算ユニットに対して命令を発行すること

である．表 1.1 に命令発行ユニットの概要を示す．
アクティブスレッドとはプロセッサ内に保持されているスレッドで，すぐに実行を開始することができ

る．キャッシュスレッドとは後で述べるコンテキストキャッシュ内に保持されているスレッドを示す．優先

度は 8bitを用いて 256levelで表し，値が大きいほど優先度は高くなる．
各スレッドの制御はスレッド制御ユニットで行う．アクティブスレッドはスレッド制御ユニット内にあ

るスレッドテーブルによって管理される．スレッドテーブルのフォーマットを 図 1.3 に示す．ENABLE
フィールドはアクティブスレッドが有効であるかどうかを示す．STATEフィールドはアクティブスレッドの
状態を示し，実行中，停止中，後述するコンテキストキャッシュへの退避中等といった状態を示す．KEEP
フィールドはアクティブスレッドをプロセッサ内に保持しつづけるかどうかを示す．PRIORITYフィール
ドはスレッドの優先度を示し，この値が RMT PU全体で使用される．

12 第 1章 概要

Instruction
Cache

Instruction
Unit

Thread Control
Unit

Register
File

Context
Cache

Reservation
Station

Reservation
Station

Reservation
Station

Common Data Bus Arbitor

Instruction
MMU

Memory
Read / Write

Buffer

Data
MMU

Data
Cache

Cache Unit

Issue Unit

Reservation
Station

Reservation
Station

VINT

VFPBranch

FPUINT
Memory
Access

Execution Unit

図 1.2: RMT PUのブロック図

ENABLE

13

STATE KEEP PRIORITY

12:9 8 7:0

図 1.3: スレッドテーブルのフォーマット

RMT PUではスレッドの生成，削除，実行，停止，優先度の設定等のために新たに命令を追加した．ス
レッド制御ユニットはこれらの命令が発行されると，命令に応じてスレッドテーブルを書き換え，アクティ

ブスレッドの制御を行う．

先に述べた通り，RMT PUでは 8つのコンテキストをプロセッサ内に保持して実行することができる．
しかしそれ以上のスレッドを実行する場合，コンテキストスイッチが発生する．コンテキストスイッチは

現在実行しているスレッドのコンテキストをメモリに退避し，新しく実行するスレッドのコンテキストを

メモリから復帰しなければならないため，オーバヘッドが大きくなる．

RMT PUではコンテキストを格納するための専用キャッシュをオンチップに用意し，レジスタファイル
との間を広いバス（GPR:256bit，FPR:128bit）で接続している．コンテキストキャッシュは 32個のコン
テキストを格納することができ，コンテキストスイッチをハードウェアにより 4クロックサイクルで行う．
これによりコンテキストスイッチにかかるオーバヘッドを大幅に削減する．

アクティブスレッドのコンテキストキャッシュへの退避，キャッシュスレッドのプロセッサ内への復帰，

アクティブスレッドとキャッシュスレッドの入れ替えは新たに追加した命令により，スレッド制御ユニット

が行う．スレッド制御ユニットはスレッドの退避命令や復帰命令，入れ替え命令を受け取ると，内部に保

1.4. Responsive Multithreaded Processing Unit 13

表 1.1: 命令発行ユニットの概要

アクティブスレッド数 8
キャッシュスレッド数 32
優先度の指定 256level
命令フェッチ数 8
同時命令発行数 4
同時命令完了数 4
整数レジスタ数 32bit × 32entry × 8set
整数リネームレジスタ数 32bit × 64entry
浮動小数点レジスタ数 64bit × 8entry × 8set
浮動小数点リネームレジスタ数 64bit × 64entry

表 1.2: 命令演算ユニットの概要

整数演算器 4 + 1（Divider）
浮動小数点演算器 2 + 1（Divider）
64bit整数演算器 1
整数ベクトル演算器 1（8IU × 2 line）
浮動小数点ベクトル演算器 1（4FPU × 2 line）
分岐ユニット 2
メモリアクセスユニット 1
同期ユニット 1

持しているキャッシュスレッドのテーブルを検索し，コンテキストキャッシュをアクセスするためのアドレ

スを生成して，コンテキストキャッシュをアクセスする．

命令発行ユニットは命令キャッシュアクセスと命令演算ユニットへの命令発行スロットで，優先度を用

いた調停を行う．

1.4.2 命令演算ユニット

命令演算ユニットの役割は命令発行ユニットから送られてくる命令を演算することである．表 1.2 に命
令演算ユニットの概要を示す．

RMT PUはリザベーションステーションとリオーダバッファを用いて，アウトオブオーダ実行を行う．
RMT PUでは複数のスレッドが並列に実行されているため，各演算器においてスレッド間で競合が起こる．
命令演算ユニットではリザベーションステーションにおいて，優先度による制御を行う．リザベーション

ステーションでは演算に必要なオペランドがそろうまで命令は保持される．演算に必要なオペランドがそ

ろい命令の実行が可能になると，各演算器に対して命令が発行される．RMT PUでは複数の命令が実行可
能になった場合，リザベーションステーションは，各命令の優先度を調べ，優先度の高い命令から先に演

算器に発行する．これにより優先度の高いスレッドの命令に対して，先に演算器を割り当てる．

一方，マルチメディア処理のようなソフトリアルタイム処理では多くのデータを繰り返し演算しなけれ

ばならないため，高い演算性能が要求される．このような処理ではデータの並列性を利用して演算性能を

高めることができる．

14 第 1章 概要

表 1.3: キャッシュユニットの概要

TLBエントリ （命令，データ） 64 entry
キャッシュサイズ （命令，データ） 32K byte
victim cache （命令，データ） 512 byte

RMT PUではベクトル演算機構を用いている．ベクトル演算により，少ない命令スロットを有効に活用
し，ソフトリアルタイム処理に要求される高い演算性能を実現する．また，ベクトル演算を行うスレッド

の数やプログラムによって必要とされるベクトルレジスタの構成は異なってくる．そこで RMT PUでは
整数，浮動小数点共に 512セットあるベクトルレジスタを，ベクトル長やレジスタの個数等の構成を動的
に変更してスレッド間で共有することにより，複数のスレッドで柔軟なベクトル演算を可能としている．

ベクトル演算は整数演算，浮動小数点演算共に 2つの演算パイプラインが並列に動作することにより，複
数のスレッドで並列してベクトル演算を行うことができる．各演算パイプラインは，整数演算パイプライ

ンで 8個，浮動小数点演算パイプラインで 4個の演算器を持つことにより，複数のベクトル要素を並列に
演算する．また，プログラマが複合演算を定義し，定義した命令を 1 命令で実行することにより，ベクト
ル演算器の使用率を向上させ，ベクトル演算の性能を向上させている．

1.4.3 キャッシュユニット

キャッシュユニットの役割は命令発行ユニットから送られてくる命令フェッチ要求と，命令実行ユニット

から送られてくるデータアクセス要求を処理することである．表 1.3 にキャッシュユニットの概要を示す．
キャッシュユニットはMMU（Memory Management Unit）を持ち，ハードウェアでアドレス変換を行

うため，各スレッドは仮想アドレスを用いてプログラミングを行うことができる．

MMUが置かれる場所により，仮想アドレスでキャッシュをアクセスするか物理アドレスでキャッシュ
をアクセスするかが決まる．図 1.2 に示した通り，RMT PUではMMUはキャッシュよりも前に置かれ，
キャッシュアクセスを行う前にアドレス変換を行う．よってキャッシュは物理アドレスを用いてアクセスさ

れる．キャッシュアクセスの前にアドレス変換を行うため，キャッシュアクセスにかかるレイテンシが増加

するが，実行するスレッドがコンテキストスイッチにより切り替わった場合でもキャッシュをフラッシュす

る必要がなくなる．また，複数のスレッドでメモリ領域を共有する場合，仮想アドレスでキャッシュをア

クセスすると同一の物理メモリのデータが複数キャッシュされる問題（synonym）が起こるが，物理アド
レスを用いてキャッシュをアクセスすることによりその問題を回避することができる．

MMUにおける TLBエントリには仮想ページ番号，物理ベージ番号の他に，複数スレッドで共有する
ための共有情報，コンテキストグループ番号を指定する．RMT PUは最大 8つのスレッドが動作するた
め，TLBエントリのミス率が高くなることが考えられる．共有情報を用いることにより，複数のスレッド
で TLBエントリを共有し，使用する TLBのエントリ数を削減することができる．
共有情報を設定した後に，新しいスレッドを共有情報に追加する場合はコンテキストグループ番号を用

いる．TLBを設定する場合，コンテキストグループ番号を指定することにより，コンテキストグループ番
号の一致するエントリの共有情報に自身のスレッドを追加する．これにより，使用するTLBのエントリ数
を増やすことなく TLBを有効化することができる．
キャッシュは命令キャッシュ，データキャッシュ共に 8wayの set-associative方式，ブロックサイズは 32byte

で，キャッシュアクセスはパイプライン化されている．キャッシュミスが起こった場合，入れ換えるブロッ

クの選択方法は LRUと優先度がある．優先度を基に入れ換えるブロックを選択する場合，より優先度の
低いスレッドが使用しているブロックから先にキャッシュを追い出される．これにより，優先度の高いス

レッドのキャッシュブロックが追い出されることを防ぐ．

1.5. Responsive Link 15

victim cache は，キャッシュブロックの入れ換えに伴ないキャッシュを追い出されたブロックを，full
associative方式で保持する．キャッシュミスを起した場合，victim cacheにデータが残っていれば，その
ブロックをキャッシュに戻すことにより．キャッシュミスによる内部バスへの要求を減らし，メモリアクセ

スの遅延を減少させる．

キャッスミス等によりバスを介して下位メモリをアクセスする場合にも優先度を用いた制御を行う．メ

モリアクセスはキャッシュよりも低速なため，待ち行列が発生する．この場合，より優先度の高いスレッド

からバスを使用して下位メモリにアクセスする．

1.5 Responsive Link

Responsive Link は，柔軟なリアルタイム通信を実現するために，ソフトリアルタイム通信（データリン
ク）とハードリアルタイム通信（イベントリンク）の分離，パケットに優先度を付加しノード毎に高優先度

パケットが低優先度パケットの追い越し，パケットの優先度が異なると優先度毎に別経路を設定して専用回

線や迂回路を実現可能，ノード毎に優先度を付け替えることができ分散管理型でパケットの加減速を制御

可能，ハードウェアによるエラー訂正，通信速度を動的に変更可能，トポロジーフリー，Hot-Plug&Play
等の様々な機能を実現する．

Responsive Link は国内では情報処理学会試行標準 (IPSJ-TS 2003:0006)として標準化されており，国
際的にはでは ISO/IEC JTC1 SC25 WG4において標準化作業が行われている．

17

2
PIN配置

チップのピン配置の一覧を以下に示す．

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

1 LEFT pci iopad0 uiov lo 30 PDB24DGZ 57.4
INOUT AD[30] (PCIバス)

2 LEFT pci iopad0 uiov lo 29 PDB24DGZ 57.4
INOUT AD[29] (PCIバス)

3 LEFT vss io pci11 PVSS2DGZ 259
IO digital VSS(0v)

4 LEFT pci iopad0 uiov lo 28 PDB24DGZ 57.4
INOUT AD[28] (PCIバス)

5 LEFT vdd io pci11 PVDD2DGZ 80
IO digital VDD(2.5v)

6 LEFT pci iopad0 uiov lo 27 PDB24DGZ 57.4
INOUT AD[27] (PCIバス)

7 LEFT pci iopad0 uiov lo 26 PDB24DGZ 57.4
INOUT AD[26] (PCIバス)

8 LEFT pci iopad0 uiov lo 25 PDB24DGZ 57.4
INOUT AD[25] (PCIバス)

9 LEFT pci iopad0 uiov lo 24 PDB24DGZ 57.4
INOUT AD[24] (PCIバス)

10 LEFT pci iopad0 uiov2 lo 3 PDB24DGZ 57.4
INOUT C/BE[3] (PCIバス)

11 LEFT vdd core l18 PVDD1DGZ 79
Core digital VDD(1.0v)

18 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

12 LEFT pci iopad0 uin1 PDB24DGZ 57.4
INOUT IDSEL (PCIバス)

13 LEFT vss core l31 PVSS1DGZ 79
Core digital VSS(0v)

14 LEFT pci iopad0 uiov lo 23 PDB24DGZ 57.4
INOUT AD[23] (PCIバス)

15 LEFT vss io pci10 PVSS2DGZ 259
IO digital VSS(0v)

16 LEFT pci iopad0 uiov lo 22 PDB24DGZ 57.4
INOUT AD[22] (PCIバス)

17 LEFT vdd io pci10 PVDD2DGZ 80
IO digital VDD(2.5v)

18 LEFT pci iopad0 uiov lo 21 PDB24DGZ 57.4
INOUT AD[21] (PCIバス)

19 LEFT pci iopad0 uiov lo 20 PDB24DGZ 57.4
INOUT AD[20] (PCIバス)

20 LEFT pci iopad0 uiov lo 19 PDB24DGZ 57.4
INOUT AD[19] (PCIバス)

21 LEFT vss core l30 PVSS1DGZ 79
Core digital VSS(0v)

22 LEFT pci iopad0 uiov lo 18 PDB24DGZ 57.4
INOUT AD[18] (PCIバス)

23 LEFT vdd core l17 PVDD1DGZ 79
Core digital VDD(1.0v)

24 LEFT pci iopad0 uiov lo 17 PDB24DGZ 57.4
INOUT AD[17] (PCIバス)

25 LEFT vss io pci9 PVSS2DGZ 259
IO digital VSS(0v)

26 LEFT pci iopad0 uiov lo 16 PDB24DGZ 57.4
INOUT AD[16] (PCIバス)

27 LEFT vdd io pci9 PVDD2DGZ 80
IO digital VDD(2.5v)

28 LEFT pci iopad0 uiov2 lo 2 PDB24DGZ 57.4
INOUT C/BE[2] (PCIバス)

29 LEFT vss core l29 PVSS1DGZ 79
Core digital VSS(0v)

30 LEFT pci iopad0 uio3 PDB24DGZ 57.4
INOUT FRAME# (PCIバス)

31 LEFT pci iopad0 uio4 PDB24DGZ 57.4
INOUT IRDY# (PCIバス)

19

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

32 LEFT pci iopad0 uio5 PDB24DGZ 57.4
INOUT TRDY# (PCIバス)

33 LEFT vdd core l16 PVDD1DGZ 79
Core digital VDD(1.0v)

34 LEFT pci iopad0 uio7 PDB24DGZ 57.4
INOUT DEVSEL# (PCIバス)

35 LEFT vss core l28 PVSS1DGZ 79
Core digital VSS(0v)

36 LEFT pci iopad0 uio6 PDB24DGZ 57.4
INOUT STOP# (PCIバス)

37 LEFT vss io pci8 PVSS2DGZ 259
IO digital VSS(0v)

38 LEFT pci iopad0 uin3 PDB24DGZ 57.4
INOUT LOCK# (PCIバス)

39 LEFT vdd io pci8 PVDD2DGZ 80
IO digital VDD(2.5v)

40 LEFT pci iopad0 uio10 PDB24DGZ 57.4
INOUT PERR# (PCIバス)

41 LEFT pci iopad0 uout2 PDB24DGZ 57.4
INOUT SERR# (PCIバス)

42 LEFT pci iopad0 uio1 PDB24DGZ 57.4
INOUT PAR (PCIバス)

43 LEFT vss core l27 PVSS1DGZ 79
Core digital VSS(0v)

44 LEFT pci iopad0 uiov2 lo 1 PDB24DGZ 57.4
INOUT C/BE[1] (PCIバス)

45 LEFT vdd core l15 PVDD1DGZ 79
Core digital VDD(1.0v)

46 LEFT pci iopad0 uiov lo 15 PDB24DGZ 57.4
INOUT AD[15] (PCIバス)

47 LEFT pci iopad0 uiov lo 14 PDB24DGZ 57.4
INOUT AD[14] (PCIバス)

48 LEFT pci iopad0 uiov lo 13 PDB24DGZ 57.4
INOUT AD[13] (PCIバス)

49 LEFT vss core l26 PVSS1DGZ 79
Core digital VSS(0v)

50 LEFT pci iopad0 uiov lo 12 PDB24DGZ 57.4
INOUT AD[12] (PCIバス)

51 LEFT vss io pci7 PVSS2DGZ 259
IO digital VSS(0v)

20 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

52 LEFT pci iopad0 uiov lo 11 PDB24DGZ 57.4
INOUT AD[11] (PCIバス)

53 LEFT vdd io pci7 PVDD2DGZ 80
IO digital VDD(2.5v)

54 LEFT pci iopad0 uiov lo 10 PDB24DGZ 57.4
INOUT AD[10] (PCIバス)

55 LEFT pci iopad0 uin4 PDB24DGZ 57.4
INOUT M66EN (PCIバス)

56 LEFT pci iopad0 uiov lo 9 PDB24DGZ 57.4
INOUT AD[9] (PCIバス)

57 LEFT vdd core l14 PVDD1DGZ 79
Core digital VDD(1.0v)

58 LEFT pci iopad0 uiov lo 8 PDB24DGZ 57.4
INOUT AD[8] (PCIバス)

59 LEFT vss core l25 PVSS1DGZ 79
Core digital VSS(0v)

60 LEFT pci iopad0 uiov2 lo 0 PDB24DGZ 57.4
INOUT C/BE[0] (PCIバス)

61 LEFT vss io pci6 PVSS2DGZ 259
IO digital VSS(0v)

62 LEFT pci iopad0 uiov lo 7 PDB24DGZ 57.4
INOUT AD[7] (PCIバス)

63 LEFT vdd io pci6 PVDD2DGZ 80
IO digital VDD(2.5v)

64 LEFT pci iopad0 uiov lo 6 PDB24DGZ 57.4
INOUT AD[6] (PCIバス)

65 LEFT vss core l24 PVSS1DGZ 79
Core digital VSS(0v)

66 LEFT pci iopad0 uiov lo 5 PDB24DGZ 57.4
INOUT AD[5] (PCIバス)

67 LEFT pci iopad0 uiov lo 4 PDB24DGZ 57.4
INOUT AD[4] (PCIバス)

68 LEFT pci iopad0 uiov lo 3 PDB24DGZ 57.4
INOUT AD[3] (PCIバス)

69 LEFT vdd core l13 PVDD1DGZ 79
Core digital VDD(1.0v)

70 LEFT pci iopad0 uiov lo 2 PDB24DGZ 57.4
INOUT AD[2] (PCIバス)

71 LEFT vss core l23 PVSS1DGZ 79
Core digital VSS(0v)

21

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

72 LEFT pci iopad0 uiov lo 1 PDB24DGZ 57.4
INOUT AD[1] (PCIバス)

73 LEFT vss io pci5 PVSS2DGZ 259
IO digital VSS(0v)

74 LEFT pci iopad0 uiov lo 0 PDB24DGZ 57.4
INOUT AD[0] (PCIバス)

75 LEFT vdd io pci5 PVDD2DGZ 80
IO digital VDD(2.5v)

76 LEFT pci iopad0 uio8 PDB24DGZ 57.4
INOUT ACK64# (PCIバス)

77 LEFT vss core l22 PVSS1DGZ 79
Core digital VSS(0v)

78 LEFT pci iopad0 uio9 PDB24DGZ 57.4
INOUT REQ64# (PCIバス)

79 LEFT pci iopad0 uiov2 hi 3 PDB24DGZ 57.4
INOUT C/BE[7] (PCIバス)

80 LEFT pci iopad0 uiov2 hi 2 PDB24DGZ 57.4
INOUT C/BE[6] (PCIバス)

81 LEFT vdd core l12 PVDD1DGZ 79
Core digital VDD(1.0v)

82 LEFT pci iopad0 uiov2 hi 1 PDB24DGZ 57.4
INOUT C/BE[5] (PCIバス)

83 LEFT vss core l21 PVSS1DGZ 79
Core digital VSS(0v)

84 LEFT pci iopad0 uiov2 hi 0 PDB24DGZ 57.4
INOUT C/BE[4] (PCIバス)

85 LEFT vss io pci4 PVSS2DGZ 259
IO digital VSS(0v)

86 LEFT pci iopad0 uio2 PDB24DGZ 57.4
INOUT PAR64 (PCIバス)

87 LEFT vdd io pci4 PVDD2DGZ 80
IO digital VDD(2.5v)

88 LEFT pci iopad0 uiov hi 31 PDB24DGZ 57.4
INOUT AD[63] (PCIバス)

89 LEFT pci iopad0 uiov hi 30 PDB24DGZ 57.4
INOUT AD[62] (PCIバス)

90 LEFT pci iopad0 uiov hi 29 PDB24DGZ 57.4
INOUT AD[61] (PCIバス)

91 LEFT vss core l20 PVSS1DGZ 79
Core digital VSS(0v)

22 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

92 LEFT pci iopad0 uiov hi 28 PDB24DGZ 57.4
INOUT AD[60] (PCIバス)

93 LEFT vdd core l11 PVDD1DGZ 79
Core digital VDD(1.0v)

94 LEFT pci iopad0 uiov hi 27 PDB24DGZ 57.4
INOUT AD[59] (PCIバス)

95 LEFT vss io pci3 PVSS2DGZ 259
IO digital VSS(0v)

96 LEFT pci iopad0 uiov hi 26 PDB24DGZ 57.4
INOUT AD[58] (PCIバス)

97 LEFT vdd io pci3 PVDD2DGZ 80
IO digital VDD(2.5v)

98 LEFT pci iopad0 uiov hi 25 PDB24DGZ 57.4
INOUT AD[57] (PCIバス)

99 LEFT vss core l19 PVSS1DGZ 79
Core digital VSS(0v)

100 LEFT pci iopad0 uiov hi 24 PDB24DGZ 57.4
INOUT AD[56] (PCIバス)

101 LEFT pci iopad0 uiov hi 23 PDB24DGZ 57.4
INOUT AD[55] (PCIバス)

102 LEFT pci iopad0 uiov hi 22 PDB24DGZ 57.4
INOUT AD[54] (PCIバス)

103 LEFT vdd core l10 PVDD1DGZ 79
Core digital VDD(1.0v)

104 LEFT pci iopad0 uiov hi 21 PDB24DGZ 57.4
INOUT AD[53] (PCIバス)

105 LEFT pci iopad0 uiov hi 20 PDB24DGZ 57.4
INOUT AD[52] (PCIバス)

106 LEFT pci iopad0 uiov hi 19 PDB24DGZ 57.4
INOUT AD[51] (PCIバス)

107 LEFT vss core l18 PVSS1DGZ 79
Core digital VSS(0v)

108 LEFT pci iopad0 uiov hi 18 PDB24DGZ 57.4
INOUT AD[50] (PCIバス)

109 LEFT pci iopad0 uiov hi 17 PDB24DGZ 57.4
INOUT AD[49] (PCIバス)

110 LEFT pci iopad0 uiov hi 16 PDB24DGZ 57.4
INOUT AD[48] (PCIバス)

111 LEFT vdd core l9 PVDD1DGZ 79
Core digital VDD(1.0v)

23

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

112 LEFT pci iopad0 uiov hi 15 PDB24DGZ 57.4
INOUT AD[47] (PCIバス)

113 LEFT vss io pci2 PVSS2DGZ 259
IO digital VSS(0v)

114 LEFT pci iopad0 uiov hi 14 PDB24DGZ 57.4
INOUT AD[46] (PCIバス)

115 LEFT vdd io pci2 PVDD2DGZ 80
IO digital VDD(2.5v)

116 LEFT pci iopad0 uiov hi 13 PDB24DGZ 57.4
INOUT AD[45] (PCIバス)

117 LEFT vss core l17 PVSS1DGZ 79
Core digital VSS(0v)

118 LEFT pci iopad0 uiov hi 12 PDB24DGZ 57.4
INOUT AD[44] (PCIバス)

119 LEFT vdd core l8 PVDD1DGZ 79
Core digital VDD(1.0v)

120 LEFT pci iopad0 uiov hi 11 PDB24DGZ 57.4
INOUT AD[43] (PCIバス)

121 LEFT vss io pci1 PVSS2DGZ 259
IO digital VSS(0v)

122 LEFT pci iopad0 uiov hi 10 PDB24DGZ 57.4
INOUT AD[42] (PCIバス)

123 LEFT vdd io pci1 PVDD2DGZ 80
IO digital VDD(2.5v)

124 LEFT pci iopad0 uiov hi 9 PDB24DGZ 57.4
INOUT AD[41] (PCIバス)

125 LEFT vss core l16 PVSS1DGZ 79
Core digital VSS(0v)

126 LEFT pci iopad0 uiov hi 8 PDB24DGZ 57.4
INOUT AD[40] (PCIバス)

127 LEFT pci iopad0 uiov hi 7 PDB24DGZ 57.4
INOUT AD[39] (PCIバス)

128 LEFT pci iopad0 uiov hi 6 PDB24DGZ 57.4
INOUT AD[38] (PCIバス)

129 LEFT vdd core l7 PVDD1DGZ 79
Core digital VDD(1.0v)

130 LEFT pci iopad0 uiov hi 5 PDB24DGZ 57.4
INOUT AD[37] (PCIバス)

131 LEFT vss core l15 PVSS1DGZ 79
Core digital VSS(0v)

24 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

132 LEFT pci iopad0 uiov hi 4 PDB24DGZ 57.4
INOUT AD[36] (PCIバス)

133 LEFT vss io pci0 PVSS2DGZ 259
IO digital VSS(0v)

134 LEFT pci iopad0 uiov hi 3 PDB24DGZ 57.4
INOUT AD[35] (PCIバス)

135 LEFT vdd io pci0 PVDD2DGZ 80
IO digital VDD(2.5v)

136 LEFT pci iopad0 uiov hi 2 PDB24DGZ 57.4
INOUT AD[34] (PCIバス)

137 LEFT vss core l14 PVSS1DGZ 79
Core digital VSS(0v)

138 LEFT pci iopad0 uiov hi 1 PDB24DGZ 57.4
INOUT AD[33] (PCIバス)

139 LEFT vdd core l6 PVDD1DGZ 79
Core digital VDD(1.0v)

140 LEFT pci iopad0 uiov hi 0 PDB24DGZ 57.4
INOUT AD[32] (PCIバス)

141 LEFT vss io other1 PVSS2DGZ 259
IO digital VSS(0v)

142 LEFT pp iopad0 pp pwm out pad8 PDO04CDG 10.3
OUTPUT PWM出力 channel8 (PWMジェネレータ)

143 LEFT vss core l13 PVSS1DGZ 79
Core digital VSS(0v)

144 LEFT pp iopad0 pp pwm out pad7 PDO04CDG 10.3
OUTPUT PWM出力 channel7 (PWMジェネレータ)

145 LEFT pp iopad0 pp pwm out pad6 PDO04CDG 10.3
OUTPUT PWM出力 channel6 (PWMジェネレータ)

146 LEFT pp iopad0 pp pwm out pad5 PDO04CDG 10.3
OUTPUT PWM出力 channel5 (PWMジェネレータ)

147 LEFT vss core l12 PVSS1DGZ 79
Core digital VSS(0v)

148 LEFT pp iopad0 pp pwm out pad4 PDO04CDG 10.3
OUTPUT PWM出力 channel4 (PWMジェネレータ)

149 LEFT vdd core l5 PVDD1DGZ 79
Core digital VDD(1.0v)

150 LEFT pp iopad0 pp pwm out pad3 PDO04CDG 10.3
OUTPUT PWM出力 channel3 (PWMジェネレータ)

151 LEFT vss core l11 PVSS1DGZ 79
Core digital VSS(0v)

25

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

152 LEFT pp iopad0 pp pwm out pad2 PDO04CDG 10.3
OUTPUT PWM出力 channel2 (PWMジェネレータ)

153 LEFT vss io pp0 PVSS2DGZ 259
IO digital VSS(0v)

154 LEFT pp iopad0 pp pwm out pad1 PDO04CDG 10.3
OUTPUT PWM出力 channel1 (PWMジェネレータ)

155 LEFT vdd io pp0 PVDD2DGZ 80
IO digital VDD(2.5v)

156 LEFT pp iopad0 pp pwm out pad0 PDO04CDG 10.3
OUTPUT PWM出力 channel0 (PWMジェネレータ)

157 LEFT vss core l10 PVSS1DGZ 79
Core digital VSS(0v)

158 LEFT pp iopad0 pp pz pad8 PDIDGZ
INPUT エンコーダ Zフェーズ入力 channel8 (パルスカウンタ)

159 LEFT pp iopad0 pp pz pad7 PDIDGZ
INPUT エンコーダ Zフェーズ入力 channel7 (パルスカウンタ)

160 LEFT pp iopad0 pp pz pad6 PDIDGZ
INPUT エンコーダ Zフェーズ入力 channel6 (パルスカウンタ)

161 LEFT vss core l9 PVSS1DGZ 79
Core digital VSS(0v)

162 LEFT pp iopad0 pp pz pad5 PDIDGZ
INPUT エンコーダ Zフェーズ入力 channel5 (パルスカウンタ)

163 LEFT vdd core l4 PVDD1DGZ 79
Core digital VDD(1.0v)

164 LEFT pp iopad0 pp pz pad4 PDIDGZ
INPUT エンコーダ Zフェーズ入力 channel4 (パルスカウンタ)

165 LEFT pp iopad0 pp pz pad3 PDIDGZ
INPUT エンコーダ Zフェーズ入力 channel3 (パルスカウンタ)

166 LEFT pp iopad0 pp pz pad2 PDIDGZ
INPUT エンコーダ Zフェーズ入力 channel2 (パルスカウンタ)

167 LEFT vss core l8 PVSS1DGZ 79
Core digital VSS(0v)

168 LEFT pp iopad0 pp pz pad1 PDIDGZ
INPUT エンコーダ Zフェーズ入力 channel1 (パルスカウンタ)

169 LEFT pp iopad0 pp pz pad0 PDIDGZ
INPUT エンコーダ Zフェーズ入力 channel0 (パルスカウンタ)

170 LEFT pp iopad0 pp pb pad8 PDIDGZ
INPUT エンコーダ Bフェーズ入力 channel8 (パルスカウンタ)

171 LEFT vss core l7 PVSS1DGZ 79
Core digital VSS(0v)

26 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

172 LEFT pp iopad0 pp pb pad7 PDIDGZ
INPUT エンコーダ Bフェーズ入力 channel7 (パルスカウンタ)

173 LEFT vdd core l3 PVDD1DGZ 79
Core digital VDD(1.0v)

174 LEFT pp iopad0 pp pb pad6 PDIDGZ
INPUT エンコーダ Bフェーズ入力 channel6 (パルスカウンタ)

175 LEFT pp iopad0 pp pb pad5 PDIDGZ
INPUT エンコーダ Bフェーズ入力 channel5 (パルスカウンタ)

176 LEFT pp iopad0 pp pb pad4 PDIDGZ
INPUT エンコーダ Bフェーズ入力 channel4 (パルスカウンタ)

177 LEFT vss core l6 PVSS1DGZ 79
Core digital VSS(0v)

178 LEFT pp iopad0 pp pb pad3 PDIDGZ
INPUT エンコーダ Bフェーズ入力 channel3 (パルスカウンタ)

179 LEFT pp iopad0 pp pb pad2 PDIDGZ
INPUT エンコーダ Bフェーズ入力 channel2 (パルスカウンタ)

180 LEFT pp iopad0 pp pb pad1 PDIDGZ
INPUT エンコーダ Bフェーズ入力 channel1 (パルスカウンタ)

181 LEFT vss core l5 PVSS1DGZ 79
Core digital VSS(0v)

182 LEFT pp iopad0 pp pb pad0 PDIDGZ
INPUT エンコーダ Bフェーズ入力 channel0 (パルスカウンタ)

183 LEFT vdd core l2 PVDD1DGZ 79
Core digital VDD(1.0v)

184 LEFT pp iopad0 pp pa pad8 PDIDGZ
INPUT エンコーダ Aフェーズ入力 channel8 (パルスカウンタ)

185 LEFT pp iopad0 pp pa pad7 PDIDGZ
INPUT エンコーダ Aフェーズ入力 channel7 (パルスカウンタ)

186 LEFT pp iopad0 pp pa pad6 PDIDGZ
INPUT エンコーダ Aフェーズ入力 channel6 (パルスカウンタ)

187 LEFT vss core l4 PVSS1DGZ 79
Core digital VSS(0v)

188 LEFT pp iopad0 pp pa pad5 PDIDGZ
INPUT エンコーダ Aフェーズ入力 channel5 (パルスカウンタ)

189 LEFT pp iopad0 pp pa pad4 PDIDGZ
INPUT エンコーダ Aフェーズ入力 channel4 (パルスカウンタ)

190 LEFT pp iopad0 pp pa pad3 PDIDGZ
INPUT エンコーダ Aフェーズ入力 channel3 (パルスカウンタ)

191 LEFT vss core l3 PVSS1DGZ 79
Core digital VSS(0v)

27

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

192 LEFT pp iopad0 pp pa pad2 PDIDGZ
INPUT エンコーダ Aフェーズ入力 channel2 (パルスカウンタ)

193 LEFT vdd core l1 PVDD1DGZ 79
Core digital VDD(1.0v)

194 LEFT pp iopad0 pp pa pad1 PDIDGZ
INPUT エンコーダ Aフェーズ入力 channel1 (パルスカウンタ)

195 LEFT vss io other0 PVSS2DGZ 259
IO digital VSS(0v)

196 LEFT pp iopad0 pp pa pad0 PDIDGZ
INPUT エンコーダ Aフェーズ入力 channel0 (パルスカウンタ)

197 LEFT vss core l2 PVSS1DGZ 79
Core digital VSS(0v)

198 LEFT clk iopad0 reset outer PDO24CDG 57.4
OUTPUT 外部ユニット用リセット

199 LEFT vdd core la8 PVDD1DGZ 79
Core digital VDD(1.0v)

200 LEFT vdd core la7 PVDD1DGZ 79
Core digital VDD(1.0v)

201 LEFT vss core l1 PVSS1DGZ 79
Core digital VSS(0v)

202 LEFT clk iopad0 fout a PDO24CDG 57.4
OUTPUT PLLクロック出力

203 LEFT vdd core l0 PVDD1DGZ 79
Core digital VDD(1.0v)

204 LEFT vss core l7 PVSS1DGZ 79
Core digital VSS(0v)

205 LEFT vss core l0 PVSS1DGZ 79
Core digital VSS(0v)

206 LEFT vdd core la6 PVDD1DGZ 79
Core digital VDD(1.0v)

207 LEFT vss core la6 PVSS1DGZ 79
Core digital VSS(0v)

208 LEFT vdd core la5 PVDD1DGZ 79
Core digital VDD(1.0v)

209 LEFT vss core la5 PVSS1DGZ 79
Core digital VSS(0v)

210 LEFT vss core la4 PVSS1DGZ 79
Core digital VSS(0v)

211 LEFT clk iopad0 clk outer PDO24CDG 57.4
OUTPUT 外部ユニット用クロック

28 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

212 LEFT vdd io clk0 PVDD2DGZ 80
IO digital VDD(2.5v)

213 LEFT vdd core la4 PVDD1DGZ 79
Core digital VDD(1.0v)

214 LEFT vdd core la3 PVDD1DGZ 79
Core digital VDD(1.0v)

215 LEFT vss core la3 PVSS1DGZ 79
Core digital VSS(0v)

216 LEFT vdd core la2 PVDD1DGZ 79
Core digital VDD(1.0v)

217 LEFT vss io clk0 PVSS2DGZ 259
IO digital VSS(0v)

218 LEFT vss core la2 PVSS1DGZ 79
Core digital VSS(0v)

219 LEFT vdd core la1 PVDD2DGZ 80
Core digital VDD(1.0v)

220 LEFT vss core la1 PVSS1DGZ 79
Core digital VSS(0v)

221 LEFT vss core la0 PVSS1DGZ 79
Core digital VSS(0v)

222 LEFT vdd core la0 PVDD1DGZ 79
Core digital VDD(1.0v)

223 LEFT clk iopad0 reset in PDUDGZ
INPUT リセット入力

224 LEFT clk iopad0 f a0 PDDDGZ
INPUT PLL設定 Feedback Divider[0]

225 LEFT clk iopad0 f a1 PDDDGZ
INPUT PLL設定 Feedback Divider[1]

226 LEFT clk iopad0 f a2 PDDDGZ
INPUT PLL設定 Feedback Divider[2]

227 LEFT clk iopad0 f a3 PDDDGZ
INPUT PLL設定 Feedback Divider[3]

228 LEFT clk iopad0 f a4 PDDDGZ
INPUT PLL設定 Feedback Divider[4]

229 LEFT clk iopad0 f a5 PDDDGZ
INPUT PLL設定 Feedback Divider[5]

230 LEFT clk iopad0 f a6 PDDDGZ
INPUT PLL設定 Feedback Divider[6]

231 LEFT clk iopad0 f a7 PDDDGZ
INPUT PLL設定 Feedback Divider[7]

29

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

232 LEFT clk iopad0 fin a PDISDGZ
INPUT クロック入力

233 LEFT clk iopad0 bp a PDDDGZ
INPUT PLLバイパス信号

234 LEFT clk iopad0 r a0 PDUDGZ
INPUT PLL設定 Input Divider[0]

235 LEFT clk iopad0 r a1 PDUDGZ
INPUT PLL設定 Input Divider[1]

236 LEFT clk iopad0 r a2 PDUDGZ
INPUT PLL設定 Input Divider[2]

237 LEFT clk iopad0 r a3 PDUDGZ
INPUT PLL設定 Input Divider[3]

238 LEFT clk iopad0 r a4 PDUDGZ
INPUT PLL設定 Input Divider[4]

239 LEFT clk iopad0 oeb a PDDDGZ
PLL設定 FOUT enable pin

240 LEFT clk iopad0 od a PDDDGZ
PLL設定 Output Divider

241 LEFT clk iopad0 pd a PDDDGZ
PLL設定 Power Down Mode

242 LEFT clk iopad0 prdiode1 PRDIODE
Power Cut Cell

243 LEFT clk iopad0 pvss2p a PVSS2P
IO analog VSS(0v)

244 LEFT clk iopad0 pvdd2p a PVDD2P
IO analog VDD(2.5v)

245 LEFT clk iopad0 pvdd1p a1 PVDD1P
PLL analog VDD(2.5v)

246 LEFT clk iopad0 pvdd1p a0 PVDD1P
PLL analog VDD(2.5v)

247 LEFT clk iopad0 pvss1p a2 PVSS1P
PLL digital VSS(0v)

248 LEFT clk iopad0 pvss1p a1 PVSS1P
PLL analog VSS(0v)

249 LEFT clk iopad0 pvss1p a0 PVSS1P
PLL analog VSS(0v)

250 LEFT clk iopad0 pvdd1pc a0 PVDD1PC
PLL digital VDD(1.0v)

251 LEFT clk iopad0 prdiode0 PRDIODE
Power Cut Cell

30 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

252 BOTTOM uart iopad0 uart1 stx pad PDO04CDG 10.3
OUTPUT TxD channel1 (UART)

253 BOTTOM uart iopad0 uart1 srx pad PDIDGZ
INPUT RxD channel1 (UART)

254 BOTTOM uart iopad0 uart0 dtr pad PDO04CDG 10.3
OUTPUT DTR channel1 (UART)

255 BOTTOM uart iopad0 uart0 rts pad PDO04CDG 10.3
OUTPUT RTS channel1 (UART)

256 BOTTOM uart iopad0 uart0 stx pad PDO04CDG 10.3
OUTPUT TxD channel0 (UART)

257 BOTTOM uart iopad0 uart0 dcd pad PDIDGZ
INPUT DCD channel0 (UART)

258 BOTTOM uart iopad0 uart0 ri pad PDIDGZ
INPUT RI channel0 (UART)

259 BOTTOM uart iopad0 uart0 dsr pad PDIDGZ
INPUT DSR channel0 (UART)

260 BOTTOM uart iopad0 uart0 cts pad PDIDGZ
INPUT CTS channel0 (UART)

261 BOTTOM uart iopad0 uart0 srx pad PDIDGZ
INPUT RxD channel0 (UART)

262 BOTTOM sdram iopad0 oe PDO24CDG 57.4
OUTPUT Output Enable < action : 0 stop : 1 > (SDRAM)

263 BOTTOM sdram iopad0 dir PDO24CDG 57.4
OUTPUT Direction < read : 1 write : 0 > (SDRAM)

264 BOTTOM vss io other4 PVSS2DGZ 259
IO digital VSS(0v)

265 BOTTOM sdram iopad0 dq127 PDB24SDGZ 57.4
INOUT Dq[127] (SDRAM)

266 BOTTOM sdram iopad0 dq063 PDB24SDGZ 57.4
INOUT Dq[63] (SDRAM)

267 BOTTOM sdram iopad0 dq123 PDB24SDGZ 57.4
INOUT Dq[123] (SDRAM)

268 BOTTOM sdram iopad0 dq059 PDB24SDGZ 57.4
INOUT Dq[59] (SDRAM)

269 BOTTOM sdram iopad0 dq126 PDB24SDGZ 57.4
INOUT Dq[126] (SDRAM)

270 BOTTOM sdram iopad0 dq062 PDB24SDGZ 57.4
INOUT Dq[62] (SDRAM)

271 BOTTOM sdram iopad0 dq122 PDB24SDGZ 57.4
INOUT Dq[122] (SDRAM)

31

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

272 BOTTOM sdram iopad0 dq058 PDB24SDGZ 57.4
INOUT Dq[58] (SDRAM)

273 BOTTOM sdram iopad0 dqm15 PDO24CDG 57.4
OUTPUT Dm[15] (SDRAM)

274 BOTTOM sdram iopad0 dqm07 PDO24CDG 57.4
OUTPUT Dm[7] (SDRAM)

275 BOTTOM sdram iopad0 dqs015 PDB24SDGZ 57.4
INOUT Dqs[15] (SDRAM)

276 BOTTOM sdram iopad0 dqs007 PDB24SDGZ 57.4
INOUT Dqs[7] (SDRAM)

277 BOTTOM sdram iopad0 dq125 PDB24SDGZ 57.4
INOUT Dq[125] (SDRAM)

278 BOTTOM vdd io sdram17 PVDD2DGZ 80
IO digital VDD(2.5v)

279 BOTTOM sdram iopad0 dq061 PDB24SDGZ 57.4
INOUT Dq[61] (SDRAM)

280 BOTTOM vss io sdram17 PVSS2DGZ 259
IO digital VSS(0v)

281 BOTTOM sdram iopad0 dq121 PDB24SDGZ 57.4
INOUT Dq[121] (SDRAM)

282 BOTTOM vss core b35 PVSS1DGZ 79
Core digital VSS(0v)

283 BOTTOM sdram iopad0 dq057 PDB24SDGZ 57.4
INOUT Dq[57] (SDRAM)

284 BOTTOM vdd core b20 PVDD1DGZ 79
Core digital VDD(1.0v)

285 BOTTOM sdram iopad0 dq124 PDB24SDGZ 57.4
INOUT Dq[124] (SDRAM)

286 BOTTOM vss core b34 PVSS1DGZ 79
Core digital VSS(0v)

287 BOTTOM sdram iopad0 dq060 PDB24SDGZ 57.4
INOUT Dq[60] (SDRAM)

288 BOTTOM sdram iopad0 dq120 PDB24SDGZ 57.4
INOUT Dq[120] (SDRAM)

289 BOTTOM sdram iopad0 dq056 PDB24SDGZ 57.4
INOUT Dq[56] (SDRAM)

290 BOTTOM vss core b33 PVSS1DGZ 79
Core digital VSS(0v)

291 BOTTOM sdram iopad0 dq119 PDB24SDGZ 57.4
INOUT Dq[119] (SDRAM)

32 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

292 BOTTOM vss io sdram16 PVSS2DGZ 259
IO digital VSS(0v)

293 BOTTOM sdram iopad0 dq055 PDB24SDGZ 57.4
INOUT Dq[55] (SDRAM)

294 BOTTOM vdd io sdram16 PVDD2DGZ 80
IO digital VDD(2.5v)

295 BOTTOM sdram iopad0 dq115 PDB24SDGZ 57.4
INOUT Dq[115] (SDRAM)

296 BOTTOM vdd core b19 PVDD1DGZ 79
Core digital VDD(1.0v)

297 BOTTOM sdram iopad0 dq051 PDB24SDGZ 57.4
INOUT Dq[51] (SDRAM)

298 BOTTOM vss core b32 PVSS1DGZ 79
Core digital VSS(0v)

299 BOTTOM sdram iopad0 dq118 PDB24SDGZ 57.4
INOUT Dq[118] (SDRAM)

300 BOTTOM sdram iopad0 dq054 PDB24SDGZ 57.4
INOUT Dq[54] (SDRAM)

301 BOTTOM sdram iopad0 dq114 PDB24SDGZ 57.4
INOUT Dq[114] (SDRAM)

302 BOTTOM vss core b31 PVSS1DGZ 79
Core digital VSS(0v)

303 BOTTOM sdram iopad0 dq050 PDB24SDGZ 57.4
INOUT Dq[50] (SDRAM)

304 BOTTOM vss io sdram15 PVSS2DGZ 259
IO digital VSS(0v)

305 BOTTOM sdram iopad0 dqm14 PDO24CDG 57.4
OUTPUT Dm[14] (SDRAM)

306 BOTTOM vdd io sdram15 PVDD2DGZ 80
IO digital VDD(2.5v)

307 BOTTOM sdram iopad0 dqm06 PDO24CDG 57.4
OUTPUT Dm[6] (SDRAM)

308 BOTTOM vdd core b18 PVDD1DGZ 79
Core digital VDD(1.0v)

309 BOTTOM sdram iopad0 dqs014 PDB24SDGZ 57.4
INOUT Dqs[14] (SDRAM)

310 BOTTOM vss core b30 PVSS1DGZ 79
Core digital VSS(0v)

311 BOTTOM sdram iopad0 dqs006 PDB24SDGZ 57.4
INOUT Dqs[6] (SDRAM)

33

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

312 BOTTOM sdram iopad0 dq117 PDB24SDGZ 57.4
INOUT Dq[117] (SDRAM)

313 BOTTOM sdram iopad0 dq053 PDB24SDGZ 57.4
INOUT Dq[53] (SDRAM)

314 BOTTOM vss core b29 PVSS1DGZ 79
Core digital VSS(0v)

315 BOTTOM sdram iopad0 dq113 PDB24SDGZ 57.4
INOUT Dq[113] (SDRAM)

316 BOTTOM vdd core b17 PVDD1DGZ 79
Core digital VDD(1.0v)

317 BOTTOM sdram iopad0 dq049 PDB24SDGZ 57.4
INOUT Dq[49] (SDRAM)

318 BOTTOM vss core b28 PVSS1DGZ 79
Core digital VSS(0v)

319 BOTTOM sdram iopad0 dq116 PDB24SDGZ 57.4
INOUT Dq[116] (SDRAM)

320 BOTTOM sdram iopad0 dq052 PDB24SDGZ 57.4
INOUT Dq[52] (SDRAM)

321 BOTTOM sdram iopad0 dq112 PDB24SDGZ 57.4
INOUT Dq[112] (SDRAM)

322 BOTTOM vss core b27 PVSS1DGZ 79
Core digital VSS(0v)

323 BOTTOM sdram iopad0 dq048 PDB24SDGZ 57.4
INOUT Dq[48] (SDRAM)

324 BOTTOM vdd core b16 PVDD1DGZ 79
Core digital VDD(1.0v)

325 BOTTOM sdram iopad0 dq111 PDB24SDGZ 57.4
INOUT Dq[111] (SDRAM)

326 BOTTOM vss core b26 PVSS1DGZ 79
Core digital VSS(0v)

327 BOTTOM sdram iopad0 dq047 PDB24SDGZ 57.4
INOUT Dq[47] (SDRAM)

328 BOTTOM vss io sdram14 PVSS2DGZ 259
IO digital VSS(0v)

329 BOTTOM sdram iopad0 dq107 PDB24SDGZ 57.4
INOUT Dq[107] (SDRAM)

330 BOTTOM vdd io sdram14 PVDD2DGZ 80
IO digital VDD(2.5v)

331 BOTTOM sdram iopad0 dq043 PDB24SDGZ 57.4
INOUT Dq[43] (SDRAM)

34 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

332 BOTTOM vss core b25 PVSS1DGZ 79
Core digital VSS(0v)

333 BOTTOM sdram iopad0 dq110 PDB24SDGZ 57.4
INOUT Dq[110] (SDRAM)

334 BOTTOM vdd core b15 PVDD1DGZ 79
Core digital VDD(1.0v)

335 BOTTOM sdram iopad0 dq046 PDB24SDGZ 57.4
INOUT Dq[46] (SDRAM)

336 BOTTOM vss core b24 PVSS1DGZ 79
Core digital VSS(0v)

337 BOTTOM sdram iopad0 dq106 PDB24SDGZ 57.4
INOUT Dq[106] (SDRAM)

338 BOTTOM sdram iopad0 dq042 PDB24SDGZ 57.4
INOUT Dq[42] (SDRAM)

339 BOTTOM sdram iopad0 dqm13 PDO24CDG 57.4
OUTPUT Dm[13] (SDRAM)

340 BOTTOM vss core b23 PVSS1DGZ 79
Core digital VSS(0v)

341 BOTTOM sdram iopad0 dqm05 PDO24CDG 57.4
OUTPUT Dm[5] (SDRAM)

342 BOTTOM vdd core b14 PVDD1DGZ 79
Core digital VDD(1.0v)

343 BOTTOM sdram iopad0 dqs013 PDB24SDGZ 57.4
INOUT Dqs[13] (SDRAM)

344 BOTTOM vss io sdram13 PVSS2DGZ 259
IO digital VSS(0v)

345 BOTTOM sdram iopad0 dqs005 PDB24SDGZ 57.4
INOUT Dqs[5] (SDRAM)

346 BOTTOM vdd io sdram13 PVDD2DGZ 80
IO digital VDD(2.5v)

347 BOTTOM sdram iopad0 dq109 PDB24SDGZ 57.4
INOUT Dq[109] (SDRAM)

348 BOTTOM vss core b22 PVSS1DGZ 79
Core digital VSS(0v)

349 BOTTOM sdram iopad0 dq045 PDB24SDGZ 57.4
INOUT Dq[45] (SDRAM)

350 BOTTOM vdd core b13 PVDD1DGZ 79
Core digital VDD(1.0v)

351 BOTTOM sdram iopad0 dq105 PDB24SDGZ 57.4
INOUT Dq[105] (SDRAM)

35

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

352 BOTTOM sdram iopad0 dq041 PDB24SDGZ 57.4
INOUT Dq[41] (SDRAM)

353 BOTTOM sdram iopad0 dq108 PDB24SDGZ 57.4
INOUT Dq[108] (SDRAM)

354 BOTTOM vss core b21 PVSS1DGZ 79
Core digital VSS(0v)

355 BOTTOM sdram iopad0 dq044 PDB24SDGZ 57.4
INOUT Dq[44] (SDRAM)

356 BOTTOM vss io sdram12 PVSS2DGZ 259
IO digital VSS(0v)

357 BOTTOM sdram iopad0 dq104 PDB24SDGZ 57.4
INOUT Dq[104] (SDRAM)

358 BOTTOM vdd io sdram12 PVDD2DGZ 80
IO digital VDD(2.5v)

359 BOTTOM sdram iopad0 dq040 PDB24SDGZ 57.4
INOUT Dq[40] (SDRAM)

360 BOTTOM vdd core b12 PVDD1DGZ 79
Core digital VDD(1.0v)

361 BOTTOM sdram iopad0 dq103 PDB24SDGZ 57.4
INOUT Dq[103] (SDRAM)

362 BOTTOM vss core b20 PVSS1DGZ 79
Core digital VSS(0v)

363 BOTTOM sdram iopad0 dq039 PDB24SDGZ 57.4
INOUT Dq[39] (SDRAM)

364 BOTTOM sdram iopad0 dq099 PDB24SDGZ 57.4
INOUT Dq[99] (SDRAM)

365 BOTTOM sdram iopad0 dq035 PDB24SDGZ 57.4
INOUT Dq[35] (SDRAM)

366 BOTTOM sdram iopad0 dq102 PDB24SDGZ 57.4
INOUT Dq[102] (SDRAM)

367 BOTTOM sdram iopad0 dq038 PDB24SDGZ 57.4
INOUT Dq[38] (SDRAM)

368 BOTTOM vss core b19 PVSS1DGZ 79
Core digital VSS(0v)

369 BOTTOM sdram iopad0 dq098 PDB24SDGZ 57.4
INOUT Dq[98] (SDRAM)

370 BOTTOM sdram iopad0 dq034 PDB24SDGZ 57.4
INOUT Dq[34] (SDRAM)

371 BOTTOM sdram iopad0 dqm12 PDO24CDG 57.4
OUTPUT Dm[12] (SDRAM)

36 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

372 BOTTOM vdd core b11 PVDD1DGZ 79
Core digital VDD(1.0v)

373 BOTTOM sdram iopad0 dqm04 PDO24CDG 57.4
OUTPUT Dm[4] (SDRAM)

374 BOTTOM vss io sdram11 PVSS2DGZ 259
IO digital VSS(0v)

375 BOTTOM sdram iopad0 dqs012 PDB24SDGZ 57.4
INOUT Dqs[12] (SDRAM)

376 BOTTOM vdd io sdram11 PVDD2DGZ 80
IO digital VDD(2.5v)

377 BOTTOM sdram iopad0 dqs004 PDB24SDGZ 57.4
INOUT Dqs[4] (SDRAM)

378 BOTTOM vss core b18 PVSS1DGZ 79
Core digital VSS(0v)

379 BOTTOM sdram iopad0 dq101 PDB24SDGZ 57.4
INOUT Dq[101] (SDRAM)

380 BOTTOM sdram iopad0 dq037 PDB24SDGZ 57.4
INOUT Dq[37] (SDRAM)

381 BOTTOM sdram iopad0 dq097 PDB24SDGZ 57.4
INOUT Dq[97] (SDRAM)

382 BOTTOM vdd core b10 PVDD1DGZ 79
Core digital VDD(1.0v)

383 BOTTOM sdram iopad0 dq033 PDB24SDGZ 57.4
INOUT Dq[33] (SDRAM)

384 BOTTOM vss core b17 PVSS1DGZ 79
Core digital VSS(0v)

385 BOTTOM sdram iopad0 dq100 PDB24SDGZ 57.4
INOUT Dq[100] (SDRAM)

386 BOTTOM vss io sdram10 PVSS2DGZ 259
IO digital VSS(0v)

387 BOTTOM sdram iopad0 dq036 PDB24SDGZ 57.4
INOUT Dq[36] (SDRAM)

388 BOTTOM vdd io sdram10 PVDD2DGZ 80
IO digital VDD(2.5v)

389 BOTTOM sdram iopad0 dq096 PDB24SDGZ 57.4
INOUT Dq[96] (SDRAM)

390 BOTTOM vss core b16 PVSS1DGZ 79
Core digital VSS(0v)

391 BOTTOM sdram iopad0 dq032 PDB24SDGZ 57.4
INOUT Dq[32] (SDRAM)

37

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

392 BOTTOM vdd core b9 PVDD1DGZ 79
Core digital VDD(1.0v)

393 BOTTOM sdram iopad0 cs1 PDO24CDG 57.4
OUTPUT CS[1] (SDRAM)

394 BOTTOM sdram iopad0 cs0 PDO24CDG 57.4
OUTPUT CS[0] (SDRAM)

395 BOTTOM sdram iopad0 cas PDO24CDG 57.4
OUTPUT CAS (SDRAM)

396 BOTTOM sdram iopad0 we PDO24CDG 57.4
OUTPUT WE (SDRAM)

397 BOTTOM sdram iopad0 ras PDO24CDG 57.4
OUTPUT RAS (SDRAM)

398 BOTTOM vss core b15 PVSS1DGZ 79
Core digital VSS(0v)

399 BOTTOM sdram iopad0 bank0 PDO24CDG 57.4
OUTPUT Ba[0] (SDRAM)

400 BOTTOM sdram iopad0 bank1 PDO24CDG 57.4
OUTPUT Ba[1] (SDRAM)

401 BOTTOM sdram iopad0 addr10 PDO24CDG 57.4
OUTPUT A[10] (SDRAM)

402 BOTTOM vdd core b8 PVDD1DGZ 79
Core digital VDD(1.0v)

403 BOTTOM sdram iopad0 addr00 PDO24CDG 57.4
OUTPUT A[0] (SDRAM)

404 BOTTOM vss core b14 PVSS1DGZ 79
Core digital VSS(0v)

405 BOTTOM sdram iopad0 addr01 PDO24CDG 57.4
OUTPUT A[1] (SDRAM)

406 BOTTOM vss io sdram9 PVSS2DGZ 259
IO digital VSS(0v)

407 BOTTOM sdram iopad0 addr02 PDO24CDG 57.4
OUTPUT A[2] (SDRAM)

408 BOTTOM vdd io sdram9 PVDD2DGZ 80
IO digital VDD(2.5v)

409 BOTTOM sdram iopad0 addr03 PDO24CDG 57.4
OUTPUT A[3] (SDRAM)

410 BOTTOM vss core b13 PVSS1DGZ 79
Core digital VSS(0v)

411 BOTTOM sdram iopad0 addr04 PDO24CDG 57.4
OUTPUT A[4] (SDRAM)

38 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

412 BOTTOM sdram iopad0 addr05 PDO24CDG 57.4
OUTPUT A[5] (SDRAM)

413 BOTTOM sdram iopad0 addr06 PDO24CDG 57.4
OUTPUT A[6] (SDRAM)

414 BOTTOM vdd core b7 PVDD1DGZ 79
Core digital VDD(1.0v)

415 BOTTOM sdram iopad0 addr07 PDO24CDG 57.4
OUTPUT A[7] (SDRAM)

416 BOTTOM vss core b12 PVSS1DGZ 79
Core digital VSS(0v)

417 BOTTOM sdram iopad0 addr08 PDO24CDG 57.4
OUTPUT A[8] (SDRAM)

418 BOTTOM sdram iopad0 addr09 PDO24CDG 57.4
OUTPUT A[9] (SDRAM)

419 BOTTOM sdram iopad0 addr11 PDO24CDG 57.4
OUTPUT A[11] (SDRAM)

420 BOTTOM sdram iopad0 addr12 PDO24CDG 57.4
OUTPUT A[12] (SDRAM)

421 BOTTOM sdram iopad0 cke PDO24CDG 57.4
OUTPUT CKE (SDRAM)

422 BOTTOM vss core b11 PVSS1DGZ 79
Core digital VSS(0v)

423 BOTTOM sdram iopad0 dq095 PDB24SDGZ 57.4
INOUT Dq[95] (SDRAM)

424 BOTTOM vdd core b6 PVDD1DGZ 79
Core digital VDD(1.0v)

425 BOTTOM sdram iopad0 dq031 PDB24SDGZ 57.4
INOUT Dq[31] (SDRAM)

426 BOTTOM vss io sdram8 PVSS2DGZ 259
IO digital VSS(0v)

427 BOTTOM sdram iopad0 dq091 PDB24SDGZ 57.4
INOUT Dq[91] (SDRAM)

428 BOTTOM vdd io sdram8 PVDD2DGZ 80
IO digital VDD(2.5v)

429 BOTTOM sdram iopad0 dq027 PDB24SDGZ 57.4
INOUT Dq[27] (SDRAM)

430 BOTTOM vss core b10 PVSS1DGZ 79
Core digital VSS(0v)

431 BOTTOM sdram iopad0 dq094 PDB24SDGZ 57.4
INOUT Dq[94] (SDRAM)

39

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

432 BOTTOM sdram iopad0 dq030 PDB24SDGZ 57.4
INOUT Dq[30] (SDRAM)

433 BOTTOM sdram iopad0 dq090 PDB24SDGZ 57.4
INOUT Dq[90] (SDRAM)

434 BOTTOM vss core b9 PVSS1DGZ 79
Core digital VSS(0v)

435 BOTTOM sdram iopad0 dq026 PDB24SDGZ 57.4
INOUT Dq[26] (SDRAM)

436 BOTTOM vdd core b5 PVDD1DGZ 79
Core digital VDD(1.0v)

437 BOTTOM sdram iopad0 dqm11 PDO24CDG 57.4
OUTPUT Dm[11] (SDRAM)

438 BOTTOM vss io sdram7 PVSS2DGZ 259
IO digital VSS(0v)

439 BOTTOM sdram iopad0 dqm03 PDO24CDG 57.4
OUTPUT Dm[3] (SDRAM)

440 BOTTOM vdd io sdram7 PVDD2DGZ 80
IO digital VDD(2.5v)

441 BOTTOM sdram iopad0 dqs011 PDB24SDGZ 57.4
INOUT Dqs[11] (SDRAM)

442 BOTTOM vss core b8 PVSS1DGZ 79
Core digital VSS(0v)

443 BOTTOM sdram iopad0 dqs003 PDB24SDGZ 57.4
INOUT Dqs[3] (SDRAM)

444 BOTTOM sdram iopad0 dq093 PDB24SDGZ 57.4
INOUT Dq[93] (SDRAM)

445 BOTTOM sdram iopad0 dq029 PDB24SDGZ 57.4
INOUT Dq[29] (SDRAM)

446 BOTTOM vdd core b4 PVDD1DGZ 79
Core digital VDD(1.0v)

447 BOTTOM sdram iopad0 dq089 PDB24SDGZ 57.4
INOUT Dq[89] (SDRAM)

448 BOTTOM vss core b7 PVSS1DGZ 79
Core digital VSS(0v)

449 BOTTOM sdram iopad0 dq025 PDB24SDGZ 57.4
INOUT Dq[25] (SDRAM)

450 BOTTOM sdram iopad0 dq092 PDB24SDGZ 57.4
INOUT Dq[92] (SDRAM)

451 BOTTOM sdram iopad0 dq028 PDB24SDGZ 57.4
INOUT Dq[28] (SDRAM)

40 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

452 BOTTOM vss io sdram6 PVSS2DGZ 259
IO digital VSS(0v)

453 BOTTOM sdram iopad0 dq088 PDB24SDGZ 57.4
INOUT Dq[88] (SDRAM)

454 BOTTOM vdd io sdram6 PVDD2DGZ 80
IO digital VDD(2.5v)

455 BOTTOM sdram iopad0 dq024 PDB24SDGZ 57.4
INOUT Dq[24] (SDRAM)

456 BOTTOM vss core b6 PVSS1DGZ 79
Core digital VSS(0v)

457 BOTTOM sdram iopad0 dq087 PDB24SDGZ 57.4
INOUT Dq[87] (SDRAM)

458 BOTTOM vdd core b3 PVDD1DGZ 79
Core digital VDD(1.0v)

459 BOTTOM sdram iopad0 dq023 PDB24SDGZ 57.4
INOUT Dq[23] (SDRAM)

460 BOTTOM sdram iopad0 dq083 PDB24SDGZ 57.4
INOUT Dq[83] (SDRAM)

461 BOTTOM sdram iopad0 dq019 PDB24SDGZ 57.4
INOUT Dq[19] (SDRAM)

462 BOTTOM sdram iopad0 dq086 PDB24SDGZ 57.4
INOUT Dq[86] (SDRAM)

463 BOTTOM sdram iopad0 dq022 PDB24SDGZ 57.4
INOUT Dq[22] (SDRAM)

464 BOTTOM vss core b5 PVSS1DGZ 79
Core digital VSS(0v)

465 BOTTOM sdram iopad0 dq082 PDB24SDGZ 57.4
INOUT Dq[82] (SDRAM)

466 BOTTOM sdram iopad0 dq018 PDB24SDGZ 57.4
INOUT Dq[18] (SDRAM)

467 BOTTOM sdram iopad0 dqm10 PDO24CDG 57.4
OUTPUT Dm[10] (SDRAM)

468 BOTTOM vdd core b2 PVDD1DGZ 79
Core digital VDD(1.0v)

469 BOTTOM sdram iopad0 dqm02 PDO24CDG 57.4
OUTPUT Dm[2] (SDRAM)

470 BOTTOM vss core b4 PVSS1DGZ 79
Core digital VSS(0v)

471 BOTTOM sdram iopad0 dqs010 PDB24SDGZ 57.4
INOUT Dqs[10] (SDRAM)

41

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

472 BOTTOM vss io sdram5 PVSS2DGZ 259
IO digital VSS(0v)

473 BOTTOM sdram iopad0 dqs002 PDB24SDGZ 57.4
INOUT Dqs[2] (SDRAM)

474 BOTTOM vdd io sdram5 PVDD2DGZ 80
IO digital VDD(2.5v)

475 BOTTOM sdram iopad0 dq085 PDB24SDGZ 57.4
INOUT Dq[85] (SDRAM)

476 BOTTOM vss core b3 PVSS1DGZ 79
Core digital VSS(0v)

477 BOTTOM sdram iopad0 dq021 PDB24SDGZ 57.4
INOUT Dq[21] (SDRAM)

478 BOTTOM sdram iopad0 dq081 PDB24SDGZ 57.4
INOUT Dq[81] (SDRAM)

479 BOTTOM sdram iopad0 dq017 PDB24SDGZ 57.4
INOUT Dq[17] (SDRAM)

480 BOTTOM vdd core b1 PVDD1DGZ 79
Core digital VDD(1.0v)

481 BOTTOM sdram iopad0 dq084 PDB24SDGZ 57.4
INOUT Dq[84] (SDRAM)

482 BOTTOM vss core b2 PVSS1DGZ 79
Core digital VSS(0v)

483 BOTTOM sdram iopad0 dq020 PDB24SDGZ 57.4
INOUT Dq[20] (SDRAM)

484 BOTTOM vss io sdram4 PVSS2DGZ 259
IO digital VSS(0v)

485 BOTTOM sdram iopad0 dq080 PDB24SDGZ 57.4
INOUT Dq[80] (SDRAM)

486 BOTTOM vdd io sdram4 PVDD2DGZ 80
IO digital VDD(2.5v)

487 BOTTOM sdram iopad0 dq016 PDB24SDGZ 57.4
INOUT Dq[16] (SDRAM)

488 BOTTOM vss core b1 PVSS1DGZ 79
Core digital VSS(0v)

489 BOTTOM sdram iopad0 clk PDO24CDG 57.4
OUTPUT Clk (SDRAM)

490 BOTTOM sdram iopad0 clk PDO24CDG 57.4
OUTPUT Clk n (SDRAM)

491 BOTTOM sdram iopad0 dq079 PDB24SDGZ 57.4
INOUT Dq[79] (SDRAM)

42 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

492 BOTTOM vdd core b0 PVDD1DGZ 79
Core digital VDD(1.0v)

493 BOTTOM sdram iopad0 dq015 PDB24SDGZ 57.4
INOUT Dq[15] (SDRAM)

494 BOTTOM vss core b0 PVSS1DGZ 79
Core digital VSS(0v)

495 BOTTOM sdram iopad0 dq075 PDB24SDGZ 57.4
INOUT Dq[75] (SDRAM)

496 BOTTOM sdram iopad0 dq011 PDB24SDGZ 57.4
INOUT Dq[11] (SDRAM)

497 BOTTOM sdram iopad0 dq078 PDB24SDGZ 57.4
INOUT Dq[78] (SDRAM)

498 BOTTOM vss io sdram3 PVSS2DGZ 259
IO digital VSS(0v)

499 BOTTOM sdram iopad0 dq014 PDB24SDGZ 57.4
INOUT Dq[14] (SDRAM)

500 BOTTOM vdd io sdram3 PVDD2DGZ 80
IO digital VDD(2.5v)

501 BOTTOM sdram iopad0 dq074 PDB24SDGZ 57.4
INOUT Dq[74] (SDRAM)

502 BOTTOM sdram iopad0 dq010 PDB24SDGZ 57.4
INOUT Dq[10] (SDRAM)

503 RIGHT sdram iopad0 dqm09 PDO24CDG 57.4
OUTPUT Dm[9] (SDRAM)

504 RIGHT sdram iopad0 dqm01 PDO24CDG 57.4
OUTPUT Dm[1] (SDRAM)

505 RIGHT sdram iopad0 dqs009 PDB24DGZ 57.4
INOUT Dqs[9] (SDRAM)

506 RIGHT sdram iopad0 dqs001 PDB24DGZ 57.4
INOUT Dqs[1] (SDRAM)

507 RIGHT sdram iopad0 dq077 PDB24SDGZ 57.4
INOUT Dq[77] (SDRAM)

508 RIGHT sdram iopad0 dq013 PDB24SDGZ 57.4
INOUT Dq[13] (SDRAM)

509 RIGHT sdram iopad0 dq073 PDB24SDGZ 57.4
INOUT Dq[73] (SDRAM)

510 RIGHT sdram iopad0 dq009 PDB24SDGZ 57.4
INOUT Dq[9] (SDRAM)

511 RIGHT sdram iopad0 dq076 PDB24SDGZ 57.4
INOUT Dq[76] (SDRAM)

43

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

512 RIGHT sdram iopad0 dq012 PDB24SDGZ 57.4
INOUT Dq[12] (SDRAM)

513 RIGHT vss io sdram2 PVSS2DGZ 259
IO digital VSS(0v)

514 RIGHT sdram iopad0 dq072 PDB24SDGZ 57.4
INOUT Dq[72] (SDRAM)

515 RIGHT vdd io sdram2 PVDD2DGZ 80
IO digital VDD(2.5v)

516 RIGHT sdram iopad0 dq008 PDB24SDGZ 57.4
INOUT Dq[8] (SDRAM)

517 RIGHT vdd core r20 PVDD1DGZ 79
Core digital VDD(1.0v)

518 RIGHT sdram iopad0 dq071 PDB24SDGZ 57.4
INOUT Dq[71] (SDRAM)

519 RIGHT vss core r34 PVSS1DGZ 79
Core digital VSS(0v)

520 RIGHT sdram iopad0 dq007 PDB24SDGZ 57.4
INOUT Dq[7] (SDRAM)

521 RIGHT sdram iopad0 dq067 PDB24SDGZ 57.4
INOUT Dq[67] (SDRAM)

522 RIGHT sdram iopad0 dq003 PDB24SDGZ 57.4
INOUT Dq[3] (SDRAM)

523 RIGHT sdram iopad0 dq070 PDB24SDGZ 57.4
INOUT Dq[70] (SDRAM)

524 RIGHT sdram iopad0 dq006 PDB24SDGZ 57.4
INOUT Dq[6] (SDRAM)

525 RIGHT vss core r33 PVSS1DGZ 79
Core digital VSS(0v)

526 RIGHT sdram iopad0 dq066 PDB24SDGZ 57.4
INOUT Dq[66] (SDRAM)

527 RIGHT vdd core r19 PVDD1DGZ 79
Core digital VDD(1.0v)

528 RIGHT sdram iopad0 dq002 PDB24SDGZ 57.4
INOUT Dq[2] (SDRAM)

529 RIGHT vss io sdram1 PVSS2DGZ 259
IO digital VSS(0v)

530 RIGHT sdram iopad0 dqm08 PDO24CDG 57.4
OUTPUT Dm[8] (SDRAM)

531 RIGHT vdd io sdram1 PVDD2DGZ 80
IO digital VDD(2.5v)

44 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

532 RIGHT sdram iopad0 dqm00 PDO24CDG 57.4
OUTPUT Dm[0] (SDRAM)

533 RIGHT vss core r32 PVSS1DGZ 79
Core digital VSS(0v)

534 RIGHT sdram iopad0 dqs008 PDB24DGZ 57.4
INOUT Dqs[8] (SDRAM)

535 RIGHT sdram iopad0 dqs000 PDB24DGZ 57.4
INOUT Dqs[0] (SDRAM)

536 RIGHT sdram iopad0 dq069 PDB24SDGZ 57.4
INOUT Dq[61] (SDRAM)

537 RIGHT sdram iopad0 dq005 PDB24SDGZ 57.4
INOUT Dq[5] (SDRAM)

538 RIGHT sdram iopad0 dq065 PDB24SDGZ 57.4
INOUT Dq[65] (SDRAM)

539 RIGHT vss core r31 PVSS1DGZ 79
Core digital VSS(0v)

540 RIGHT sdram iopad0 dq001 PDB24SDGZ 57.4
INOUT Dq[1] (SDRAM)

541 RIGHT vdd core r18 PVDD1DGZ 79
Core digital VDD(1.0v)

542 RIGHT sdram iopad0 dq068 PDB24SDGZ 57.4
INOUT Dq[68] (SDRAM)

543 RIGHT vss io sdram0 PVSS2DGZ 259
IO digital VSS(0v)

544 RIGHT sdram iopad0 dq004 PDB24SDGZ 57.4
INOUT Dq[4] (SDRAM)

545 RIGHT vdd io sdram0 PVDD2DGZ 80
IO digital VDD(2.5v)

546 RIGHT sdram iopad0 dq064 PDB24SDGZ 57.4
INOUT Dq[64] (SDRAM)

547 RIGHT vss core r30 PVSS1DGZ 79
Core digital VSS(0v)

548 RIGHT sdram iopad0 dq000 PDB24SDGZ 57.4
INOUT Dq[0] (SDRAM)

549 RIGHT ext iopad0 bit8 PDISDGZ
INPUT 外部バスサイズの指定: 8bit (外部バス)

550 RIGHT ext iopad0 bit16 PDISDGZ
INPUT 外部バスサイズの指定: 16bit (外部バス)

551 RIGHT vdd core r17 PVDD1DGZ 79
Core digital VDD(1.0v)

45

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

552 RIGHT ext iopad0 dreq0 PDISDGZ
INPUT 外部バス DMAリクエスト 1 (外部バス)

553 RIGHT ext iopad0 auto rdy en PDDDGZ
INPUT 外部バス設定用信号線 0で外部の readyを取り込まない 1で取り入れる

554 RIGHT ext iopad0 dreq1 PDISDGZ
INPUT 外部バス DMAリクエスト 2 (外部バス)

555 RIGHT vdd io ext0 PVDD2DGZ 80
IO digital VDD(2.5v)

556 RIGHT ext iopad0 req PDISDGZ
INPUT 外部バスリクエスト (外部バス)

557 RIGHT vss io ext0 PVSS2DGZ 259
IO digital VSS(0v)

558 RIGHT ext iopad0 irq0 PDISDGZ
INPUT 外部割込み 0 (外部バス)

559 RIGHT vss core r28 PVSS1DGZ 79
Core digital VSS(0v)

560 RIGHT ext iopad0 irq1 PDISDGZ
INPUT 外部割込み 1 (外部バス)

561 RIGHT vdd core r16 PVDD1DGZ 79
Core digital VDD(1.0v)

562 RIGHT ext iopad0 oe PDO24CDG 57.4
OUTPUT 外部バス Output Enable (外部バス)

563 RIGHT ext iopad0 ie PDO24CDG 57.4
OUTPUT 外部バス Input Enable (外部バス)

564 RIGHT ext iopad0 data dir PDO24CDG 57.4
OUTPUT 外部バス Data Direction (外部バス)

565 RIGHT vss core r27 PVSS1DGZ 79
Core digital VSS(0v)

566 RIGHT ext iopad0 dack0 PDO24CDG 57.4
OUTPUT 外部バス DMA Acknowledge0 (外部バス)

567 RIGHT vss io ext1 PVSS2DGZ 259
IO digital VSS(0v)

568 RIGHT ext iopad0 dack1 PDO24CDG 57.4
OUTPUT 外部バス DMA Acknowledge1 (外部バス)

569 RIGHT vdd io ext1 PVDD2DGZ 80
IO digital VDD(2.5v)

570 RIGHT ext iopad0 cs0 PDO24CDG 57.4
OUTPUT 外部バスチップセレクト 0 (外部バス)

571 RIGHT vss core r26 PVSS1DGZ 79
Core digital VSS(0v)

46 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

572 RIGHT ext iopad0 cs1 PDO24CDG 57.4
OUTPUT 外部バスチップセレクト 1 (外部バス)

573 RIGHT vdd core r15 PVDD1DGZ 79
Core digital VDD(1.0v)

574 RIGHT ext iopad0 grant PDO24CDG 57.4
OUTPUT 外部バスグラント (外部バス)

575 RIGHT ext iopad0 addr2 PDB24SDGZ 57.4
INOUT 外部バスアドレス [2] (外部バス)

576 RIGHT ext iopad0 addr3 PDB24SDGZ 57.4
INOUT 外部バスアドレス [3] (外部バス)

577 RIGHT vss core r25 PVSS1DGZ 79
Core digital VSS(0v)

578 RIGHT ext iopad0 addr4 PDB24SDGZ 57.4
INOUT 外部バスアドレス [4] (外部バス)

579 RIGHT ext iopad0 addr5 PDB24SDGZ 57.4
INOUT 外部バスアドレス [5] (外部バス)

580 RIGHT ext iopad0 addr6 PDB24SDGZ 57.4
INOUT 外部バスアドレス [6] (外部バス)

581 RIGHT ext iopad0 addr7 PDB24SDGZ 57.4
INOUT 外部バスアドレス [7] (外部バス)

582 RIGHT ext iopad0 addr8 PDB24SDGZ 57.4
INOUT 外部バスアドレス [8] (外部バス)

583 RIGHT vdd core r14 PVDD1DGZ 79
Core digital VDD(1.0v)

584 RIGHT ext iopad0 addr9 PDB24SDGZ 57.4
INOUT 外部バスアドレス [9] (外部バス)

585 RIGHT vss core r24 PVSS1DGZ 79
Core digital VSS(0v)

586 RIGHT ext iopad0 addr10 PDB24SDGZ 57.4
INOUT 外部バスアドレス [10] (外部バス)

587 RIGHT ext iopad0 addr11 PDB24SDGZ 57.4
INOUT 外部バスアドレス [11] (外部バス)

588 RIGHT ext iopad0 addr12 PDB24SDGZ 57.4
INOUT 外部バスアドレス [12] (外部バス)

589 RIGHT ext iopad0 addr13 PDB24SDGZ 57.4
INOUT 外部バスアドレス [13] (外部バス)

590 RIGHT ext iopad0 addr14 PDB24SDGZ 57.4
INOUT 外部バスアドレス [14] (外部バス)

591 RIGHT vss core r23 PVSS1DGZ 79
Core digital VSS(0v)

47

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

592 RIGHT ext iopad0 addr15 PDB24SDGZ 57.4
INOUT 外部バスアドレス [15] (外部バス)

593 RIGHT vdd core r13 PVDD1DGZ 79
Core digital VDD(1.0v)

594 RIGHT ext iopad0 addr16 PDB24SDGZ 57.4
INOUT 外部バスアドレス [16] (外部バス)

595 RIGHT ext iopad0 addr17 PDB24SDGZ 57.4
INOUT 外部バスアドレス [17] (外部バス)

596 RIGHT ext iopad0 addr18 PDB24SDGZ 57.4
INOUT 外部バスアドレス [18] (外部バス)

597 RIGHT vss core r22 PVSS1DGZ 79
Core digital VSS(0v)

598 RIGHT ext iopad0 addr19 PDB24SDGZ 57.4
INOUT 外部バスアドレス [19] (外部バス)

599 RIGHT vdd io ext2 PVDD2DGZ 80
IO digital VDD(2.5v)

600 RIGHT ext iopad0 addr20 PDB24SDGZ 57.4
INOUT 外部バスアドレス [20] (外部バス)

601 RIGHT vss io ext2 PVSS2DGZ 259
IO digital VSS(0v)

602 RIGHT ext iopad0 addr21 PDB24SDGZ 57.4
INOUT 外部バスアドレス [21] (外部バス)

603 RIGHT vdd core r12 PVDD1DGZ 79
Core digital VDD(1.0v)

604 RIGHT ext iopad0 addr22 PDB24SDGZ 57.4
INOUT 外部バスアドレス [22] (外部バス)

605 RIGHT vss core r21 PVSS1DGZ 79
Core digital VSS(0v)

606 RIGHT ext iopad0 addr23 PDB24SDGZ 57.4
INOUT 外部バスアドレス [23] (外部バス)

607 RIGHT ext iopad0 addr24 PDB24SDGZ 57.4
INOUT 外部バスアドレス [24] (外部バス)

608 RIGHT ext iopad0 addr25 PDB24SDGZ 57.4
INOUT 外部バスアドレス [25] (外部バス)

609 RIGHT ext iopad0 addr26 PDB24SDGZ 57.4
INOUT 外部バスアドレス [26] (外部バス)

610 RIGHT ext iopad0 addr27 PDB24SDGZ 57.4
INOUT 外部バスアドレス [27] (外部バス)

611 RIGHT vss core r20 PVSS1DGZ 79
Core digital VSS(0v)

48 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

612 RIGHT ext iopad0 addr28 PDB24SDGZ 57.4
INOUT 外部バスアドレス [28] (外部バス)

613 RIGHT vdd core r11 PVDD1DGZ 79
Core digital VDD(1.0v)

614 RIGHT ext iopad0 addr29 PDB24SDGZ 57.4
INOUT 外部バスアドレス [29] (外部バス)

615 RIGHT vdd io ext3 PVDD2DGZ 80
IO digital VDD(2.5v)

616 RIGHT ext iopad0 addr30 PDB24SDGZ 57.4
INOUT 外部バスアドレス [30] (外部バス)

617 RIGHT vss io ext3 PVSS2DGZ 259
IO digital VSS(0v)

618 RIGHT ext iopad0 addr31 PDB24SDGZ 57.4
INOUT 外部バスアドレス [31] (外部バス)

619 RIGHT vss core r19 PVSS1DGZ 79
Core digital VSS(0v)

620 RIGHT ext iopad0 as PDB24SDGZ 57.4
INOUT 外部バスアドレスストローブ (外部バス)

621 RIGHT ext iopad0 rw PDB24SDGZ 57.4
INOUT 外部バス Read / Write (外部バス)

622 RIGHT ext iopad0 burst0 PDB24SDGZ 57.4
INOUT 外部バスバーストモード [0] (外部バス)

623 RIGHT vss core r18 PVSS1DGZ 79
Core digital VSS(0v)

624 RIGHT ext iopad0 burst1 PDB24SDGZ 57.4
INOUT 外部バスバーストモード [1] (外部バス)

625 RIGHT ext iopad0 be0 PDB24SDGZ 57.4
INOUT 外部バスバイトイネーブル [0] (外部バス)

626 RIGHT ext iopad0 be1 PDB24SDGZ 57.4
INOUT 外部バスバイトイネーブル [1] (外部バス)

627 RIGHT vdd core r10 PVDD1DGZ 79
Core digital VDD(1.0v)

628 RIGHT ext iopad0 be2 PDB24SDGZ 57.4
INOUT 外部バスバイトイネーブル [2] (外部バス)

629 RIGHT vss core r17 PVSS1DGZ 79
Core digital VSS(0v)

630 RIGHT ext iopad0 be3 PDB24SDGZ 57.4
INOUT 外部バスバイトイネーブル [3] (外部バス)

631 RIGHT vdd io ext4 PVDD2DGZ 80
IO digital VDD(2.5v)

49

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

632 RIGHT ext iopad0 br ack0 PDB24SDGZ 57.4
INOUT 外部バスバーストリクエスト Achnowledge[0] (外部バス)

633 RIGHT vss io ext4 PVSS2DGZ 259
IO digital VSS(0v)

634 RIGHT ext iopad0 br ack1 PDB24SDGZ 57.4
INOUT 外部バスバーストリクエスト Achnowledge[1] (外部バス)

635 RIGHT ext iopad0 ready PDB24SDGZ 57.4
INOUT 外部バスレディ (外部バス)

636 RIGHT ext iopad0 err PDB24SDGZ 57.4
INOUT 外部バスエラー (外部バス)

637 RIGHT vss core r16 PVSS1DGZ 79
Core digital VSS(0v)

638 RIGHT ext iopad0 data0 PDB24SDGZ 57.4
INOUT 外部バスデータ [0]

639 RIGHT vdd core r9 PVDD1DGZ 79
Core digital VDD(1.0v)

640 RIGHT ext iopad0 data1 PDB24SDGZ 57.4
INOUT 外部バスデータ [1]

641 RIGHT ext iopad0 data2 PDB24SDGZ 57.4
INOUT 外部バスデータ [2]

642 RIGHT ext iopad0 data3 PDB24SDGZ 57.4
INOUT 外部バスデータ [3]

643 RIGHT vss core r15 PVSS1DGZ 79
Core digital VSS(0v)

644 RIGHT ext iopad0 data4 PDB24SDGZ 57.4
INOUT 外部バスデータ [4]

645 RIGHT vdd io ext5 PVDD2DGZ 80
IO digital VDD(2.5v)

646 RIGHT ext iopad0 data5 PDB24SDGZ 57.4
INOUT 外部バスデータ [5]

647 RIGHT vss io ext5 PVSS2DGZ 259
IO digital VSS(0v)

648 RIGHT ext iopad0 data6 PDB24SDGZ 57.4
INOUT 外部バスデータ [6]

649 RIGHT vdd core r8 PVDD1DGZ 79
Core digital VDD(1.0v)

650 RIGHT ext iopad0 data7 PDB24SDGZ 57.4
INOUT 外部バスデータ [7]

651 RIGHT vss core r14 PVSS1DGZ 79
Core digital VSS(0v)

50 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

652 RIGHT ext iopad0 data8 PDB24SDGZ 57.4
INOUT 外部バスデータ [8]

653 RIGHT ext iopad0 data9 PDB24SDGZ 57.4
INOUT 外部バスデータ [9]

654 RIGHT ext iopad0 data10 PDB24SDGZ 57.4
INOUT 外部バスデータ [10]

655 RIGHT ext iopad0 data11 PDB24SDGZ 57.4
INOUT 外部バスデータ [11]

656 RIGHT ext iopad0 data12 PDB24SDGZ 57.4
INOUT 外部バスデータ [12]

657 RIGHT vss core r13 PVSS1DGZ 79
Core digital VSS(0v)

658 RIGHT ext iopad0 data13 PDB24SDGZ 57.4
INOUT 外部バスデータ [13]

659 RIGHT vdd core r7 PVDD1DGZ 79
Core digital VDD(1.0v)

660 RIGHT ext iopad0 data14 PDB24SDGZ 57.4
INOUT 外部バスデータ [14]

661 RIGHT vdd io ext6 PVDD2DGZ 80
IO digital VDD(2.5v)

662 RIGHT ext iopad0 data15 PDB24SDGZ 57.4
INOUT 外部バスデータ [15]

663 RIGHT vss io ext6 PVSS2DGZ 259
IO digital VSS(0v)

664 RIGHT ext iopad0 data16 PDB24SDGZ 57.4
INOUT 外部バスデータ [16]

665 RIGHT vss core r12 PVSS1DGZ 79
Core digital VSS(0v)

666 RIGHT ext iopad0 data17 PDB24SDGZ 57.4
INOUT 外部バスデータ [17]

667 RIGHT ext iopad0 data18 PDB24SDGZ 57.4
INOUT 外部バスデータ [18]

668 RIGHT ext iopad0 data19 PDB24SDGZ 57.4
INOUT 外部バスデータ [19]

669 RIGHT vss core r11 PVSS1DGZ 79
Core digital VSS(0v)

670 RIGHT ext iopad0 data20 PDB24SDGZ 57.4
INOUT 外部バスデータ [20]

671 RIGHT vdd core r6 PVDD1DGZ 79
Core digital VDD(1.0v)

51

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

672 RIGHT ext iopad0 data21 PDB24SDGZ 57.4
INOUT 外部バスデータ [21]

673 RIGHT ext iopad0 data22 PDB24SDGZ 57.4
INOUT 外部バスデータ [22]

674 RIGHT ext iopad0 data23 PDB24SDGZ 57.4
INOUT 外部バスデータ [23]

675 RIGHT vss core r10 PVSS1DGZ 79
Core digital VSS(0v)

676 RIGHT ext iopad0 data24 PDB24SDGZ 57.4
INOUT 外部バスデータ [24]

677 RIGHT vdd io ext7 PVDD2DGZ 80
IO digital VDD(2.5v)

678 RIGHT ext iopad0 data25 PDB24SDGZ 57.4
INOUT 外部バスデータ [25]

679 RIGHT vss io ext7 PVSS2DGZ 259
IO digital VSS(0v)

680 RIGHT ext iopad0 data26 PDB24SDGZ 57.4
INOUT 外部バスデータ [26]

681 RIGHT vdd core r5 PVDD1DGZ 79
Core digital VDD(1.0v)

682 RIGHT ext iopad0 data27 PDB24SDGZ 57.4
INOUT 外部バスデータ [27]

683 RIGHT vss core r9 PVSS1DGZ 79
Core digital VSS(0v)

684 RIGHT ext iopad0 data28 PDB24SDGZ 57.4
INOUT 外部バスデータ [28]

685 RIGHT ext iopad0 data29 PDB24SDGZ 57.4
INOUT 外部バスデータ [29]

686 RIGHT ext iopad0 data30 PDB24SDGZ 57.4
INOUT 外部バスデータ [30]

687 RIGHT vss io other3 PVSS2DGZ 259
IO digital VSS(0v)

688 RIGHT ext iopad0 data31 PDB24SDGZ 57.4
INOUT 外部バスデータ [31]

689 RIGHT vss core r8 PVSS1DGZ 79
Core digital VSS(0v)

690 RIGHT link sdram iopad0 oe PDO24CDG 57.4
OUTPUT Output Enable ¡action:0 stop:1¿ (LINK SDRAM)

691 RIGHT vdd core r4 PVDD1DGZ 79
Core digital VDD(1.0v)

52 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

692 RIGHT link sdram iopad0 dir PDO24CDG 57.4
OUTPUT Direction ¡read:1 write:0¿ (LINK SDRAM)

693 RIGHT vss io link sdram7 PVSS2DGZ 259
IO digital VSS(0v)

694 RIGHT link sdram iopad0 addr04 PDO24CDG 57.4
OUTPUT A[4] (LINK SDRAM)

695 RIGHT vdd io link sdram7 PVDD2DGZ 80
IO digital VDD(2.5v)

696 RIGHT link sdram iopad0 addr03 PDO24CDG 57.4
OUTPUT A[3] (LINK SDRAM)

697 RIGHT vss core r7 PVSS1DGZ 79
Core digital VSS(0v)

698 RIGHT link sdram iopad0 addr05 PDO24CDG 57.4
OUTPUT A[5] (LINK SDRAM)

699 RIGHT link sdram iopad0 addr02 PDO24CDG 57.4
OUTPUT A[2] (LINK SDRAM)

700 RIGHT link sdram iopad0 addr06 PDO24CDG 57.4
OUTPUT A[6] (LINK SDRAM)

701 RIGHT link sdram iopad0 addr01 PDO24CDG 57.4
OUTPUT A[1] (LINK SDRAM)

702 RIGHT link sdram iopad0 addr07 PDO24CDG 57.4
OUTPUT A[7] (LINK SDRAM)

703 RIGHT vss core r6 PVSS1DGZ 79
Core digital VSS(0v)

704 RIGHT link sdram iopad0 addr00 PDO24CDG 57.4
OUTPUT A[0] (LINK SDRAM)

705 RIGHT vdd core r3 PVDD1DGZ 79
Core digital VDD(1.0v)

706 RIGHT link sdram iopad0 addr08 PDO24CDG 57.4
OUTPUT A[8] (LINK SDRAM)

707 RIGHT vss io link sdram6 PVSS2DGZ 259
IO digital VSS(0v)

708 RIGHT link sdram iopad0 addr10 PDO24CDG 57.4
OUTPUT A[10] (LINK SDRAM)

709 RIGHT vdd io link sdram6 PVDD2DGZ 80
IO digital VDD(2.5v)

710 RIGHT link sdram iopad0 addr09 PDO24CDG 57.4
OUTPUT A[9] (LINK SDRAM)

711 RIGHT vss core r5 PVSS1DGZ 79
Core digital VSS(0v)

53

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

712 RIGHT link sdram iopad0 bank1 PDO24CDG 57.4
OUTPUT Ba[1] (LINK SDRAM)

713 RIGHT link sdram iopad0 addr11 PDO24CDG 57.4
OUTPUT A[11] (LINK SDRAM)

714 RIGHT link sdram iopad0 bank0 PDO24CDG 57.4
OUTPUT Ba[0] (LINK SDRAM)

715 RIGHT vdd core r2 PVDD1DGZ 79
Core digital VDD(1.0v)

716 RIGHT link sdram iopad0 addr12 PDO24CDG 57.4
OUTPUT A[12] (LINK SDRAM)

717 RIGHT vss core r4 PVSS1DGZ 79
Core digital VSS(0v)

718 RIGHT link sdram iopad0 cs1 PDO24CDG 57.4
OUTPUT CS[1] (LINK SDRAM)

719 RIGHT vss io link sdram5 PVSS2DGZ 259
IO digital VSS(0v)

720 RIGHT link sdram iopad0 cs0 PDO24CDG 57.4
OUTPUT CS[0] (LINK SDRAM)

721 RIGHT vdd io link sdram5 PVDD2DGZ 80
IO digital VDD(2.5v)

722 RIGHT link sdram iopad0 cke PDO24CDG 57.4
OUTPUT CKE (LINK SDRAM)

723 RIGHT vss core r3 PVSS1DGZ 79
Core digital VSS(0v)

724 RIGHT link sdram iopad0 ras PDO24CDG 57.4
OUTPUT RAS (LINK SDRAM)

725 RIGHT link sdram iopad0 cas PDO24CDG 57.4
OUTPUT CAS (LINK SDRAM)

726 RIGHT link sdram iopad0 we PDO24CDG 57.4
OUTPUT WE (LINK SDRAM)

727 RIGHT link sdram iopad0 dqm3 PDO24CDG 57.4
OUTPUT Dm[3] (LINK SDRAM)

728 RIGHT link sdram iopad0 dqm1 PDO24CDG 57.4
OUTPUT Dm[1] (LINK SDRAM)

729 RIGHT vdd core r1 PVDD1DGZ 79
Core digital VDD(1.0v)

730 RIGHT link sdram iopad0 dqm2 PDO24CDG 57.4
OUTPUT Dm[2] (LINK SDRAM)

731 RIGHT vss core r2 PVSS1DGZ 79
Core digital VSS(0v)

54 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

732 RIGHT link sdram iopad0 dqm0 PDO24CDG 57.4
OUTPUT Dm[0] (LINK SDRAM)

733 RIGHT vss io link sdram4 PVSS2DGZ 259
IO digital VSS(0v)

734 RIGHT link sdram iopad0 dqs3 PDB24SDGZ 57.4
INOUT Dqs[3] (LINK SDRAM)

735 RIGHT vdd io link sdram4 PVDD2DGZ 80
IO digital VDD(2.5v)

736 RIGHT link sdram iopad0 dqs1 PDB24SDGZ 57.4
INOUT Dqs[1] (LINK SDRAM)

737 RIGHT vss core r1 PVSS1DGZ 79
Core digital VSS(0v)

738 RIGHT link sdram iopad0 dqs2 PDB24SDGZ 57.4
INOUT Dqs[2] (LINK SDRAM)

739 RIGHT link sdram iopad0 dqs0 PDB24SDGZ 57.4
INOUT Dqs[0] (LINK SDRAM)

740 RIGHT link sdram iopad0 dq24 PDB24SDGZ 57.4
INOUT Dq[24] (LINK SDRAM)

741 RIGHT vdd core r0 PVDD1DGZ 79
Core digital VDD(1.0v)

742 RIGHT link sdram iopad0 dq08 PDB24SDGZ 57.4
INOUT Dq[8] (LINK SDRAM)

743 RIGHT vss core r0 PVSS1DGZ 79
Core digital VSS(0v)

744 RIGHT link sdram iopad0 dq23 PDB24SDGZ 57.4
INOUT Dq[23] (LINK SDRAM)

745 RIGHT vss io link sdram3 PVSS2DGZ 259
IO digital VSS(0v)

746 RIGHT link sdram iopad0 dq07 PDB24SDGZ 57.4
INOUT Dq[7] (LINK SDRAM)

747 RIGHT vdd io link sdram3 PVDD2DGZ 80
IO digital VDD(2.5v)

748 RIGHT link sdram iopad0 dq25 PDB24SDGZ 57.4
INOUT Dq[25] (LINK SDRAM)

749 RIGHT link sdram iopad0 dq09 PDB24SDGZ 57.4
INOUT Dq[9] (LINK SDRAM)

750 RIGHT link sdram iopad0 dq22 PDB24SDGZ 57.4
INOUT Dq[22] (LINK SDRAM)

751 RIGHT link sdram iopad0 dq06 PDB24SDGZ 57.4
INOUT Dq[6] (LINK SDRAM)

55

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

752 RIGHT link sdram iopad0 dq26 PDB24SDGZ 57.4
INOUT Dq[26] (LINK SDRAM)

753 RIGHT link sdram iopad0 dq10 PDB24SDGZ 57.4
INOUT Dq[10] (LINK SDRAM)

754 TOP link sdram iopad0 dq21 PDB24SDGZ 57.4
INOUT Dq[21] (LINK SDRAM)

755 TOP link sdram iopad0 dq05 PDB24SDGZ 57.4
INOUT Dq[5] (LINK SDRAM)

756 TOP vss io link sdram2 PVSS2DGZ 259
IO digital VSS(0v)

757 TOP link sdram iopad0 dq27 PDB24SDGZ 57.4
INOUT Dq[27] (LINK SDRAM)

758 TOP vdd io link sdram2 PVDD2DGZ 80
IO digital VDD(2.5v)

759 TOP link sdram iopad0 dq11 PDB24SDGZ 57.4
INOUT Dq[11] (LINK SDRAM)

760 TOP link sdram iopad0 dq20 PDB24SDGZ 57.4
INOUT Dq[20] (LINK SDRAM)

761 TOP link sdram iopad0 dq04 PDB24SDGZ 57.4
INOUT Dq[4] (LINK SDRAM)

762 TOP vss core t45 PVSS1DGZ 79
Core digital VSS(0v)

763 TOP link sdram iopad0 dq28 PDB24SDGZ 57.4
INOUT Dq[28] (LINK SDRAM)

764 TOP link sdram iopad0 dq12 PDB24SDGZ 57.4
INOUT Dq[12] (LINK SDRAM)

765 TOP link sdram iopad0 dq19 PDB24SDGZ 57.4
INOUT Dq[19] (LINK SDRAM)

766 TOP vdd core t26 PVDD1DGZ 79
Core digital VDD(1.0v)

767 TOP link sdram iopad0 dq03 PDB24SDGZ 57.4
INOUT Dq[3] (LINK SDRAM)

768 TOP vss core t44 PVSS1DGZ 79
Core digital VSS(0v)

769 TOP link sdram iopad0 dq29 PDB24SDGZ 57.4
INOUT Dq[29] (LINK SDRAM)

770 TOP vss io link sdram1 PVSS2DGZ 259
IO digital VSS(0v)

771 TOP link sdram iopad0 dq13 PDB24SDGZ 57.4
INOUT Dq[13] (LINK SDRAM)

56 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

772 TOP vdd io link sdram1 PVDD2DGZ 80
IO digital VDD(2.5v)

773 TOP link sdram iopad0 dq18 PDB24SDGZ 57.4
INOUT Dq[18] (LINK SDRAM)

774 TOP link sdram iopad0 dq02 PDB24SDGZ 57.4
INOUT Dq[2] (LINK SDRAM)

775 TOP link sdram iopad0 dq30 PDB24SDGZ 57.4
INOUT Dq[30] (LINK SDRAM)

776 TOP vss core t43 PVSS1DGZ 79
Core digital VSS(0v)

777 TOP link sdram iopad0 dq14 PDB24SDGZ 57.4
INOUT Dq[14] (LINK SDRAM)

778 TOP vdd core t25 PVDD1DGZ 79
Core digital VDD(1.0v)

779 TOP link sdram iopad0 dq17 PDB24SDGZ 57.4
INOUT Dq[17] (LINK SDRAM)

780 TOP vss io link sdram0 PVSS2DGZ 259
IO digital VSS(0v)

781 TOP link sdram iopad0 dq01 PDB24SDGZ 57.4
INOUT Dq[1] (LINK SDRAM)

782 TOP vdd io link sdram0 PVDD2DGZ 80
IO digital VDD(2.5v)

783 TOP link sdram iopad0 dq31 PDB24SDGZ 57.4
INOUT Dq[31] (LINK SDRAM)

784 TOP vss core t42 PVSS1DGZ 79
Core digital VSS(0v)

785 TOP link sdram iopad0 dq15 PDB24SDGZ 57.4
INOUT Dq[15] (LINK SDRAM)

786 TOP link sdram iopad0 dq16 PDB24SDGZ 57.4
INOUT Dq[16] (LINK SDRAM)

787 TOP link sdram iopad0 dq00 PDB24SDGZ 57.4
INOUT Dq[0] (LINK SDRAM)

788 TOP vdd core t24 PVDD1DGZ 79
Core digital VDD(1.0v)

789 TOP link iopad0 data p in4 iopad3 PDISDGZ
INPUT (LINK)

790 TOP vss core t41 PVSS1DGZ 79
Core digital VSS(0v)

791 TOP link iopad0 data p in4 iopad2 PDISDGZ
INPUT (LINK)

57

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

792 TOP vss io link7 PVSS2DGZ 259
IO digital VSS(0v)

793 TOP link iopad0 data p in4 iopad1 PDISDGZ
INPUT (LINK)

794 TOP vdd io link7 PVDD2DGZ 80
IO digital VDD(2.5v)

795 TOP link iopad0 data s in iopad4 PDISDGZ
INPUT (LINK)

796 TOP link iopad0 data p out4 iopad3 PDO24CDG 57.4
OUTPUT (LINK)

797 TOP link iopad0 data p out4 iopad2 PDO24CDG 57.4
OUTPUT (LINK)

798 TOP vss core t40 PVSS1DGZ 79
Core digital VSS(0v)

799 TOP link iopad0 data p out4 iopad1 PDO24CDG 57.4
OUTPUT (LINK)

800 TOP vdd core t23 PVDD1DGZ 79
Core digital VDD(1.0v)

801 TOP link iopad0 data s out iopad4 PDO24CDG 57.4
OUTPUT (LINK)

802 TOP link iopad0 data p in3 iopad3 PDISDGZ
INPUT (LINK)

803 TOP link iopad0 data p in3 iopad2 PDISDGZ
INPUT (LINK)

804 TOP vss core t39 PVSS1DGZ 79
Core digital VSS(0v)

805 TOP link iopad0 data p in3 iopad1 PDISDGZ
INPUT (LINK)

806 TOP vss io link6 PVSS2DGZ 259
IO digital VSS(0v)

807 TOP link iopad0 data s in iopad3 PDISDGZ
INPUT (LINK)

808 TOP vdd io link6 PVDD2DGZ 80
IO digital VDD(2.5v)

809 TOP link iopad0 data p out3 iopad3 PDO24CDG 57.4
OUTPUT (LINK)

810 TOP vss core t38 PVSS1DGZ 79
Core digital VSS(0v)

811 TOP link iopad0 data p out3 iopad2 PDO24CDG 57.4
OUTPUT (LINK)

58 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

812 TOP vdd core t22 PVDD1DGZ 79
Core digital VDD(1.0v)

813 TOP link iopad0 data p out3 iopad1 PDO24CDG 57.4
OUTPUT (LINK)

814 TOP link iopad0 data s out iopad3 PDO24CDG 57.4
OUTPUT (LINK)

815 TOP link iopad0 data p in2 iopad3 PDISDGZ
INPUT (LINK)

816 TOP vss core t37 PVSS1DGZ 79
Core digital VSS(0v)

817 TOP link iopad0 data p in2 iopad2 PDISDGZ
INPUT (LINK)

818 TOP vss io link5 PVSS2DGZ 259
IO digital VSS(0v)

819 TOP link iopad0 data p in2 iopad1 PDISDGZ
INPUT (LINK)

820 TOP vdd io link5 PVDD2DGZ 80
IO digital VDD(2.5v)

821 TOP link iopad0 data s in iopad2 PDISDGZ
INPUT (LINK)

822 TOP vss core t36 PVSS1DGZ 79
Core digital VSS(0v)

823 TOP link iopad0 data p out2 iopad3 PDO24CDG 57.4
OUTPUT (LINK)

824 TOP vdd core t21 PVDD1DGZ 79
Core digital VDD(1.0v)

825 TOP link iopad0 data p out2 iopad2 PDO24CDG 57.4
OUTPUT (LINK)

826 TOP link iopad0 data p out2 iopad1 PDO24CDG 57.4
OUTPUT (LINK)

827 TOP link iopad0 data s out iopad2 PDO24CDG 57.4
OUTPUT (LINK)

828 TOP vss core t35 PVSS1DGZ 79
Core digital VSS(0v)

829 TOP link iopad0 data p in1 iopad3 PDISDGZ
INPUT (LINK)

830 TOP link iopad0 data p in1 iopad2 PDISDGZ
INPUT (LINK)

831 TOP link iopad0 data p in1 iopad1 PDISDGZ
INPUT (LINK)

59

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

832 TOP vdd core t20 PVDD1DGZ 79
Core digital VDD(1.0v)

833 TOP link iopad0 data s in iopad1 PDISDGZ
INPUT (LINK)

834 TOP vss core t34 PVSS1DGZ 79
Core digital VSS(0v)

835 TOP link iopad0 data p out1 iopad3 PDO24CDG 57.4
OUTPUT (LINK)

836 TOP vss io link4 PVSS2DGZ 259
IO digital VSS(0v)

837 TOP link iopad0 data p out1 iopad2 PDO24CDG 57.4
OUTPUT (LINK)

838 TOP vdd io link4 PVDD2DGZ 80
IO digital VDD(2.5v)

839 TOP link iopad0 data p out1 iopad1 PDO24CDG 57.4
OUTPUT (LINK)

840 TOP link iopad0 data s out iopad1 PDO24CDG 57.4
OUTPUT (LINK)

841 TOP link iopad0 event p in4 iopad3 PDISDGZ
INPUT (LINK)

842 TOP vss core t33 PVSS1DGZ 79
Core digital VSS(0v)

843 TOP link iopad0 event p in4 iopad2 PDISDGZ
INPUT (LINK)

844 TOP vdd core t19 PVDD1DGZ 79
Core digital VDD(1.0v)

845 TOP link iopad0 event p in4 iopad1 PDISDGZ
INPUT (LINK)

846 TOP vss io link3 PVSS2DGZ 259
IO digital VSS(0v)

847 TOP link iopad0 event s in iopad4 PDISDGZ
INPUT (LINK)

848 TOP vdd io link3 PVDD2DGZ 80
IO digital VDD(2.5v)

849 TOP link iopad0 event p out4 iopad3 PDO24CDG 57.4
OUTPUT (LINK)

850 TOP vss core t32 PVSS1DGZ 79
Core digital VSS(0v)

851 TOP link iopad0 event p out4 iopad2 PDO24CDG 57.4
OUTPUT (LINK)

60 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

852 TOP link iopad0 event p out4 iopad1 PDO24CDG 57.4
OUTPUT (LINK)

853 TOP link iopad0 event s out pad4 PDO24CDG 57.4
OUTPUT (LINK)

854 TOP link iopad0 event p in3 iopad3 PDISDGZ
INPUT (LINK)

855 TOP link iopad0 event p in3 iopad2 PDISDGZ
INPUT (LINK)

856 TOP vss core t31 PVSS1DGZ 79
Core digital VSS(0v)

857 TOP link iopad0 event p in3 iopad1 PDISDGZ
INPUT (LINK)

858 TOP vss io link2 PVSS2DGZ 259
IO digital VSS(0v)

859 TOP link iopad0 event s in iopad3 PDISDGZ
INPUT (LINK)

860 TOP vdd io link2 PVDD2DGZ 80
IO digital VDD(2.5v)

861 TOP link iopad0 event p out3 iopad3 PDO24CDG 57.4
OUTPUT (LINK)

862 TOP vdd core t18 PVDD1DGZ 79
Core digital VDD(1.0v)

863 TOP link iopad0 event p out3 iopad2 PDO24CDG 57.4
OUTPUT (LINK)

864 TOP vss core t30 PVSS1DGZ 79
Core digital VSS(0v)

865 TOP link iopad0 event p out3 iopad1 PDO24CDG 57.4
OUTPUT (LINK)

866 TOP link iopad0 event s out pad3 PDO24CDG 57.4
OUTPUT (LINK)

867 TOP link iopad0 event p in2 iopad3 PDISDGZ
INPUT (LINK)

868 TOP vdd core t17 PVDD1DGZ 79
Core digital VDD(1.0v)

869 TOP link iopad0 event p in2 iopad2 PDISDGZ
INPUT (LINK)

870 TOP vss core t29 PVSS1DGZ 79
Core digital VSS(0v)

871 TOP link iopad0 event p in2 iopad1 PDISDGZ
INPUT (LINK)

61

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

872 TOP vss io link1 PVSS2DGZ 259
IO digital VSS(0v)

873 TOP link iopad0 event s in iopad2 PDISDGZ
INPUT (LINK)

874 TOP vdd io link1 PVDD2DGZ 80
IO digital VDD(2.5v)

875 TOP link iopad0 event p out2 iopad3 PDO24CDG 57.4
OUTPUT (LINK)

876 TOP vss core t28 PVSS1DGZ 79
Core digital VSS(0v)

877 TOP link iopad0 event p out2 iopad2 PDO24CDG 57.4
OUTPUT (LINK)

878 TOP link iopad0 event p out2 iopad1 PDO24CDG 57.4
OUTPUT (LINK)

879 TOP link iopad0 event s out pad2 PDO24CDG 57.4
OUTPUT (LINK)

880 TOP vdd core t16 PVDD1DGZ 79
Core digital VDD(1.0v)

881 TOP link iopad0 event p in1 iopad3 PDISDGZ
INPUT (LINK)

882 TOP vss core t27 PVSS1DGZ 79
Core digital VSS(0v)

883 TOP link iopad0 event p in1 iopad2 PDISDGZ
INPUT (LINK)

884 TOP vss io link0 PVSS2DGZ 259
IO digital VSS(0v)

885 TOP link iopad0 event p in1 iopad1 PDISDGZ
INPUT (LINK)

886 TOP vdd io link0 PVDD2DGZ 80
IO digital VDD(2.5v)

887 TOP link iopad0 event s in iopad1 PDISDGZ
INPUT (LINK)

888 TOP link iopad0 event p out1 iopad3 PDO24CDG 57.4
OUTPUT (LINK)

889 TOP link iopad0 event p out1 iopad2 PDO24CDG 57.4
OUTPUT (LINK)

890 TOP vss core t26 PVSS1DGZ 79
Core digital VSS(0v)

891 TOP link iopad0 event p out1 iopad1 PDO24CDG 57.4
OUTPUT (LINK)

62 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

892 TOP vdd core t15 PVDD1DGZ 79
Core digital VDD(1.0v)

893 TOP link iopad0 event s out pad1 PDO24CDG 57.4
OUTPUT (LINK)

894 TOP ieee1394 iopad0 ieee d7 PDB04DGZ 10.3
INOUT Data[7] (IEEE1394)

895 TOP ieee1394 iopad0 ieee d6 PDB04DGZ 10.3
INOUT Data[6] (IEEE1394)

896 TOP vss core t25 PVSS1DGZ 79
Core digital VSS(0v)

897 TOP ieee1394 iopad0 ieee d5 PDB04DGZ 10.3
INOUT Data[5] (IEEE1394)

898 TOP ieee1394 iopad0 ieee d4 PDB04DGZ 10.3
INOUT Data[4] (IEEE1394)

899 TOP ieee1394 iopad0 ieee d3 PDB04DGZ 10.3
INOUT Data[3] (IEEE1394)

900 TOP vdd core t14 PVDD1DGZ 79
Core digital VDD(1.0v)

901 TOP ieee1394 iopad0 ieee d2 PDB04DGZ 10.3
INOUT Data[2] (IEEE1394)

902 TOP vss core t24 PVSS1DGZ 79
Core digital VSS(0v)

903 TOP ieee1394 iopad0 ieee d1 PDB04DGZ 10.3
INOUT Data[1] (IEEE1394)

904 TOP vss io ieee0 PVSS2DGZ 259
IO digital VSS(0v)

905 TOP ieee1394 iopad0 ieee d0 PDB04DGZ 10.3
INOUT Data[0] (IEEE1394)

906 TOP vdd io ieee0 PVDD2DGZ 80
IO digital VDD(2.5v)

907 TOP ieee1394 iopad0 ieee isox PDO04CDG 10.3
OUTPUT Isolation Control (IEEE1394)

908 TOP vss core t23 PVSS1DGZ 79
Core digital VSS(0v)

909 TOP ieee1394 iopad0 ieee pc2 PDO04CDG 10.3
OUTPUT Power Class[2] (IEEE1394)

910 TOP vdd core t13 PVDD1DGZ 79
Core digital VDD(1.0v)

911 TOP ieee1394 iopad0 ieee pc1 PDO04CDG 10.3
OUTPUT Power Class[1] (IEEE1394)

63

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

912 TOP vss core t22 PVSS1DGZ 79
Core digital VSS(0v)

913 TOP ieee1394 iopad0 ieee pc0 PDO04CDG 10.3
OUTPUT Power Class[0] (IEEE1394)

914 TOP ieee1394 iopad0 ieee pd PDO04CDG 10.3
OUTPUT PD (IEEE1394)

915 TOP ieee1394 iopad0 ieee lps PDO04CDG 10.3
OUTPUT LPS (IEEE1394)

916 TOP vss core t21 PVSS1DGZ 79
Core digital VSS(0v)

917 TOP ieee1394 iopad0 ieee lreq PDO04CDG 10.3
OUTPUT LREQ (IEEE1394)

918 TOP vdd core t12 PVDD1DGZ 79
Core digital VDD(1.0v)

919 TOP ieee1394 iopad0 ieee cna PDIDGZ
INPUT Cable Not Active (IEEE1394)

920 TOP vss core t20 PVSS1DGZ 79
Core digital VSS(0v)

921 TOP ieee1394 iopad0 ieee lkon PDIDGZ
INPUT Link On (IEEE1394)

922 TOP vss core t19 PVSS1DGZ 79
Core digital VSS(0v)

923 TOP ieee1394 iopad0 ieee ctl1 PDB04DGZ 10.3
INOUT CTL[1] (IEEE1394)

924 TOP vdd core t11 PVDD1DGZ 79
Core digital VDD(1.0v)

925 TOP ieee1394 iopad0 ieee ctl0 PDB04DGZ 10.3
INOUT CTL[0] (IEEE1394)

926 TOP vss core t18 PVSS1DGZ 79
Core digital VSS(0v)

927 TOP ieee1394 iopad0 ieee sclk PDIDGZ
INPUT Syclk (IEEE1394)

928 TOP vss core t17 PVSS1DGZ 79
Core digital VSS(0v)

929 TOP ieee1394 iopad0 ieee rstx PDO04CDG 10.3
OUTPUT RST (IEEE1394)

930 TOP vss io other2 PVSS2DGZ 259
IO digital VSS(0v)

931 TOP usb iopad0 usb db168 PDO04CDG 10.3
OUTPUT Data Bus 16 / 8 (USB)

64 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

932 TOP vdd core t10 PVDD1DGZ 79
Core digital VDD(1.0v)

933 TOP vss io other5 PVSS2DGZ 80
IO digital VSS(0v)

934 TOP vss core t16 PVSS1DGZ 79
Core digital VSS(0v)

935 TOP usb iopad0 usb txval PDO04CDG 10.3
OUTPUT TX Valid (USB)

936 TOP usb iopad0 usb term PDO04CDG 10.3
OUTPUT Termination Select (USB)

937 TOP usb iopad0 usb xcvr PDO04CDG 10.3
OUTPUT Transceiver Select (USB)

938 TOP vdd core t9 PVDD1DGZ 79
Core digital VDD(1.0v)

939 TOP usb iopad0 usb sus PDO04CDG 10.3
OUTPUT Suspend (USB)

940 TOP vss core t15 PVSS1DGZ 79
Core digital VSS(0v)

941 TOP usb iopad0 usb op1 PDO04CDG 10.3
OUTPUT Operation Mode[1] (USB)

942 TOP vss core t14 PVSS1DGZ 79
Core digital VSS(0v)

943 TOP usb iopad0 usb op0 PDO04CDG 10.3
OUTPUT Operation Mode[0] (USB)

944 TOP vdd core t8 PVDD1DGZ 79
Core digital VDD(1.0v)

945 TOP usb iopad0 usb d15 PDD04DGZ 10.3
INOUT Data[15] (USB)

946 TOP vss core t13 PVSS1DGZ 79
Core digital VSS(0v)

947 TOP usb iopad0 usb d14 PDD04DGZ 10.3
INOUT Data[14] (USB)

948 TOP vss core t12 PVSS1DGZ 79
Core digital VSS(0v)

949 TOP usb iopad0 usb d13 PDD04DGZ 10.3
INOUT Data[13] (USB)

950 TOP vdd core t7 PVDD1DGZ 79
Core digital VDD(1.0v)

951 TOP usb iopad0 usb d12 PDD04DGZ 10.3
INOUT Data[12] (USB)

65

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

952 TOP vss core t11 PVSS1DGZ 79
Core digital VSS(0v)

953 TOP usb iopad0 usb d11 PDD04DGZ 10.3
INOUT Data[11] (USB)

954 TOP usb iopad0 usb d10 PDD04DGZ 10.3
INOUT Data[10] (USB)

955 TOP usb iopad0 usb d9 PDD04DGZ 10.3
INOUT Data[9] (USB)

956 TOP vdd core t6 PVDD1DGZ 79
Core digital VDD(1.0v)

957 TOP usb iopad0 usb d8 PDD04DGZ 10.3
INOUT Data[8] (USB)

958 TOP vss core t10 PVSS1DGZ 79
Core digital VSS(0v)

959 TOP usb iopad0 usb d7 PDD04DGZ 10.3
INOUT Data[7] (USB)

960 TOP vss core t9 PVSS1DGZ 79
Core digital VSS(0v)

961 TOP usb iopad0 usb d6 PDD04DGZ 10.3
INOUT Data[6] (USB)

962 TOP vdd core t5 PVDD1DGZ 79
Core digital VDD(1.0v)

963 TOP usb iopad0 usb d5 PDD04DGZ 10.3
INOUT Data[5] (USB)

964 TOP vss core t8 PVSS1DGZ 79
Core digital VSS(0v)

965 TOP usb iopad0 usb d4 PDD04DGZ 10.3
INOUT Data[4] (USB)

966 TOP vss core t7 PVSS1DGZ 79
Core digital VSS(0v)

967 TOP usb iopad0 usb d3 PDD04DGZ 10.3
INOUT Data[3] (USB)

968 TOP vdd core t4 PVDD1DGZ 79
Core digital VDD(1.0v)

969 TOP usb iopad0 usb d2 PDD04DGZ 10.3
INOUT Data[2] (USB)

970 TOP vss io usb0 PVSS2DGZ 259
IO digital VSS(0v)

971 TOP usb iopad0 usb d1 PDD04DGZ 10.3
INOUT Data[1] (USB)

66 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

972 TOP vss core t6 PVSS1DGZ 79
Core digital VSS(0v)

973 TOP usb iopad0 usb psw PDD04DGZ 10.3
INOUT PSW (USB)

974 TOP vdd io usb0 PVDD2DGZ 80
IO digital VDD(2.5v)

975 TOP usb iopad0 usb d0 PDD04DGZ 10.3
INOUT Data[0] (USB)

976 TOP vss core t5 PVSS1DGZ 79
Core digital VSS(0v)

977 TOP usb iopad0 usb txready PDIDGZ
INPUT Transmit Data Ready (USB)

978 TOP vdd core t3 PVDD1DGZ 79
Core digital VDD(1.0v)

979 TOP usb iopad0 usb valh PDD04DGZ 10.3
INOUT ValidH (USB)

980 TOP vss core t4 PVSS1DGZ 79
Core digital VSS(0v)

981 TOP usb iopad0 usb rxval PDIDGZ
INPUT Receive Data Valid (USB)

982 TOP usb iopad0 usb rxac PDIDGZ
INPUT Receive Active (USB)

983 TOP usb iopad0 usb rxer PDIDGZ
INPUT Receive Error

984 TOP vdd core t2 PVDD1DGZ 79
Core digital VDD(1.0v)

985 TOP usb iopad0 usb line1 PDIDGZ
INPUT Line State[1] (USB)

986 TOP vss core t3 PVSS1DGZ 79
Core digital VSS(0v)

987 TOP usb iopad0 usb line0 PDIDGZ
INPUT Line State[0] (USB)

988 TOP vss core t2 PVSS1DGZ 79
Core digital VSS(0v)

989 TOP usb iopad0 usb spbp PDIDGZ
INPUT SPBP (USB)

990 TOP vdd core t1 PVDD1DGZ 79
Core digital VDD(1.0v)

991 TOP usb iopad0 usb vbus PDIDGZ
INPUT VBUS (USB)

67

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

992 TOP vss core t1 PVSS1DGZ 79
Core digital VSS(0v)

993 TOP usb iopad0 usb clk PDIDGZ
INPUT CLK (USB)

994 TOP vdd core t0 PVDD1DGZ 79
Core digital VDD(1.0v)

995 TOP usb iopad0 usb reset PDO04CDG 10.3
OUTPUT Reset (USB)

996 TOP vss core t0 PVSS1DGZ 79
Core digital VSS(0v)

997 TOP pci iopad0 pinta PDB24DGZ 57.4
INOUT INTA# (PCI)

998 TOP pci iopad0 uprst PDB24DGZ 57.4
INOUT RST# (PCI)

999 TOP pci iopad0 upclk PDB24DGZ 57.4
INOUT CLK (PCI)

1000 TOP vss io pci12 PVSS2DGZ 259
IO digital VSS(0v)

1001 TOP pci iopad0 uin2 PDB24DGZ 57.4
INOUT GNT# (PCI)

1002 TOP vdd io pci12 PVDD2DGZ 80
IO digital VDD(2.5v)

1003 TOP pci iopad0 uout1 PDB24DGZ 57.4
INOUT REQ# (PCI)

1004 TOP pci iopad0 uiov lo 31 PDB24DGZ 57.4
INOUT AD[31] (PCI)

69

3
命令セット

3.1 MIPS互換の命令

Responsive Multithreaded ProcessorはMIPS互換の命令をサポートしている．以下にMIPS互換の命令
を示す．

70 第 3章 命令セット

3.1.1 Load / Store命令

LB Load Byte
8bitロード MIPS I

31 26
100000
LB

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LB rt, offset(base)

機能 :

GPR[rt] ← sign extend(MEM[GPR[base] + offset])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

1byteをロードする．ロードされた値は 32bitに符号拡張される．

3.1. MIPS互換の命令 71

LBU Load Byte Unsigned

8bit符号なしロード MIPS I

31 26
100100
LBU

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LBU rt, offset(base)

機能 :

GPR[rt] ← zero extend(MEM[GPR[base] + offset])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

1byteをロードする．ロードされた値は 32bitに 0拡張される．

72 第 3章 命令セット

SB Store Byte

8bitストア MIPS I

31 26
101000

SB

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SB rt, offset(base)

機能 :

MEM[GPR[base] + offset] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

1byteをストアする．

3.1. MIPS互換の命令 73

LH Load Halfword

16bitロード MIPS I

31 26
100001
LH

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LH rt, offset(base)

機能 :

GPR[rt] ← sign extend(MEM[GPR[base] + offset])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

Half wordをロードする．ロードされた値は 32bitに符号拡張される．

74 第 3章 命令セット

LHU Load Halfword Unsigned

16bit符号なしロード MIPS I

31 26
100101
LHU

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LHU rt, offset(base)

機能 :

GPR[rt] ← zero extend(MEM[GPR[base] + offset])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

Half wordをロードする．ロードされた値は 32bitに 0拡張される．

3.1. MIPS互換の命令 75

SH Store Halfword

16bitストア MIPS I

31 26
101001
SH

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SH rt, offset(base)

機能 :

MEM[GPR[base] + offset] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

Half wordをストアする．

76 第 3章 命令セット

LW Load Word

32bitロード MIPS I

31 26
100011
LW

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LW rt, offset(base)

機能 :

GPR[rt] ← sign extend(MEM[GPR[base] + offset])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

1Wordをロードする．

3.1. MIPS互換の命令 77

SW Store Word

32bitロード MIPS I

31 26
100011
LW

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SW rt, offset(base)

機能 :

MEM[GPR[base] + offset] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

1Wordをストアする．

78 第 3章 命令セット

LWL Load Word Left

32bit unalignedロード MIPS I

31 26
100010
LWL

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LWL rt, offset(base)

機能 :

GPR[rt] ← merge(GPR[rt], MEM[GPR[base] + offset])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

アラインされていないアドレスに対してロードを行う．LWR命令との組み合わせにより，ア
ラインされていないアドレスから 1Wordロードすることができる．

3.1. MIPS互換の命令 79

LWR Load Word Right

32bit unalignedロード MIPS I

31 26
100110
LWR

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LWR rt, offset(base)

機能 :

GPR[rt] ← merge(MEM[GPR[base] + offset], GPR[rt])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

アラインされていないアドレスに対してロードを行う．LWL命令との組み合わせにより，ア
ラインされていないアドレスから 1Wordロードすることができる．

80 第 3章 命令セット

SWL Store Word Left

32bit unalignedストア MIPS I

31 26
101010
SWL

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SWL rt, offset(base)

機能 :

MEM[GPR[base] + offset] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

アラインされていないアドレスに対してストアを行う．SWR命令との組み合わせにより，ア
ラインされていないアドレスに 1Wordストアすることができる．

3.1. MIPS互換の命令 81

SWR Store Word Right

32bit unalignedストア MIPS I

31 26
101110
SWR

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SWR rt, offset(base)

機能 :

MEM[GPR[base] + offset] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

アラインされていないアドレスに対してストアを行う．SWL命令との組み合わせにより，ア
ラインされていないアドレスに 1Wordストアすることができる．

82 第 3章 命令セット

LL Load Linked Word

atomic read-modify-write用 32bitロード MIPS II

31 26
110000

LL

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LL rt, offset(base)

機能 :

GPR[rt] ← MEM[GPR[base] + offset]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

Atomic Read-Modify-Writeのロードを行う．

3.1. MIPS互換の命令 83

SC Store Conditional Word

atomic read-modify-write用 32bitストア MIPS II

31 26
111000

SC

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SC rt, offset(base)

機能 :

if atomic update then MEM[GPR[base] + offset] ← GPR[rt], GPR[rt] ← else GPR[rt] ← 0

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

Atomic Read-Modify-Writeのストアを行う．Atomic Read-Modify-Writeが成功すると 1が返
り，失敗すると 0が返る．

84 第 3章 命令セット

LWC1 Load Word to Floating Point

浮動小数点レジスタ用 32bitロード MIPS I

31 26
110001
LWC1

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LWC1 ft, offset(base)

機能 :

FPR[ft] ← MEM[GPR[base] + offset]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

浮動小数点レジスタへ 1Wordロードする．

3.1. MIPS互換の命令 85

SWC1 Store Word from Floating Point

浮動小数点レジスタ用 32bitストア MIPS I

31 26
111001
SWC1

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SWC1 ft, offset(base)

機能 :

MEM[GPR[base] + offset] ← FPR[ft]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

浮動小数点レジスタから 1Wordストアする．

86 第 3章 命令セット

LDC1 Load Doubleword to Floating Point

浮動小数点レジスタ用 64bitロード MIPS I

31 26
110101
LDC1

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LDC1 ft, offset(base)

機能 :

FPR[ft] ← MEM[GPR[base] + offset]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

浮動小数点レジスタへ Double wordロードする．

3.1. MIPS互換の命令 87

SDC1 Store Doubleword from Floating Point

浮動小数点レジスタ用 64bitストア MIPS I

31 26
111101
SDC1

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SDC1 ft, offset(base)

機能 :

MEM[GPR[base] + offset] ← FPR[ft]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

浮動小数点レジスタから Double wordストアする．

88 第 3章 命令セット

3.1.2 演算命令

ADDI Add Immediate Word
即値加算 MIPS I

31 26
001000
ADDI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

ADDI rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] + sign extend(immediate)

例外 :

Overflow :

概要 :

レジスタと即値を加算する．

ADDIU Add Immediate Unsigned Word

符号無し即値加算 MIPS I

31 26
001001

ADDIU

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

ADDIU rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] + sign extend(immediate)

例外 :

None

概要 :

レジスタと即値を加算する．オーバフローが発生しても例外を起さない．

3.1. MIPS互換の命令 89

SLTI Set on Less Than Immediate

符号付き即値比較 MIPS I

31 26
001010
SLTI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

SLTI rt, rs, immediate

機能 :

GPR[rt] ← (GPR[rs] < sign extend(immediate))

例外 :

None

概要 :

レジスタと即値を比較する．

SLTIU Set on Less Than Immediate Unsigned

符号無し即値比較 MIPS I

31 26
001011
SLTIU

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

SLTIU rt, rs, immediate

機能 :

GPR[rt] ← (GPR[rs] < sign extend(immediate))

例外 :

None

概要 :

レジスタと即値を符号無しで比較する．

90 第 3章 命令セット

ANDI And Immediate

即値論理積 MIPS I

31 26
001100
ANDI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

ANDI rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] and zero extend(immediate))

例外 :

None

概要 :

レジスタと即値の論理積をとる．

ORI Or Immediate

即値論理和 MIPS I

31 26
001101
ORI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

ORI rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] or zero extend(immediate))

例外 :

None

概要 :

レジスタと即値の論理和をとる．

3.1. MIPS互換の命令 91

XORI Exclusive Or Immediate

即値排他的論理和 MIPS I

31 26
001110
XORI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

XORI rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] xor zero extend(immediate))

例外 :

None

概要 :

レジスタと即値の排他的論理和をとる．

LUI Load Upper Immediate

上位即値ロード MIPS I

31 26
001111
LUI

25 21
00000

0

20 16
rt

15 0
immediate

ニーモニック:

LUI rt, immediate

機能 :

GPR[rt] ← immediate ¡¡ 16

例外 :

None

概要 :

即値をレジスタの上位 16bitにロードする．

92 第 3章 命令セット

ADD Add Word

加算 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100000
ADD

ニーモニック:

ADD rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] + GPR[rt]

例外 :

Overflow :

概要 :

レジスタの値を加算する．

ADDU Add Unsigned Word
符号無し加算 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100001
ADDU

ニーモニック:

ADDU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] + GPR[rt]

例外 :

None

概要 :

レジスタの値を加算する．オーバフローを起しても例外を発生させない．

3.1. MIPS互換の命令 93

SUB Subtract Word

減算 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100010
SUB

ニーモニック:

SUB rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] − GPR[rt]

例外 :

Overflow :

概要 :

レジスタの値を減算する．

SUBU Subtract Unsigned Word
符号無し減算 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100011
SUBU

ニーモニック:

SUBU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] − GPR[rt]

例外 :

None

概要 :

レジスタの値を減算する．オーバフローを起しても例外を発生させない

94 第 3章 命令セット

SLT Set on Less Than

符号付き比較 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101010
SLT

ニーモニック:

SLT rd, rs, rt

機能 :

GPR[rd] ← (GPR[rs] < GPR[rt])

例外 :

None

概要 :

レジスタの値を比較する．

SLTU Set on Less Than Unsigned

符号無し比較 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101011
SLTU

ニーモニック:

SLTU rd, rs, rt

機能 :

GPR[rd] ← (GPR[rs] < GPR[rt])

例外 :

None

概要 :

レジスタの値を符号無しで比較する．

3.1. MIPS互換の命令 95

AND And

論理積 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100100
AND

ニーモニック:

AND rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] and GPR[rt]

例外 :

None

概要 :

レジスタの値の論理積をとる．

OR Or

論理和 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100101
OR

ニーモニック:

OR rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] or GPR[rt]

例外 :

None

概要 :

レジスタの値の論理和をとる．

96 第 3章 命令セット

XOR Exclusive Or

排他的論理和 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100110
XOR

ニーモニック:

XOR rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] xor GPR[rt]

例外 :

None

概要 :

レジスタの値の排他的論理和をとる．

NOR Not Or

否定論理和 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100111
NOR

ニーモニック:

NOR rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] nor GPR[rt]

例外 :

None

概要 :

レジスタの値の否定論理和をとる．

3.1. MIPS互換の命令 97

SLL Shift Word Left Logical

左論理シフト MIPS I

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
000000
SLL

ニーモニック:

SLL rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] << sa

例外 :

None

概要 :

レジスタの値を左論理シフトする．

SRL Shift Word Right Logical

右論理シフト MIPS I

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
000010
SRL

ニーモニック:

SRL rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] >> sa

例外 :

None

概要 :

レジスタの値を右論理シフトする．

98 第 3章 命令セット

SRA Shift Word Right Arithmetic

右算術シフト MIPS I

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
000011
SRA

ニーモニック:

SRA rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] >> sa

例外 :

None

概要 :

レジスタの値を右算術シフトする．

SLLV Shift Word Left Logical Variable

左論理シフト MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000100
SLLV

ニーモニック:

SLLV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] << GPR[rs]

例外 :

None

概要 :

レジスタの値を左論理シフトする．

3.1. MIPS互換の命令 99

SRLV Shift Word Right Logical Variable

右論理シフト MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000110
SRLV

ニーモニック:

SRLV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] >> GPR[rs]

例外 :

None

概要 :

レジスタの値を右論理シフトする．

SRAV Shift Word Right Arithmetic Variable

右算術シフト MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000111
SRAV

ニーモニック:

SRAV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] >> GPR[rs]

例外 :

None

概要 :

レジスタの値を右算術シフトする．

100 第 3章 命令セット

3.1.3 Jump / 分岐命令

J Jump
ジャンプ MIPS I

31 26
000010

J

25 0
instr index

ニーモニック:

J target

機能 :

pc ← { pc[31:28], instr index, 00 }

例外 :

None

概要 :

指定したアドレスに無条件ジャンプする．

JAL Jump and Link
プロシージャコール MIPS I

31 26
000011
JAL

25 0
instr index

ニーモニック:

JAL target

機能 :

pc ← { pc[31:28], instr index, 00 }
GPR[31] ← pc + 8

例外 :

None

概要 :

指定したアドレスに無条件ジャンプする．リターンアドレスを R31に保存する．

3.1. MIPS互換の命令 101

JR Jump Register

レジスタ間接ジャンプ MIPS I

31 26
000000

SPECIAL

25 21
rs

20 6
000000000000000

0

5 0
001000

JR

ニーモニック:

JR rs

機能 :

pc ← GPR[rs]

例外 :

None

概要 :

レジスタで指定したアドレスに無条件ジャンプする．

JALR Jump and Link Register

レジスタ間接プロシージャコール MIPS I

31 26
000000

SPECIAL

25 21
rs

20 6
000000000000000

0

5 0
001001
JALR

ニーモニック:

JALR rs

機能 :

pc ← GPR[rs]
GPR[31] ← pc + 8

例外 :

None

概要 :

指定したアドレスに無条件ジャンプする．リターンアドレスを R31に保存する．

102 第 3章 命令セット

BEQ Branch on Equal

条件分岐 MIPS I

31 26
000100
BEQ

25 21
rs

20 16
rt

15 0
offset

ニーモニック:

BEQ rs, rt, offset

機能 :

if GPR[rs] = GPR[rt] then pc-relative conditional branch

例外 :

None

概要 :

指定したアドレスに条件分岐する．

BNE Branch on Not Equal

条件分岐 MIPS I

31 26
000101
BNE

25 21
rs

20 16
rt

15 0
offset

ニーモニック:

BNE rs, rt, offset

機能 :

if GPR[rs] �= GPR[rt] then pc-relative conditional branch

例外 :

None

概要 :

指定したアドレスに条件分岐する．

3.1. MIPS互換の命令 103

BLEZ Branch on Less Than or Equal to Zero

条件分岐 MIPS I

31 26
000110
BLEZ

25 21
rs

20 16
00000

0

15 0
offset

ニーモニック:

BLEZ rs, offset

機能 :

if GPR[rs] ≤ 0 then pc-relative conditional branch

例外 :

None

概要 :

指定したアドレスに条件分岐する．

BGTZ Branch on Greater Than Zero

条件分岐 MIPS I

31 26
000111
BGTZ

25 21
rs

20 16
00000

0

15 0
offset

ニーモニック:

BGTZ rs, offset

機能 :

if GPR[rs] > 0 then pc-relative conditional branch

例外 :

None

概要 :

指定したアドレスに条件分岐する．

104 第 3章 命令セット

BEQL Branch on Equal Likely

条件分岐 MIPS II

31 26
010100
BEQL

25 21
rs

20 16
rt

15 0
offset

ニーモニック:

BEQL rs, rt, offset

機能 :

if GPR[rs] = GPR[rt] then branch likely

例外 :

None

概要 :

指定したアドレスに条件分岐する．

BNEL Branch on Not Equal Likely

条件分岐 MIPS II

31 26
010101
BNEL

25 21
rs

20 16
rt

15 0
offset

ニーモニック:

BNEL rs, rt, offset

機能 :

if GPR[rs] �= GPR[rt] then branch likely

例外 :

None

概要 :

指定したアドレスに条件分岐する．

3.1. MIPS互換の命令 105

BLEZL Branch on Less Than or Equal to Zero Likely

条件分岐 MIPS II

31 26
010110
BLEZL

25 21
rs

20 16
00000

0

15 0
offset

ニーモニック:

BLEZL rs, offset

機能 :

if GPR[rs] ≤ 0 then branch likely

例外 :

None

概要 :

指定したアドレスに条件分岐する．

BGTZL Branch on Greater Than to Zero Likely

条件分岐 MIPS II

31 26
010111

BGTZL

25 21
rs

20 16
00000

0

15 0
offset

ニーモニック:

BGTZL rs, offset

機能 :

if GPR[rs] > 0 then branch likely

例外 :

None

概要 :

指定したアドレスに条件分岐する．

106 第 3章 命令セット

BLTZ Branch on Less Than Zero

条件分岐 MIPS I

31 26
000001

REGIMM

25 21
rs

20 16
00000
BLTZ

15 0
offset

ニーモニック:

BLTZ rs, offset

機能 :

if GPR[rs] < 0 then branch

例外 :

None

概要 :

指定したアドレスに条件分岐する．

BGEZ Branch on Greater Than or Equal to Zero

条件分岐 MIPS I

31 26
000001

REGIMM

25 21
rs

20 16
00001
BGEZ

15 0
offset

ニーモニック:

BGEZ rs, offset

機能 :

if GPR[rs] ≥ 0 then branch

例外 :

None

概要 :

指定したアドレスに条件分岐する．

3.1. MIPS互換の命令 107

BLTZAL Branch on Less Than Zero and Link

条件プロシージャコール MIPS I

31 26
000001

REGIMM

25 21
rs

20 16
10000

BLTZAL

15 0
offset

ニーモニック:

BGEZ rs, offset

機能 :

if GPR[rs] < 0 then branch
GPR[31] ← pc + 8

例外 :

None

概要 :

指定したアドレスに条件分岐する．リターンアドレスを R31にセーブする．

BGEZAL Branch on Greater Than or Equal to Zero and Link
条件プロシージャコール MIPS I

31 26
000001

REGIMM

25 21
rs

20 16
10001

BGEZAL

15 0
offset

ニーモニック:

BGEZAL rs, offset

機能 :

if GPR[rs] ≥ 0 then branch
GPR[31] ← pc + 8

例外 :

None

概要 :

指定したアドレスに条件分岐する．リターンアドレスを R31にセーブする．

108 第 3章 命令セット

BLTZL Branch on Less Than Zero Likely

条件分岐 MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
00010

BLTZL

15 0
offset

ニーモニック:

BLTZL rs, offset

機能 :

if GPR[rs] < 0 then branch likely

例外 :

None

概要 :

指定したアドレスに条件分岐する．

BGEZL Branch on Greater Than or Equal to Zero Likely

条件分岐 MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
00011

BGEZL

15 0
offset

ニーモニック:

BGEZL rs, offset

機能 :

if GPR[rs] ≥ 0 then branch likely

例外 :

None

概要 :

指定したアドレスに条件分岐する．

3.1. MIPS互換の命令 109

BLTZALL Branch on Less Than Zero and Link Likely

条件プロシージャコール MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
10010

BLTZALL

15 0
offset

ニーモニック:

BLTZALL rs, offset

機能 :

if GPR[rs] < 0 then branch likely
GPR[31] ← pc + 8

例外 :

None

概要 :

指定したアドレスに条件分岐する．R31にリターンアドレスをセーブする．

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely
条件プロシージャコール MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
10011

BGEZALL

15 0
offset

ニーモニック:

BGEZALL rs, offset

機能 :

if GPR[rs] ≥ 0 then branch likely
GPR[31] ← pc + 8

例外 :

None

概要 :

指定したアドレスに条件分岐する．リターンアドレスを R31にセーブする．

110 第 3章 命令セット

3.1.4 浮動小数点命令

MTC1 Move Word to Floating Point
レジスタ間転送 MIPS I

31 26
010001
COP1

25 21
00100
MT

20 16
rt

15 11
fs

10 0
00000000000

0

ニーモニック:

MTC1 rt, fs

機能 :

FPR[fs] ← GPR[rt]

例外 :

None

概要 :

汎用レジスタの値を浮動小数点レジスタに入れる．

MFC1 Move Word from Floating Point
レジスタ間転送 MIPS I

31 26
010001
COP1

25 21
00000
MF

20 16
rt

15 11
fs

10 0
00000000000

0

ニーモニック:

MFC1 rt, fs

機能 :

GPR[rt] ← FPR[fs]

例外 :

None

概要 :

浮動小数点レジスタの値を汎用レジスタに入れる．

3.1. MIPS互換の命令 111

ADD.fmt Floating Point Add

浮動小数点加算 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
fd

5 0
000000
ADD

ニーモニック:

ADD.S fd, fs, ft (fmt = 10000)

ADD.D fd, fs, ft (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs] + FPR[ft]

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :

概要 :

レジスタの値を加算する．

112 第 3章 命令セット

SUB.fmt Floating Point Subtract

浮動小数点減算 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
fd

5 0
000001
SUB

ニーモニック:

SUB.S fd, fs, ft (fmt = 10000)

SUB.D fd, fs, ft (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs] − FPR[ft]

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :

概要 :

レジスタの値を減算する．

3.1. MIPS互換の命令 113

MUL.fmt Floating Point Multiply

浮動小数点乗算 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
fd

5 0
000010
MUL

ニーモニック:

MUL.S fd, fs, ft (fmt = 10000)

MUL.D fd, fs, ft (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs] × FPR[ft]

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :

概要 :

レジスタの値を乗算する．

114 第 3章 命令セット

DIV.fmt Floating Point Divide

浮動小数点除算 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
fd

5 0
000011
DIV

ニーモニック:

DIV.S fd, fs, ft (fmt = 10000)

DIV.D fd, fs, ft (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs] / FPR[ft]

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :
Floating Point Divide By 0 :

概要 :

レジスタの値を除算する．

3.1. MIPS互換の命令 115

ABS.fmt Floating Point Absolute Value

浮動小数点絶対値 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
000101
ABS

ニーモニック:

ABS.S fd, fs (fmt = 10000)

ABS.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← abs(FPR[fs])

例外 :

Floating Point Invalid Operation :

概要 :

レジスタの値の絶対値をとる．

116 第 3章 命令セット

NEG.fmt Floating Point Negate

浮動小数点符号反転 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
000111
NEG

ニーモニック:

NEG.S fd, fs (fmt = 10000)

NEG.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← −(FPR[fs])

例外 :

Floating Point Invalid Operation :

概要 :

レジスタの値を符号反転する．

MOV.fmt Floating Point Move

浮動小数点移動 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
000110
MOV

ニーモニック:

MOV.S fd, fs (fmt = 10000)

MOV.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs]

例外 :

None

概要 :

レジスタの値を移動する．

3.1. MIPS互換の命令 117

CVT.S.fmt Floating Point Convert to Single Floating Point

浮動小数点フォーマット変換 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
100000
CVT.S

ニーモニック:

CVT.S.D fd, fs (fmt = 10001)

CVT.S.W fd, fs (fmt = 10100)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :

概要 :

単精度にフォーマットを変換する．

118 第 3章 命令セット

CVT.D.fmt Floating Point Convert to Double Floating Point

浮動小数点フォーマット変換 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
100001
CVT.D

ニーモニック:

CVT.D.S fd, fs (fmt = 10000)

CVT.D.W fd, fs (fmt = 10100)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :

概要 :

倍精度にフォーマットを変換する．

3.1. MIPS互換の命令 119

ROUND.W.fmt Floating Point Round to Word Fixed Point

浮動小数点フォーマット変換 MIPS II

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
001100

ROUND.W

ニーモニック:

ROUND.W.S fd, fs (fmt = 10000)

ROUND.W.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :

概要 :

整数にフォーマットを変換する．

120 第 3章 命令セット

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

浮動小数点フォーマット変換 MIPS II

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
001101

TRUNC.W

ニーモニック:

TRUNC.W.S fd, fs (fmt = 10000)

TRUNC.W.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :

概要 :

整数にフォーマットを変換する．

3.1. MIPS互換の命令 121

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point

浮動小数点フォーマット変換 MIPS II

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
001110

CEIL.W

ニーモニック:

CEIL.W.S fd, fs (fmt = 10000)

CEIL.W.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :

概要 :

整数にフォーマットを変換する．

122 第 3章 命令セット

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

浮動小数点フォーマット変換 MIPS II

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
001111

FLOOR.W

ニーモニック:

FLOOR.W.S fd, fs (fmt = 10000)

FLOOR.W.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :

概要 :

整数にフォーマットを変換する．

3.1. MIPS互換の命令 123

3.1.5 その他の命令

SYSCALL System Call
システムコール MIPS I

31 26
000000

SPECIAL

25 6
00000000000000000000

0

5 0
001100

SYSCALL

ニーモニック:

SYSCALL

機能 :

exception(system call)

例外 :

System Call :

概要 :

システムコール例外を発生する．

BREAK Breakpoint

ブレークポイント MIPS I

31 26
000000

SPECIAL

25 6
00000000000000000000

0

5 0
001101

BREAK

ニーモニック:

BREAK

機能 :

exception(breakpoint)

例外 :

Break Point :

概要 :

ブレークポイント例外を発生する．

124 第 3章 命令セット

TGE Trap if Greater or Equal

条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110000
TGE

ニーモニック:

TGE rs, rt

機能 :

if GPR[rs] ≥ GPR[rt] then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

TGEU Trap if Greater or Equal Unsigned
条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110001
TGEU

ニーモニック:

TGEU rs, rt

機能 :

if GPR[rs] ≥ GPR[rt] then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

3.1. MIPS互換の命令 125

TLT Trap if Less Than

条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110010
TLT

ニーモニック:

TLT rs, rt

機能 :

if GPR[rs] < GPR[rt] then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

TLTU Trap if Less Than Unsigned
条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110011
TLTU

ニーモニック:

TLTU rs, rt

機能 :

if GPR[rs] < GPR[rt] then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

126 第 3章 命令セット

TEQ Trap if Equal

条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110100
TEQ

ニーモニック:

TEQ rs, rt

機能 :

if GPR[rs] = GPR[rt] then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

TNE Trap if Not Equal
条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110110
TNE

ニーモニック:

TEQ rs, rt

機能 :

if GPR[rs] �= GPR[rt] then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

3.1. MIPS互換の命令 127

TGEI Trap if Greater or Equal Immediate

条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01000
TGEI

15 0
immediate

ニーモニック:

TGEI rs, immediate

機能 :

if GPR[rs] ≥ sign extend(immediate) then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

TGEIU Trap if Greater or Equal Immediate Unsigned
条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01001

TGEIU

15 0
immediate

ニーモニック:

TGEIU rs, immediate

機能 :

if GPR[rs] ≥ sign extend(immediate) then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

128 第 3章 命令セット

TLTI Trap if Less Than Immediate

条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01010
TLTI

15 0
immediate

ニーモニック:

TLTI rs, immediate

機能 :

if GPR[rs] < sign extend(immediate) then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

TLTIU Trap if Less Than Immediate Unsigned
条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01010

TLTIU

15 0
immediate

ニーモニック:

TLTIU rs, immediate

機能 :

if GPR[rs] < sign extend(immediate) then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

3.1. MIPS互換の命令 129

TEQI Trap if Equal Immediate

条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01100
TEQI

15 0
immediate

ニーモニック:

TEQI rs, immediate

機能 :

if GPR[rs] = sign extend(immediate) then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

TNEI Trap if Not Equal Immediate
条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01110
TNEI

15 0
immediate

ニーモニック:

TNEI rs, immediate

機能 :

if GPR[rs] �= sign extend(immediate) then exception(trap)

例外 :

Trap :

概要 :

条件によりトラップを発生する．

130 第 3章 命令セット

3.2 MIPS命令と動作の異なる命令

以下に Responsive Multithreaded Processorの中でMIPS命令と動作の異なる命令を示す．

3.2.1 演算命令

DADDI Doubleword Add Immediate
64bit即値加算 MIPS III 動作改

31 26
011000

DADDI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

DADDI rt, rs, immediate

機能 :

FPR[rt] ← FPR[rs] + sign extension(immediate)

例外 :

Overflow :

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

3.2. MIPS命令と動作の異なる命令 131

DADDIU Doubleword Add Immediate Unsigned

64bit即値加算 MIPS III 動作改

31 26
011001

DADDIU

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

DADDIU rt, rs, immediate

機能 :

FPR[rt] ← FPR[rs] + sign extension(immediate)

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

DADD Doubleword Add
64bit加算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101100
DADD

ニーモニック:

DADD rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] + FPR[rt]

例外 :

Overflow :

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

132 第 3章 命令セット

DADDU Doubleword Add Unsigned

64bit加算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101101

DADDU

ニーモニック:

DADDU rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] + FPR[rt]

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

DSUB Doubleword Subtract
64bit減算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101110
DSUB

ニーモニック:

DSUB rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] − FPR[rt]

例外 :

Overflow :

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

3.2. MIPS命令と動作の異なる命令 133

DSUBU Doubleword Subtract Unsigned

64bit減算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101111

DSUBU

ニーモニック:

DSUBU rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] − FPR[rt]

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

DSLL Doubleword Shift Left Logical
64bit左論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111000
DSLL

ニーモニック:

DSLL rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] � sa

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

134 第 3章 命令セット

DSRL Doubleword Shift Right Logical

64bit右論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111010
DSRL

ニーモニック:

DSRL rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] � sa

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

DSRA Doubleword Shift Right Arithmetic
64bit右算術シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111011
DSRA

ニーモニック:

DSRA rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] � sa

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

3.2. MIPS命令と動作の異なる命令 135

DSLL32 Doubleword Shift Left Logical plus 32

64bit左論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111100

DSLL32

ニーモニック:

DSLL32 rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] � (sa + 32)

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

DSRL32 Doubleword Shift Right Logical plus 32
64bit右論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111110

DSRL32

ニーモニック:

DSRL32 rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] � (sa + 32)

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

136 第 3章 命令セット

DSRA32 Doubleword Shift Right Arithmetic plus 32

64bit右算術シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111111

DSRA32

ニーモニック:

DSRA32 rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] � (sa + 32)

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

DSLLV Doubleword Shift Left Logical Variable
64bit左論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
010100
DSLLV

ニーモニック:

DSLLV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt] � FPR[rs]

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

3.2. MIPS命令と動作の異なる命令 137

DSRLV Doubleword Shift Right Logical Variable

64bit右論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
010110

DSRLV

ニーモニック:

DSRLV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt] � FPR[rs]

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

DSRAV Doubleword Shift Right Arithmetic Variable
64bit右算術シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
010111

DSRAV

ニーモニック:

DSRAV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt] � FPR[rs]

例外 :

None

概要 :

Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

138 第 3章 命令セット

MULT Multiply Word

符号付き乗算 MIPS I 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011000
MULT

ニーモニック:

MULT rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] × GPR[rt]

例外 :

None

概要 :

Responsive Multithreaded Processorでは 3オペランド命令で演算結果の下位 32bitをデスティ
ネーションレジスタに格納する．

MULTU Multiply Word Unsigned
符号無し乗算 MIPS I 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011001

MULTU

ニーモニック:

MULTU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] × GPR[rt]

例外 :

None

概要 :

Responsive Multithreaded Processorでは 3オペランド命令で演算結果の下位 32bitをデスティ
ネーションレジスタに格納する．

3.2. MIPS命令と動作の異なる命令 139

DIV Divide Word

符号付き除算 MIPS I 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011010
DIV

ニーモニック:

DIV rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

例外 :

Divide by Zero :

概要 :

Responsive Multithreaded Processorでは 3オペランド命令で，商をデスティネーションレジス
タに格納する．

DIVU Divide Word Unsigned

符号無し除算 MIPS I 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011011
DIVU

ニーモニック:

DIVU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

例外 :

Divide by Zero :

概要 :

商をデスティネーションレジスタに格納する．Responsive Multithreaded Processorでは 3オペ
ランド命令になる．

140 第 3章 命令セット

DMULT Doubleword Multiply

符号付き 64bit乗算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011100

DMULT

ニーモニック:

DMULT rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

Responsive Multithreaded Processorでは 3オペランド命令で，浮動小数点レジスタを用いて演
算を行う．演算結果の下位 64bitをデスティネーションレジスタに格納する．

DMULTU Doubleword Multiply Unsigned
符号無し 64bit乗算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011101

DMULTU

ニーモニック:

DMULTU rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

Responsive Multithreaded Processorでは 3オペランド命令で，浮動小数点レジスタを用いて演
算を行う．演算結果の下位 64bitをデスティネーションレジスタに格納する．

3.2. MIPS命令と動作の異なる命令 141

3.2.2 浮動小数点命令

C.cond.fmt Floating-Point Compare
浮動小数点比較 MIPS I 動作改

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
00000

0

5 4
11
FC

3 0
cond

ニーモニック:

C.cond.S fs, ft (fmt = 10000)

C.cond.D fs, ft (fmt = 10001)

機能 :

FPR[7] ← FPR[fs] conpare cond FPR[ft]

例外 :

Floating Point Invalid :

概要 :

Responsive Multithreaded Processorではアウトオブオーダーで命令が実行されるため，ステー
タスレジスタではなく，浮動小数点レジスタに結果が格納される．

142 第 3章 命令セット

BC1T Branch on FP True

浮動小数点分岐 MIPS I 動作改

31 26
010001
COP1

25 21
01000
BC

20 18
000
9

17
0

nd

16
1
tf

15 0
offset

ニーモニック:

BC1T offset

機能 :

if (FPR[7] == 1) then branch

例外 :

None

概要 :

Responsive Multithreaded Processorではステータスレジスタではなく，浮動小数点レジスタの
内容により分岐を判断する．

BC1F Branch on FP False
浮動小数点分岐 MIPS I 動作改

31 26
010001
COP1

25 21
01000
BC

20 18
000
9

17
0

nd

16
0
tf

15 0
offset

ニーモニック:

BC1F offset

機能 :

if (FPR[7] == 0) then branch

例外 :

None

概要 :

Responsive Multithreaded Processorではステータスレジスタではなく，浮動小数点レジスタの
内容により分岐を判断する．

3.2. MIPS命令と動作の異なる命令 143

BC1TL Branch on FP True Likely

浮動小数点分岐 MIPS II 動作改

31 26
010001
COP1

25 21
01000
BC

20 18
000
9

17
1

nd

16
1
tf

15 0
offset

ニーモニック:

BC1TL offset

機能 :

if (FPR[7] == 1) then branch likely

例外 :

None

概要 :

Responsive Multithreaded Processorではステータスレジスタではなく，浮動小数点レジスタの
内容により分岐を判断する．

BC1FL Branch on FP False Likely
浮動小数点分岐 MIPS II 動作

31 26
010001
COP1

25 21
01000
BC

20 18
000
9

17
1

nd

16
0
tf

15 0
offset

ニーモニック:

BC1FL offset

機能 :

if (FPR[7] == 0) then branch likely

例外 :

None

概要 :

Responsive Multithreaded Processorではステータスレジスタではなく，浮動小数点レジスタの
内容により分岐を判断する．

144 第 3章 命令セット

3.2.3 その他の命令

SYNC Synchronize Operation
命令実行順序制御 MIPS II 動作改

31 26
000000

SPECIAL

25 6
000000000000000

0

5 0
001111
SYNC

ニーモニック:

SYNC

機能 :

synchronize operation order()

例外 :

None

概要 :

Responsive Multithreaded Processorではアウトオブオーダーで命令が実行されるが，この命令
の前後での実行順序が保証される．つまり sync命令より後の命令は sync命令より前の命令よ
り先に実行されることはない．また，sync命令は投機実行されないため，投機実行の制御を行
うことができる．

3.2.4 サポートしていないMIPS II命令

Responsive Multithreaded Processorは基本的にMIPS II命令セット互換であるが，いくつかの命令をサ
ポートしていない．以下にMIPS II命令で Responsive Multithreaded Processorがサポートしていない命
令を示す．

3.3. Responsive Multithreaded Processor固有の命令 145

ニーモニック 概要

LWC2 Load Word to Coprocessor-2 MIPS I
LWC3 Load Word to Coprocessor-3 MIPS I
SWC2 Store Word to Coprocessor-2 MIPS I
SWC3 Store Word to Coprocessor-3 MIPS I
LDC2 Load Doubleword to Coprocessor-2 MIPS II
LDC3 Load Doubleword to Coprocessor-3 MIPS II
SDC2 Store Doubleword to Coprocessor-2 MIPS II
SDC3 Store Doubleword to Coprocessor-3 MIPS II

MFHI Move From HI MIPS I
MTHI Move To HI MIPS I
MFLO Move From LO MIPI I
MTLO Move To LO MIPS I

CTC1 Move Control Word To Floating-Point MIPS I
CFC1 Move Control Word From Floating-Point MIPS I

SQRT.fmt Floating-Point Square Root MIPS II

3.3 Responsive Multithreaded Processor固有の命令

以下に Responsive Multithreaded Processor固有の命令を示す．

146 第 3章 命令セット

3.3.1 Load / Store 命令

IOLB Load Byte of I/O
I/O用ロード命令 RESPII

31 26
010000
COP0

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110000
IOLB

ニーモニック:

IOLB rt, rs

機能 :

GPR[rt] ← MEM[GPR[rs]]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

通常の Load命令は投機実行されるが，この命令は投機実行されないため，I/Oのように 1度
ロードすると状態が変わるものに用いる．

3.3. Responsive Multithreaded Processor固有の命令 147

IOLH Load Half Word of I/O

I/O用ロード命令 RESPII

31 26
010000
COP0

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110001
IOLH

ニーモニック:

IOLH rt, rs

機能 :

GPR[rt] ← MEM[GPR[rs]]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

通常の Load命令は投機実行されるが，この命令は投機実行されないため，I/Oのように 1度
ロードすると状態が変わるものに用いる．

148 第 3章 命令セット

IOLW Load Word of I/O

I/O用ロード命令 RESPII

31 26
010000
COP0

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110010
IOLW

ニーモニック:

IOLW rt, rs

機能 :

GPR[rt] ← MEM[GPR[rs]]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

通常の Load命令は投機実行されるが，この命令は投機実行されないため，I/Oのように 1度
ロードすると状態が変わるものに用いる．

3.3. Responsive Multithreaded Processor固有の命令 149

3.3.2 演算命令

DAND Doubleword And
64bit論理積 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
100100
AND

ニーモニック:

DAND rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] and FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

DOR Doubleword Or
64bit論理和 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
100101
OR

ニーモニック:

DOR rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] or FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

150 第 3章 命令セット

DXOR Doubleword Exclusive Or

64bit排他的論理和 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
100110
XOR

ニーモニック:

DXOR rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] xor FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

DNOR Doubleword Not Or

64bit否定論理和 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
100111
NOR

ニーモニック:

DNOR rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] nor FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

3.3. Responsive Multithreaded Processor固有の命令 151

MULTH Multiply Word on High Bit

符号付き乗算 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011000
MULT

ニーモニック:

MULTH rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] × GPR[rt]

例外 :

None

概要 :

デスティネーションレジスタに乗算結果の上位 32bitを格納する．

MULTUH Multiply Word Unsigned on High Bit

符号無し乗算 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011001

MULTU

ニーモニック:

MULTUH rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] × GPR[rt]

例外 :

None

概要 :

デスティネーションレジスタに乗算結果の上位 32bitを格納する．

152 第 3章 命令セット

DMULTH Doubleword Multiply on High Bit

符号付き 64bit乗算 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011100

DMULT

ニーモニック:

DMULTH rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．デスティネーションレジスタに乗算結果の上位 64bit
を格納する．

DMULTUH Doubleword Multiply Unsigned on High Bit
符号無し 64bit乗算 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011101

DMULTU

ニーモニック:

DMULTUH rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．デスティネーションレジスタに乗算結果の上位 64bit
を格納する．

3.3. Responsive Multithreaded Processor固有の命令 153

REM Reminder Word

符号付き剰余 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011010
DIV

ニーモニック:

REM rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

例外 :

Divide by Zero :

概要 :

デスティネーションレジスタに剰余の結果を格納する．

REMU Reminder Word Unsigned
符号無し剰余 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011011
DIVU

ニーモニック:

REMU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

例外 :

Divide by Zero :

概要 :

デスティネーションレジスタに剰余の結果を格納する．

154 第 3章 命令セット

DSLT Doubleword Set on Less Than

符号付き 64bit比較 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
101010
SLT

ニーモニック:

DSLT rd, rs, rt

機能 :

FPR[rd] ← (FPR[rs] < FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

DSLTU Doubleword Set on Less Than Unsigned

符号無し 64bit比較 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
101011
SLTU

ニーモニック:

DSLTU rd, rs, rt

機能 :

FPR[rd] ← (FPR[rs] < FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

3.3. Responsive Multithreaded Processor固有の命令 155

RTL Rotate Left

左ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
000000
SLL

ニーモニック:

RTL rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] <<< sa

例外 :

None

概要 :

左ローテーション演算．

RTR Rotate Right

右ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
000010
SRL

ニーモニック:

RTR rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] >>> sa

例外 :

None

概要 :

右ローテーション演算．

156 第 3章 命令セット

RTLV Rotate Left Variable

左ローテーション RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
000100
SLLV

ニーモニック:

RTLV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] <<< GPR[rs]

例外 :

None

概要 :

左ローテーション演算．

RTRV Rotate Right Variable

右ローテーション RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
000110
SRLV

ニーモニック:

RTRV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] >>> GPR[rs]

例外 :

None

概要 :

右ローテーション演算．

3.3. Responsive Multithreaded Processor固有の命令 157

DRTL Doubleword Rotate Left

64bit左ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
111000
DSLL

ニーモニック:

DRTL rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] <<< sa

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

DRTR Doubleword Rotate Right

64bit右ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
111010
DSRL

ニーモニック:

DRTR rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] >>> sa

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

158 第 3章 命令セット

DRTL32 Doubleword Rotate Left plus 32

64bit左ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
111100

DSLL32

ニーモニック:

DRTL rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] <<< (sa + 32)

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

DRTR32 Doubleword Rotate Right plus 32

64bit右ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
111110

DSRL32

ニーモニック:

DRTR32 rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] >>> (sa + 32)

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

3.3. Responsive Multithreaded Processor固有の命令 159

DRTLV Doubleword Rotate Left Variable

64bit左ローテーション RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
010100
DSLLV

ニーモニック:

DRTLV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt] <<< FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

DRTRV Doubleword Rotate Right Variable

64bit右ローテーション RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
010110

DSRLV

ニーモニック:

DRTRV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt] >>> FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．

160 第 3章 命令セット

3.3.3 転送命令

MTC1H Move Word to Floating Point on High bit
レジスタ間転送 RESPII

31 26
010001
COP1

25 21
00100
MT

20 16
rt

15 11
fs

10 6
00001

1

5 0
000000

0

ニーモニック:

MTC1H rt, fs

機能 :

FPR[fs] ← GPR[rt] || 032

例外 :

None

概要 :

浮動小数点レジスタの上位ビットに汎用レジスタの値を転送する．

MFC1H Move Word from Floating Point on High bit
レジスタ間転送 RESPII

31 26
010001
COP1

25 21
00000
MF

20 16
rt

15 11
fs

10 6
00001

1

5 0
000000

0

ニーモニック:

MFC1H rt, fs

機能 :

GPR[rt] ← FPR[fs] 63−32

例外 :

None

概要 :

汎用レジスタに浮動小数点レジスタの上位ビットを転送する．

3.3. Responsive Multithreaded Processor固有の命令 161

3.3.4 システム制御命令

MFC0 Move from System Control Register
システムレジスタリード命令 SYSTEM

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
rd

10 6
00000

0

5 0
000000
CTRL

ニーモニック:

MFC0 rt, rd

機能 :

GPR[rt] ← SYSTEM[GPR[rd]]

例外 :

Coprocessor Unusable :

概要 :

システムレジスタから値を読み込む．システムレジスタのアドレスは GPR[rd]で指定する．

MTC0 Move to System Control Register

システムレジスタライト命令 SYSTEM

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
rd

10 6
00000

0

5 0
000000
CTRL

ニーモニック:

MTC0 rt, rd

機能 :

SYSTEM[GPR[rd]] ← GPR[rt]

例外 :

Coprocessor Unusable :

概要 :

システムレジスタに値を書き込む．システムレジスタのアドレスは GPR[rd]で指定する．

162 第 3章 命令セット

MFIMM Move from Instruction MMU Control Register

命令MMU制御レジスタリード命令 SYSTEM

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
rd

10 6
00000

0

5 0
000010
IMMU

ニーモニック:

MFIMM rt, rd

機能 :

GPR[rt] ← IMMU[GPR[rd]]

例外 :

Coprocessor Unusable :

概要 :

命令MMU制御レジスタから値を読み込む．制御レジスタのアドレスはGPR[rd]で指定する．

MTIMM Move to Instruction MMU Control Register
命令MMU制御レジスタライト命令 SYSTEM

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
rd

10 6
00000

0

5 0
000010
IMMU

ニーモニック:

MTIMM rt, rd

機能 :

IMMU[GPR[rd]] ← GPR[rt]

例外 :

Coprocessor Unusable :

概要 :

命令MMU制御レジスタに値を書き込む．制御レジスタのアドレスは GPR[rd]で指定する．

3.3. Responsive Multithreaded Processor固有の命令 163

MFDMM Move from Data MMU Control Register

データMMU制御レジスタリード命令 SYSTEM

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
rd

10 6
00000

0

5 0
000011

DMMU

ニーモニック:

MFDMM rt, rd

機能 :

GPR[rt] ← DMMU[GPR[rd]]

例外 :

Coprocessor Unusable :

概要 :

データMMU制御レジスタから値を読み込む．制御レジスタのアドレスはGPR[rd]で指定する．

MTDMM Move to Data MMU Control Register
データMMU制御レジスタライト命令 SYSTEM

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
rd

10 6
00000

0

5 0
000011

DMMU

ニーモニック:

MTDMM rt, rd

機能 :

DMMU[GPR[rd]] ← GPR[rt]

例外 :

Coprocessor Unusable :

概要 :

データMMU制御レジスタに値を書き込む．制御レジスタのアドレスはGPR[rd]で指定する．

164 第 3章 命令セット

ERET Exception Return

例外復帰命令 SYSTEM

31 26
010000
COP0

25 6
00000000000000000000

0

5 0
011000
ERET

ニーモニック:

ERET

機能 :

Exception Return

例外 :

None

概要 :

例外処理から復帰する．

3.3.5 スレッド制御命令

MKTH Make Thread
スレッド生成 THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000001
MKTH

ニーモニック:

MKTH rd, rs, rt

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

スレッドの生成を行う．GPR[rs]に作成するスレッドの ID，GPR[rt]にスタートアドレスを指
定する．スレッドの生成に成功すると GPR[rd]に 1が，失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 165

DELTH Delete Thread

スレッド削除 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
000010

DELTH

ニーモニック:

DELTH rd, rs

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

スレッドの削除を行う．GPR[rs]に削除するスレッドの IDを指定する．スレッドの削除に成
功すると GPR[rd]に 1が，失敗すると 0が返る．

CHGPR Change Priority

優先度の変更 THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000011

CHGPR

ニーモニック:

CHGPR rd, rs, rt

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

優先度の変更を行う．GPR[rs]に変更するスレッドの ID，GPR[rt]に新しい優先度を指定する．
優先度の変更に成功すると GPR[rd]に 1が，失敗すると 0が返る．

166 第 3章 命令セット

CHGST Change Status

状態の変更 THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000100

CHGST

ニーモニック:

CHGST rd, rs, rt

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

スレッドの状態を変更する．GPR[rs]に変更するスレッド IDの，GPR[rt]に新しい状態を指
定する．状態の変更に成功すると GPR[rd]に 1が，失敗すると 0が返る．

RUNTH Run Thread

スレッドの実行 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
000101

RUNTH

ニーモニック:

RUNTH rd, rs

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

スレッドを実行状態する．GPR[rs]に実行するスレッドの IDを指定する．スレッドの実行に
成功すると GPR[rd]に 1が，失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 167

STOPTH Stop Thread

スレッドの停止 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
000110

STOPTH

ニーモニック:

STOPTH rd, rs

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

スレッドを停止状態にする．GPR[rs]に停止するスレッド IDを指定する．スレッドの停止に
成功すると GPR[rd]に 1が，失敗すると 0が返る．

STOPSLF Stop Myself

スレッドの停止 THREAD

31 26
011101

THREAD

25 16
0000000000

0

15 11
rd

10 6
00000

0

5 0
000111

STOPSLF

ニーモニック:

STOPSLF rd

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

自分自身のスレッドを停止する．スレッドの停止に成功するとGPR[rd]に 1が，失敗すると 0
が返る．

168 第 3章 命令セット

BKUPTH Backup Thread

スレッドの退避 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
001000

BKUPTH

ニーモニック:

BKUPTH rd, rs

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

アクティブスレッドをコンテキストキャッシュに退避する．GPR[rs]に退避するスレッドの ID
を指定する．スレッドの退避に成功すると GPR[rd]に 1が，失敗すると 0が返る．

BKUPSLF Backup Myself

スレッドの退避 THREAD

31 26
011101

THREAD

25 16
0000000000

0

15 11
rd

10 6
00000

0

5 0
001001

BKUPSLF

ニーモニック:

BKUPSLF rd

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

自分自身をコンテキストキャッシュに退避する．優先度の変更に成功すると GPR[rd]に 1が，
失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 169

RSTRTH Restore Thread

スレッドの復帰 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
001010

RSTRTH

ニーモニック:

RSTRTH rd, rs

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

キャッシュスレッドをコンテキストキャッシュから復帰する．GPR[rs]に復帰するスレッドの
IDを指定する．スレッドの退避に成功するとGPR[rd]に 1が，失敗すると 0が返る．

SWAPTH Swap Thread

スレッドの入れ換え THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001011

SWAPTH

ニーモニック:

SWAPTH rd, rs, rt

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

アクティブスレッドとキャッシュスレッドを入れ換える．GPR[rs]に退避するアクティブスレッ
ドの ID，GPR[rt]に復帰するキャッシュスレッドを指定する．スレッドの入れ換えに成功する
と GPR[rd]に 1が，失敗すると 0が返る．

170 第 3章 命令セット

SWAPSLF Swap Myself

スレッドの入れ換え THREAD

31 26
011101

THREAD

25 21
00000

0

20 16
rt

15 11
rd

10 6
00000

0

5 0
001100

SWAPSLF

ニーモニック:

SWAPSLF rd, rt

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

自分自身とキャッシュスレッドを入れ換える．GPR[rt]に復帰するキャッシュスレッドを指定す
る．スレッドの入れ換えに成功すると GPR[rd]に 1が，失敗すると 0が返る．

CPTHTOA Copy Thread to Active Thread

スレッドのコピー THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001101

CPTHTOA

ニーモニック:

CPTHTOA rd, rs, rt

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

アクティブスレッドを別のアクティブスレッドとしてコピーする．GPR[rs]にコピー元のアク
ティブスレッドの ID，GPR[rt]にコピー先のアクティブスレッドの IDを指定する．スレッド
のコピーに成功すると GPR[rd]に 1が，失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 171

CPTHTOM Copy Thread to Cache Thread (Memory)

スレッドのコピー THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001110

CPTHTOM

ニーモニック:

CPTHTOM rd, rs, rt

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

Coprocessor Unusable :

概要 :

アクティブスレッドを別のキャッシュスレッドとしてコピーする．GPR[rs]にコピー元のアク
ティブスレッドの ID，GPR[rt]にコピー先のキャッシュスレッドの IDを指定する．スレッド
のコピーに成功すると GPR[rd]に 1が，失敗すると 0が返る．

GETTT Get Thread Table

スレッドテーブルの参照 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
001111

GETTT

ニーモニック:

GETTT rd, rs

機能 :

GPR[rd] ← ThreadTable of GPR[rs]

例外 :

Coprocessor Unusable :

概要 :

スレッドテーブルから値を読み込む．GPR[rs]に読み込むスレッドの IDを指定する．GPR[rd]
にスレッドテーブルの内容が返る．

172 第 3章 命令セット

GETTID Get Thread ID

スレッド IDの参照 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
010000

GETTID

ニーモニック:

GETTID rd, rs

機能 :

GPR[rd] ← ThreadID of GPR[rs]

例外 :

Coprocessor Unusable :

概要 :

コンテキスト IDからスレッド IDを調べる．GPR[rs]に調べるスレッドのコンテキスト IDを
指定する．GPR[rd]にスレッド IDが返る．

GETOTID Get Own Thread ID

スレッド IDの参照 THREAD

31 26
011101

THREAD

25 16
0000000000

0

15 11
rd

10 6
00000

0

5 0
010001

GETOTID

ニーモニック:

GETOTID rd

機能 :

GPR[rd] ← ThreadID of Myself

例外 :

Coprocessor Unusable :

概要 :

自分自身のスレッド IDを調べる．GPR[rd]にスレッド IDが返る．

3.3. Responsive Multithreaded Processor固有の命令 173

GETMTID Get Cache Thread ID (Get Memory Thread ID)

スレッド IDの参照 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
010010

GETMTID

ニーモニック:

GETMTID rd, rs

機能 :

GPR[rd] ← ThreadID of GPR[rs]

例外 :

Coprocessor Unusable :

概要 :

コンテキスト IDからスレッド IDを調べる．GPR[rs]に調べるキャッシュスレッドのコンテキ
スト IDを指定する．GPR[rd]にスレッド IDが返る．

174 第 3章 命令セット

GETCNUM Get Context ID Number

コンテキスト IDの参照 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
010011

GETCNUM

ニーモニック:

GETCNUM rd, rs

機能 :

GPR[rd] ← ContextID of GPR[rs]

例外 :

Coprocessor Unusable :

概要 :

スレッド ID からコンテキスト ID を調べる．GPR[rs] に調べるスレッドの ID を指定する．
GPR[rd]にコンテキスト IDが返る．8bit目が 1の場合，スレッドはアクティブスレッドにあ
り，2bit目から 0bit目にコンテキスト IDが返る．6bit目が 1の場合，スレッドはキャッシュス
レッドにあり，4bit目から 0bit目にコンテキストキャッシュにおけるコンテキスト IDが返る．

3.3. Responsive Multithreaded Processor固有の命令 175

3.3.6 SIMD演算命令

SADD.size SIMD Add
SIMD加算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100000
ADD

ニーモニック:

SADD.8 rd, rs, rt (size = 01)

SADD.16 rd, rs, rt (size = 10)

SADD.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] + FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

176 第 3章 命令セット

SADD.size.sc SIMD Add Scalar

SIMD加算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
110000

ADD.sc

ニーモニック:

SADD.8.sc rd, rs, rt (size = 01)

SADD.16.sc rd, rs, rt (size = 10)

SADD.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] + FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 177

SSUB.size SIMD Subtract

SIMD減算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100010
SUB

ニーモニック:

SSUB.8 rd, rs, rt (size = 01)

SSUB.16 rd, rs, rt (size = 10)

SSUB.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] − FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

178 第 3章 命令セット

SSUB.size.sc SIMD Subtract Scalar

SIMD減算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
110010
SUB.sc

ニーモニック:

SSUB.8.sc rd, rs, rt (size = 01)

SSUB.16.sc rd, rs, rt (size = 10)

SSUB.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] − FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 179

SMULT.size SIMD Multiply

符号付き SIMD乗算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
011000
MULT

ニーモニック:

SMULT.8 rd, rs, rt (size = 01)

SMULT.16 rd, rs, rt (size = 10)

SMULT.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

180 第 3章 命令セット

SMULT.size.sc SIMD Multiply Scalar

符号付き SIMD乗算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
101000

MULT.sc

ニーモニック:

SMULT.8.sc rd, rs, rt (size = 01)

SMULT.16.sc rd, rs, rt (size = 10)

SMULT.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 181

SMULTU.size SIMD Multiply Unsigned

符号無し SIMD乗算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
011001

MULTU

ニーモニック:

SMULTU.8 rd, rs, rt (size = 01)

SMULTU.16 rd, rs, rt (size = 10)

SMULTU.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

182 第 3章 命令セット

SMULTU.size.sc SIMD Multiply Unsigned Scalar

符号無し SIMD乗算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
101001

MULTU.sc

ニーモニック:

SMULTU.8.sc rd, rs, rt (size = 01)

SMULTU.16.sc rd, rs, rt (size = 10)

SMULTU.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 183

SAND.size.sc SIMD And Scalar

SIMD論理積 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100100

AND.sc

ニーモニック:

SAND.8.sc rd, rs, rt (size = 01)

SAND.16.sc rd, rs, rt (size = 10)

SAND.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] and FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

184 第 3章 命令セット

SOR.size.sc SIMD Or Scalar

SIMD論理和 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100101
OR.sc

ニーモニック:

SOR.8.sc rd, rs, rt (size = 01)

SOR.16.sc rd, rs, rt (size = 01)

SOR.32.sc rd, rs, rt (size = 01)

機能 :

FPR[rd] ← FPR[rs] or FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 185

SXOR.size.sc SIMD Exclusive Or Scalar

SIMD排他的論理和 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100110

XOR.sc

ニーモニック:

SXOR.8.sc rd, rs, rt (size = 01)

SXOR.16.sc rd, rs, rt (size = 10)

SXOR.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] xor FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

186 第 3章 命令セット

SNOR.size.sc SIMD Not Or Scalar

SIMD否定論理和 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100111

NOR.sc

ニーモニック:

SNOR.8.sc rd, rs, rt (size = 01)

SNOR.16.sc rd, rs, rt (size = 10)

SNOR.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] nor FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 187

SSLT.size SIMD Set Less Than

SIMD大小判定 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
101010
SLT

ニーモニック:

SSLT.8 rd, rs, rt (size = 01)

SSLT.16 rd, rs, rt (size = 10)

SSLT.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← (FPR[rs] < FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

188 第 3章 命令セット

SSLT.size.sc SIMD Set Less Than Scalar

SIMD大小判定 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
011010
SLT.sc

ニーモニック:

SSLT.8.sc rd, rs, rt (size = 01)

SSLT.16.sc rd, rs, rt (size = 10)

SSLT.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← (FPR[rs] < FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 189

SSLTU.size SIMD Set Less Than Unsigned

符号無し SIMD大小判定 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
101011
SLTU

ニーモニック:

SSLTU.8 rd, rs, rt (size = 01)

SSLTU.16 rd, rs, rt (size = 10)

SSLTU.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← (FPR[rs] < FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

190 第 3章 命令セット

SSLTU.size.sc SIMD Set Less Than Unsigned Scalar

符号無し SIMD大小判定 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
011011

SLTU.sc

ニーモニック:

SSLTU.8.sc rd, rs, rt (size = 01)

SSLTU.16.sc rd, rs, rt (size = 10)

SSLTU.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← (FPR[rs] < FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 191

SSLLV.size SIMD Shift Left Logical Variable

SIMD左論理シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000100
SLLV

ニーモニック:

SSLLV.8 rd, rt, rs (size = 01)

SSLLV.16 rd, rt, rs (size = 10)

SSLLV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] � FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

192 第 3章 命令セット

SSLLV.size.sc SIMD Shift Left Logical Variable Scalar

SIMD左論理シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010100

SLLV.sc

ニーモニック:

SSLLV.8.sc rd, rt, rs (size = 01)

SSLLV.16.sc rd, rt, rs (size = 10)

SSLLV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] � FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 193

SSRLV.size SIMD Shift Right Logical Variable

SIMD右論理シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000110
SRLV

ニーモニック:

SSRLV.8 rd, rt, rs (size = 01)

SSRLV.16 rd, rt, rs (size = 10)

SSRLV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] � FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

194 第 3章 命令セット

SSRLV.size.sc SIMD Shift Right Logical Variable Scalar

SIMD右論理シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010110

SRLV.sc

ニーモニック:

SSRLV.8.sc rd, rt, rs (size = 01)

SSRLV.16.sc rd, rt, rs (size = 10)

SSRLV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] � FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 195

SSRAV.size SIMD Shift Right Arithmetic Variable

SIMD右算術シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000111
SRAV

ニーモニック:

SSRAV.8 rd, rt, rs (size = 01)

SSRAV.16 rd, rt, rs (size = 10)

SSRAV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] � FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

196 第 3章 命令セット

SSRAV.size.sc SIMD Shift Right Arithmetic Variable Scalar

SIMD右算術シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010111

SRAV.sc

ニーモニック:

SSRAV.8.sc rd, rt, rs (size = 01)

SSRAV.16.sc rd, rt, rs (size = 10)

SSRAV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] � FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 197

SRTLV.size SIMD Rotate Left Variable

SIMD左ローテーション SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000000
RTL

ニーモニック:

SRTLV.8 rd, rt, rs (size = 01)

SRTLV.16 rd, rt, rs (size = 10)

SRTLV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] <<< FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

198 第 3章 命令セット

SRTLV.size.sc SIMD Rotate Left Variable Scalar

SIMD左ローテーション SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010000
RTL.sc

ニーモニック:

SRTLV.8.sc rd, rt, rs (size = 01)

SRTLV.16.sc rd, rt, rs (size = 10)

SRTLV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] <<< FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 199

SRTRV.size SIMD Rotate Right Variable

SIMD右ローテーション SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000010
RTR

ニーモニック:

SRTRV.8 rd, rt, rs (size = 01)

SRTRV.16 rd, rt, rs (size = 10)

SRTRV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] >>> FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

200 第 3章 命令セット

SRTRV.size.sc SIMD Rotate Right Variable Scalar

SIMD右ローテーション SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010010
RTR.sc

ニーモニック:

SRTRV.8.sc rd, rt, rs (size = 01)

SRTRV.16.sc rd, rt, rs (size = 10)

SRTRV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] >>> FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．sc(scalar)は FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 201

PCK Pack Data

データパッキング SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111000
PCK

ニーモニック:

PCK.8 rd, rs, rt (size = 01)

PCK.16 rd, rs, rt (size = 10)

PCK.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← pack(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

202 第 3章 命令セット

PCKH Pack Data on High Bit

データパッキング SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111001
PCKH

ニーモニック:

PCKH.8 rd, rs, rt (size = 01)

PCKH.16 rd, rs, rt (size = 10)

PCKH.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← packh(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

3.3. Responsive Multithreaded Processor固有の命令 203

CAT1 Concatenate Data Type1

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111010
CAT1

ニーモニック:

CAT1.8 rd, rs, rt (size = 01)

CAT1.16 rd, rs, rt (size = 10)

CAT1.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat1(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

204 第 3章 命令セット

CAT1H Concatenate Data Type1 on High Bit

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111011

CAT1H

ニーモニック:

CAT1H.8 rd, rs, rt (size = 01)

CAT1H.16 rd, rs, rt (size = 10)

CAT1H.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat1h(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

3.3. Responsive Multithreaded Processor固有の命令 205

CAT2 Concatenate Data Type2

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111100
CAT2

ニーモニック:

CAT2.8 rd, rs, rt (size = 01)

CAT2.16 rd, rs, rt (size = 10)

CAT2.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat2(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

206 第 3章 命令セット

CAT2H Concatenate Data Type2 on High Bit

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111101

CAT2H

ニーモニック:

CAT2H.8 rd, rs, rt (size = 01)

CAT2H.16 rd, rs, rt (size = 10)

CAT2H.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat2h(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

3.3. Responsive Multithreaded Processor固有の命令 207

CAT3 Concatenate Data Type3

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111110
CAT3

ニーモニック:

CAT3.8 rd, rs, rt (size = 01)

CAT3.16 rd, rs, rt (size = 10)

CAT3.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat3(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

208 第 3章 命令セット

CAT3H Concatenate Data Type3 on High Bit

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111111

CAT3H

ニーモニック:

CAT3H.8 rd, rs, rt (size = 01)

CAT3H.16 rd, rs, rt (size = 10)

CAT3H.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat3h(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタを用いて演算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32は 32bit
× 2演算．

3.3. Responsive Multithreaded Processor固有の命令 209

3.3.7 同期命令

RGPSH Read Shared(General Purpose Register)
同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
00000

0

5 0
100000

GPSHR

ニーモニック:

RGPSH rt, ss

機能 :

GPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから汎用レジスタに値を読み込む．

WGPSH Write Shared(General Purpose Register)
同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100000

GPSHR

ニーモニック:

WGPSH rt, sd

機能 :

SHARE[sd] ← GPR[rt]

例外 :

None

概要 :

汎用レジスタから共有レジスタに値を書き込む．

210 第 3章 命令セット

RFPSH Read Shared(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
00000

0

5 0
100100

FPSHR

ニーモニック:

RFPSH rt, ss

機能 :

FPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから浮動小数点レジスタに値を読み込む．

WFPSH Write Shared(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100100

FPSHR

ニーモニック:

WFPSH rt, sd

機能 :

SHARE[sd] ← FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタから共有レジスタに値を書き込む．

3.3. Responsive Multithreaded Processor固有の命令 211

RGPEX Read Exclusive(General Purpose Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
00000

0

5 0
100001

GPLOCK

ニーモニック:

RGPEX rt, ss

機能 :

GPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから汎用レジスタに値を読み込む．

WGPEX Write Exclusive(General Purpose Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100001

GPLOCK

ニーモニック:

WGPEX rt, sd

機能 :

SHARE[sd] ← GPR[rt]

例外 :

None

概要 :

汎用レジスタから共有レジスタに値を書き込む．

212 第 3章 命令セット

RFPEX Read Exclusive(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
00000

0

5 0
100101

FPLOCK

ニーモニック:

RFPEX rt, ss

機能 :

FPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから浮動小数点レジスタに値を読み込む．

WFPEX Write Exclusive(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100101

FPLOCK

ニーモニック:

WFPEX rt, sd

機能 :

SHARE[sd] ← FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタから共有レジスタに値を書き込む．

3.3. Responsive Multithreaded Processor固有の命令 213

GPCO Read Consumer(General Purpose Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
tid

5 0
100010

GPPRCO

ニーモニック:

GPCO rt, ss, tid

機能 :

GPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから汎用レジスタに値を読み込む．tidにはスレッドの IDを指定する．

GPPR Write Producer(General Purpose Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
ss

10 6
tid

5 0
100010

GPPRCO

ニーモニック:

GPPR rt, sd, tid

機能 :

SHARE[sd] ← GPR[rt]

例外 :

None

概要 :

汎用レジスタから共有レジスタに値を書き込む．tidにはスレッドの IDを指定する．

214 第 3章 命令セット

FPCO Read Consumer(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
tid

5 0
100110

FPPRCO

ニーモニック:

FPCO rt, ss, tid

機能 :

FPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから浮動小数点レジスタに値を読み込む．tidにはスレッドの IDを指定する．

FPPR Write Producer(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
ss

10 6
tid

5 0
100110

FPPRCO

ニーモニック:

FPPR rt, sd, tid

機能 :

SHARE[sd] ← FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタから共有レジスタに値を書き込む．tidにはスレッドの IDを指定する．

3.3. Responsive Multithreaded Processor固有の命令 215

BAR Barrier

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100011

BARRIER

ニーモニック:

BAR rt, sd

機能 :

SHARE[sd] ← GPR[rt] + 1

例外 :

None

概要 :

—–

PBAR Pre Barrier
同期命令 SYNC

31 26
010000
COP0

25 21
000000
MF

20 16
00000

0

15 11
sd

10 6
00000

0

5 0
100011

BARRIER

ニーモニック:

PBAR sd

機能 :

—–

例外 :

None

概要 :

—–

216 第 3章 命令セット

3.3.8 整数ベクトル命令

VADD Vector Add
ベクトル加算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100000
ADD

ニーモニック:

VADD.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VADD.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VADD.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VADD.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] + VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル加算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算
を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 217

VSUB Vector Subtract

ベクトル減算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
100010
SUB

ニーモニック:

VSUB.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VSUB.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VSUB.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VSUB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VSUB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VSUB.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] − VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル減算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算
を行う．sc1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を用いて演算を行う．
syncにより，投機実行を抑制する．

218 第 3章 命令セット

VMULT Vector Multiply

ベクトル乗算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
011000
MULT

ニーモニック:

VMULT.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULT.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULT.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULT.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号付きベクトル乗算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用
いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 219

VMULTU Vector Multiply Unsigned

ベクトル乗算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
011001

MULTU

ニーモニック:

VMULTU.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULTU.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULTU.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULTU.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル乗算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用
いて演算を行う．syncにより，投機実行を抑制する．

220 第 3章 命令セット

VMULTH Vector Multiply on High Bit

ベクトル乗算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
010000

MULTH

ニーモニック:

VMULTH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULTH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULTH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULTH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号付きベクトル乗算．演算結果の上位 bit(63-32bit)が VGPR[rd]に格納される．sc0の場合
は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncにより，投
機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 221

VMULTUH Vector Multiply Unsigned on High Bit

ベクトル乗算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
010001

MULTUH

ニーモニック:

VMULTUH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULTUH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULTUH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULTUH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル乗算．演算結果の上位 bit(63-32bit)が VGPR[rd]に格納される．sc0が 1の
場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncにより，
投機実行を抑制する．

222 第 3章 命令セット

VDIV Vector Divide

ベクトル除算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
011010
DIV

ニーモニック:

VDIV.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIV.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIV.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIV.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIV.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIV.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号付きベクトル除算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用
いて演算を行う．sc1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を用いて演
算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 223

VDIVU Vector Divide Unsigned

ベクトル除算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
011011
DIVU

ニーモニック:

VDIVU.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIVU.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIVU.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIVU.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIVU.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIVU.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル除算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用
いて演算を行う．sc1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を用いて演
算を行う．syncにより，投機実行を抑制する．

224 第 3章 命令セット

VREM Vector Reminder

ベクトル剰余 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
010010
REM

ニーモニック:

VREM.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VREM.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VREM.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VREM.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VREM.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VREM.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号付きベクトル剰余．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用
いて演算を行う．sc1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を用いて演
算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 225

VREMU Vector Reminder Unsigned

ベクトル剰余 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
010011
REMU

ニーモニック:

VREMU.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VREMU.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VREMU.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VREMU.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VREMU.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VREMU.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル剰余．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用
いて演算を行う．sc1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を用いて演
算を行う．syncにより，投機実行を抑制する．

226 第 3章 命令セット

VMADD Vector Multiply and Add

ベクトル積和演算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100001
MADD

ニーモニック:

VMADD.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMADD.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMADD.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMADD.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] + VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

ベクトル積和演算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて
演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 227

VMSUB Vector Multiply and Subtract

ベクトル積差演算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100011
MSUB

ニーモニック:

VMSUB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMSUB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMSUB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMSUB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] − VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

ベクトル積差演算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて
演算を行う．syncにより，投機実行を抑制する．

228 第 3章 命令セット

VACC Vector Accumulate

ベクトル累算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
001010
ACC

ニーモニック:

VACC rd, rs (sync(s) = 0)

VACC.sy rd, rs (sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル累算．ベクトルの要素を全て加算する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 229

VMAC Vector Multiply and Accumulate

ベクトル積和演算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
001011
MAC

ニーモニック:

VMAC.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMAC.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMAC.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMAC.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル積和演算．2つのベクトル要素を乗算し，それを全て加算する．sc0の場合はVGPR[rt]
の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncにより，投機実行を抑制
する．

230 第 3章 命令セット

VAND Vector And

ベクトル論理積 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100100
AND

ニーモニック:

VAND.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VAND.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VAND.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VAND.vs.sync rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] and VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル論理積．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演
算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 231

VOR Vector Or

ベクトル論理和 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100101
OR

ニーモニック:

VOR.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VOR.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VOR.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VOR.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] or VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル論理和．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演
算を行う．syncにより，投機実行を抑制する．

232 第 3章 命令セット

VXOR Vector Exclusive Or

ベクトル排他的論理和 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100110
XOR

ニーモニック:

VXOR.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VXOR.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VXOR.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VXOR.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] xor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル排他的論理和．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用
いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 233

VNOR Vector Not Or

ベクトル否定論理和 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100111
NOR

ニーモニック:

VNOR.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VNOR.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VNOR.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VNOR.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] nor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル否定論理和．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用い
て演算を行う．syncにより，投機実行を抑制する．

234 第 3章 命令セット

VSLLV Vector Shift Left Logical Variable

ベクトル左論理シフト VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000100
SLLV

ニーモニック:

VSLLV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSLLV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSLLV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSLLV.vs.sync rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] � VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル左論理シフト．sc0の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を用
いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 235

VSRLV Vector Shift Right Logical Variable

ベクトル右論理シフト VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000110
SRLV

ニーモニック:

VSRLV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSRLV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSRLV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSRLV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] � VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右論理シフト．sc01の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を
用いて演算を行う．syncにより，投機実行を抑制する．

236 第 3章 命令セット

VSRAV Vector Shift Right Arithmetic Variable

ベクトル右算術シフト VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000111
SRAV

ニーモニック:

VSRAV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSRAV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSRAV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSRAV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] � VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右算術シフト．sc0の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を用
いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 237

VRTLV Vector Rotate Left Variable

ベクトル左ローテーション VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000000
SRTLV

ニーモニック:

VRTLV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VRTLV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VRTLV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VRTLV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] <<< VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル左ローテーション．sc0の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．syncにより，投機実行を抑制する．

238 第 3章 命令セット

VRTRV Vector Rotate Right Variable

ベクトル右ローテーション VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000010

SRTRV

ニーモニック:

VRTRV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VRTRV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VRTRV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VRTRV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] >>> VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右ローテーション．sc0の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 239

VCMP Vector Compare

ベクトル比較 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101000
CMP

ニーモニック:

VCMP.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

ベクトル比較命令．条件 (cond)によりVGPR[rd]に 1または 0が入る．sc0の場合はVGPR[rt]
の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncにより，投機実行を抑制
する．

240 第 3章 命令セット

VCMPU Vector Compare Unsigned

ベクトル比較 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101001
CMPU

ニーモニック:

VCMPU.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPU.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPU.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPU.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル比較命令．条件 (cond)によりVGPR[rd]に 1または 0が入る．sc0の場合は
VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncにより，投機実
行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 241

VCMPTS Vector Compare to Scalar Register

ベクトル比較 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101010

CMPTS

ニーモニック:

VCMPTS.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

ベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納される．sc0
の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncによ
り，投機実行を抑制する．

242 第 3章 命令セット

VCMPUTS Vector Compare Unsigned to Scalar Register

ベクトル比較 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101011

CMPUTS

ニーモニック:

VCMPUTS.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPUTS.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPUTS.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPUTS.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納さ
れる．sc0の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．
syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 243

VIMFC Move from Vector Integer Control Register

制御レジスタリード VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110000
MFC

ニーモニック:

VIMFC rd, rs (sync(s) = 0)

VIMFC.sy rd, rs (sync(s) = 1)

機能 :

GPR[rd] ← VICTRL[rs]

例外 :

Vector Integer Exception :

概要 :

整数ベクトル制御レジスタリード命令．rsで指定された制御レジスタの値を汎用レジスタに格
納する．syncにより，投機実行を抑制する．

244 第 3章 命令セット

VIMTC Move to Vector Integer Control Register

制御レジスタライト VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110001
MTC

ニーモニック:

VIMTC rd, rs (sync(s) = 0)

VIMTC.sy rd, rs (sync(s) = 1)

機能 :

VICTRL[rd] ← GPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数ベクトル制御レジスタライト命令．rdで指定された制御レジスタに汎用レジスタの値を格
納する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 245

VIMFS Move from Vector Integer Scalar Register

整数スカラレジスタリード VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110010
MFS

ニーモニック:

VIMFS rd, rs (sync(s) = 0)

VIMFS.sy rd, rs (sync(s) = 1)

機能 :

GPR[rd] ← SGPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数スカラレジスタリード命令．rsで指定された整数スカラレジスタの値を汎用レジスタに格
納する．syncにより，投機実行を抑制する．

246 第 3章 命令セット

VIMTS Move to Vector Integer Scalar Register

整数スカラレジスタライト VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110011
MTS

ニーモニック:

VIMTS rd, rs (sync(s) = 0)

VIMTS.sy rd, rs (sync(s) = 1)

機能 :

SGPR[rd] ← GPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数スカラレジスタライト命令．rdで指定された整数スカラレジスタに汎用レジスタの値を格
納する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 247

VIMFV Move from Vector Integer Vector Register

整数ベクトルレジスタリード VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
110100
MFV

ニーモニック:

VIMFV rd, rs, rt (sync(s) = 0)

VIMFV.sy rd, rs, rt (sync(s) = 1)

機能 :

SGPR[rd] ← VGPR[rs][rt]

例外 :

Vector Integer Exception :

概要 :

整数ベクトルレジスタリード命令．rsで指定された整数ベクトルレジスタの rt番目の要素の値
を整数スカラレジスタに格納する．syncにより，投機実行を抑制する．

248 第 3章 命令セット

VIMTV Move to Vector Integer Vector Register

整数ベクトルレジスタライト VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
110101
MTV

ニーモニック:

VIMTV rd, rs, rt (sync(s) = 0)

VIMTV.sy rd, rs, rt (sync(s) = 1)

機能 :

VGPR[rd][rt] ← SGPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数ベクトルレジスタリード命令．rdで指定された整数ベクトルレジスタの rt番目の要素に
整数スカラレジスタの値を書き込む．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 249

VIMTM Move to Vector Integer Mask Register

整数ベクトルマスクレジスタライト VECTOR

31 26
011110
VINT

25 21
rs

20 9
000000000000

0

8
s1

7
s0

6
s

5 0
011110
MTM

ニーモニック:

VIMTM.lo rs (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VIMTM.hi rs (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VIMTM.lo.sy rs (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VIMTM.hi.sy rs (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VICTRL[Mask Regieter] ← SGPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数ベクトルマスクレジスタライト命令．rsで指定した整数スカラレジスタの値をマスクレジ
スタに格納する．sc0の場合，マスクレジスタの下位 32bitに値を格納し，sc1の場合，マスク
レジスタの上位 32bitに値を格納する．syncにより，投機実行を抑制する．

250 第 3章 命令セット

VIRSV Vector Integer Register Reserve

整数ベクトルレジスタ予約 VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110110
RSV

ニーモニック:

VIRSV rd, rs (sync(s) = 0)

VIRSV.sy rd, rs (sync(s) = 1)

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

None

概要 :

整数ベクトルレジスタ予約命令．GPR[rs]に予約するレジスタの構成を指定する．予約に成功
した場合は GPR[rd]に 1が，失敗した場合は 0が格納される．syncにより，投機実行を抑制
する．

3.3. Responsive Multithreaded Processor固有の命令 251

VIRLS Vector Integer Register Release

整数ベクトルレジスタ開放 VECTOR

31 26
011110
VINT

25 16
0000000000

15 11
rd

10 7
0000
0

6
s

5 0
110111
RLS

ニーモニック:

VIRLS rd (sync(s) = 0)

VIRLS.sy rd (sync(s) = 1)

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

None

概要 :

整数ベクトルレジスタ開放命令．開放に成功した場合はGPR[rd]に 1が，失敗した場合は 0が
格納される．syncにより，投機実行を抑制する．

252 第 3章 命令セット

VIDCI Vector Integer Define Compound Instruction

整数ベクトル複合命令定義 VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101110
DCI

ニーモニック:

VIDCI rd, rs (sync(s) = 0)

VIDCI.sy rd, rs (sync(s) = 1)

機能 :

VICPD[rd] ← GPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数ベクトル複合命令の定義を行う．GPR[rs]で定義した命令を rdで指定した複合命令バッ
ファのアドレスに格納する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 253

VIECI Vector Integer Execute Compound Instruction

整数ベクトル複合命令実行 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 6
no

5 0
101111
ECI

ニーモニック:

VIECI rd, rs, rt, no

機能 :

VGPR[rd] ← VGPR[rs] op VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

整数ベクトル複合命令の実行を行う．noで指定した複合命令バッファのアドレスから命令を実
行する．

254 第 3章 命令セット

VILW Vector Integer Load Word

整数ベクトルロード VECTOR

31 26
011110
VINT

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111010
LW

ニーモニック:

VILW rt, base (sync(s) = 0)

VILW.sy rt, base (sync(s) = 1)

機能 :

VGPR[rt] ← MEM[GPR[base]]

例外 :

Vector Integer Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

メモリから整数ベクトルレジスタにロードする．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 255

VISW Vector Integer Store Word

整数ベクトルストア VECTOR

31 26
011110
VINT

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111110
SW

ニーモニック:

VISW rt, base (sync(s) = 0)

VISW.sy rt, base (sync(s) = 1)

機能 :

MEM[GPR[base]] ← VGPR[rt]

例外 :

Vector Integer Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

整数ベクトルレジスタをメモリにストアする．syncにより，投機実行を抑制する．

256 第 3章 命令セット

VADD.QB Vector Add Quad Byte

ベクトル加算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100000
ADD

ニーモニック:

VADD.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VADD.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VADD.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VADD.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VADD.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VADD.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VADD.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VADD.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] + VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル加算．sc0の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を
用いて演算を行う．sc2の場合はVGPR[rt]の下位 8 bit を用いて演算を行う．syncにより，投
機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 257

VSUB.QB Vector Subtract Quad Byte

ベクトル減算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
s1

7
s0

6
s

5 0
100010
SUB

ニーモニック:

VSUB.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.QB.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 0)

VSUB.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.QB.sv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 0)

VSUB.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.QB.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 1)

VSUB.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 1)

VSUB.QB.sv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] - VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル減算．sc0の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を
用いて演算を行う．sc1の場合はVGPR[rs] の代わりに，スカラレジスタ (SGPR[rs]) を用いて
演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．sync により，投機実
行を抑制する．

258 第 3章 命令セット

VMULT.QB Vector Multiply Quad Byte

ベクトル乗算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
011000
MULT

ニーモニック:

VMULT.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULT.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULT.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULT.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULT.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULT.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULT.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULT.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit×4符号付きベクトル乗算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．sync を 1 に
することにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 259

VMULTU.QB Vector Multiply Unsigned

ベクトル乗算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0

9
s2

8
0

7
s0

6
s

5 0
011001

MULTU

ニーモニック:

VMULTU.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTU.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTU.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTU.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTU.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTU.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTU.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTU.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit×4符号無しベクトル乗算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

260 第 3章 命令セット

VMULTH.QB Vector Multiply Quad Byte on High Bit

ベクトル乗算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010000

MULTH

ニーモニック:

VMULTH.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTH.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTH.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTH.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTH.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTH.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTH.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTH.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit × 2 符号付きベクトル乗算．8 bit 毎に演算結果の上位 bit(16-8bit) が VGPR[rd] に格納
される．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．
sc2の場合はVGPR[rt] の下位 8 bit を用いて演算を行う．sync により，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 261

VMULTUH.QB Vector Multiply Unsigned Quad Byte on High Bit

ベクトル乗算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010001

MULTUH

ニーモニック:

VMULTUH.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTUH.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号無しベクトル乗算．8 bit 毎に演算結果の上位 bit(16-8bit) が VGPR[rd] に格納
される．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．
sc2の場合はVGPR[rt] の下位 8 bit を用いて演算を行う．sync により，投機実行を抑制する．

262 第 3章 命令セット

VMADD.QB Vector Multiply and Add Quad Byte

ベクトル積和演算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100001
MADD

ニーモニック:

VMADD.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMADD.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMADD.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMADD.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMADD.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMADD.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMADD.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMADD.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] + VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル積和演算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 263

VMSUB.QB Vector Multiply and Subtract Quad Byte

ベクトル積差演算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100011
MSUB

ニーモニック:

VMSUB.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMSUB.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMSUB.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMSUB.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMSUB.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMSUB.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMSUB.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMSUB.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] - VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル積差演算．scの場合はVGPR[rt] の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

264 第 3章 命令セット

VACC.QB Vector Accumulate Quad Byte

ベクトル累算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001010
ACC

ニーモニック:

VACC.QB rd, rs (sync(s) = 0)

VACC.QB.sy rd, rs (sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル累算．ベクトルの要素を全て加算する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 265

VMAC.QB Vector Multiply and Accumulate Quad Byte

ベクトル積和演算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
001011
MAC

ニーモニック:

VMAC.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMAC.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMAC.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMAC.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMAC.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMAC.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMAC.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMAC.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル積和演算．2 つのベクトル要素を乗算し，それを全て加算する．sc0 の場
合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．sc2 の場合は
VGPR[rt] の下位 8 bit を用いて演算を行う．syncにより，投機実行を抑制する．

266 第 3章 命令セット

VAND.QB Vector And Quad Byte

ベクトル論理積 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100100
AND

ニーモニック:

VAND.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VAND.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VAND.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VAND.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VAND.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VAND.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VAND.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VAND.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] and VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4ベクトル論理積．sc0の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合はVGPR[rt] の下位 8 bit を用いて演算を行う．sync により，
投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 267

VOR.QB Vector Or

ベクトル論理和 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100101
OR

ニーモニック:

VOR.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VOR.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VOR.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VOR.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VOR.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VOR.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VOR.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VOR.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] or VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4ベクトル論理和．sc0の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合はVGPR[rt] の下位 8 bit を用いて演算を行う．sync により，
投機実行を抑制する．

268 第 3章 命令セット

VXOR.QB Vector Exclusive Or Quad Byte

ベクトル排他的論理和 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100110
XOR

ニーモニック:

VXOR.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VXOR.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VXOR.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VXOR.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VXOR.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VXOR.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VXOR.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VXOR.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] xor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit×4ベクトル排他的論理和．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 269

VNOR.QB Vector Not Or Paried HalfWord

ベクトル否定論理和 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100111
NOR

ニーモニック:

VNOR.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VNOR.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VNOR.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VNOR.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VNOR.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VNOR.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VNOR.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VNOR.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] nor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4ベクトル否定論理和．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

270 第 3章 命令セット

VSLLV.QB Vector Shift Left Logical Variable Quad Byte

ベクトル左論理シフト VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000100
SLLV

ニーモニック:

VSLLV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSLLV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSLLV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSLLV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSLLV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSLLV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSLLV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSLLV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] � VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

8 bit×4ベクトル左論理シフト．sc0の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 271

VSRLV.QB Vector Shift Right Logical Variable Quad Byte

ベクトル右論理シフト VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000110
SRLV

ニーモニック:

VSRLV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRLV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRLV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRLV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRLV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRLV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRLV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRLV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] � VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

8 bit×4ベクトル右論理シフト．sc0の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

272 第 3章 命令セット

VSRAV.QB Vector Shift Right Arithmetic Variable Quad Byte

ベクトル右算術シフト VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000111
SRAV

ニーモニック:

VSRAV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRAV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRAV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRAV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRAV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRAV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRAV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRAV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] � VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右算術シフト．sc0の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs]) を用
いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．sync により，投
機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 273

VRTLV.QB Vector Rotate Left Variable Quad Byte

ベクトル左ローテーション VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000000
SRTLV

ニーモニック:

VRTLV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTLV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTLV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTLV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTLV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTLV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTLV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTLV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] <<< VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル左ローテーション．sc0の場合はVGPR[rs] の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

274 第 3章 命令セット

VRTRV.QB Vector Rotate Right Variable Quad Byte

ベクトル右ローテーション VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000010

SRTRV

ニーモニック:

VRTRV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTRV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTRV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTRV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTRV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTRV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTRV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTRV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] >>> VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル右ローテーション．sc0の場合は VGPR[rs] の代わりに，スカラレジスタ
(SGPR[rs]) を用いて演算を行う．sc2の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．
syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 275

VCMP.QB Vector Compare

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101000
CMP

ニーモニック:

VCMP.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル比較命令．条件 (cond) によりVGPR[rd] に 1 または 0 が入る．sc0 の場合
は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．sync により，投
機実行を抑制する．

276 第 3章 命令セット

VSCMP.QB Vector Compare

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001100
SCMP

ニーモニック:

VSCMP.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMP.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMP.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMP.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

8 bit × 4 ベクトル比較命令．VGPR[rt] の下位 8 bit を用いて演算を行う．条件 (cond) に
より VGPR[rd] に 1 または 0 が入る．sc0の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 277

VCMPU.QB Vector Compare Unsigned Quad Byte

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101001
CMPU

ニーモニック:

VCMPU.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPU.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPU.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPU.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号無しベクトル比較命令．条件 (cond) によりVGPR[rd]に 1 または 0が入る．sc0
の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．sync によ
り，投機実行を抑制する．

278 第 3章 命令セット

VSCMPU.QB Vector Compare Unsigned Quad Byte

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001101

SCMPU

ニーモニック:

VSCMPU.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPU.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPU.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPU.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

8 bit× 4符号無しベクトル比較命令．VGPR[rt]の下位 8 bitを用いて演算を行う．条件 (cond)
によりVGPR[rd] に 1 または 0 が入る．sc0の場合はVGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 279

VCMPTS.QB Vector Compare to Scalar Register Quad Byte

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101010

CMPTS

ニーモニック:

VCMPTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタに格納さ
れる．sc0の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．
syncにより，投機実行を抑制する．

280 第 3章 命令セット

VSCMPTS.QB Vector Compare Quad Byte to Scalar Register

ベクトル比較 VECTOR

31 26

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001110

SCMPTS

ニーモニック:

VSCMPTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

8 bit × 4 ベクトル比較命令．VGPR[rt] の下位 8 bit を用いて演算を行う．結果は各要素ごと
に 1bit を割り当ててスカラレジスタに格納される．sc0の場合はVGPR[rt] の代わりに，スカ
ラレジスタ (SGPR[rt]) を用いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 281

VCMPUTS.QB Vector Compare Unsigned Quad Byte to Scalar Register

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101011

CMPUTS

ニーモニック:

VCMPUTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPUTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPUTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPUTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号無しベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタ
に格納される．sc0の場合はVGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算
を行う．syncにより，投機実行を抑制する．

282 第 3章 命令セット

VSCMPUTS.QBVector Compare Unsigned Quad Byte to Scalar Register

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001111

SCMPUTS

ニーモニック:

VSCMPUTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPUTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPUTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPUTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号無しベクトル比較命令．VGPR[rt] の下位 8 bit を用いて演算を行う．結果は各
要素ごとに 1bit を割り当ててスカラレジスタに格納される．sc0の場合はVGPR[rt] の代わり
に，スカラレジスタ (SGPR[rt]) を用いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 283

VADD.PH Vector Add Paired HalfWord

ベクトル加算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100000
ADD

ニーモニック:

VADD.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VADD.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VADD.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VADD.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VADD.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VADD.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VADD.PH.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VADD.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] + VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル加算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt]) を
用いて演算を行う．sc2の場合は VGPR[rt] の下位 16 bit を用いて演算を行う．sync により，
投機実行を抑制する．

284 第 3章 命令セット

VSUB.PH Vector Subtract Paired HalfWord

ベクトル減算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
s1

7
s0

6
s

5 0
100010
SUB

ニーモニック:

VSUB.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PH.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 0)

VSUB.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PH.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PH.sv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 0)

VSUB.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PH.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 1)

VSUB.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 1)

VSUB.PH.sv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] - VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル減算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt]) を
用いて演算を行う．sc1の場合はVGPR[rs] の代わりに，スカラレジスタ (SGPR[rs]) を用いて
演算を行う．sc2の場合はVGPR[rt] の下位 16 bit を用いて演算を行う．sync により，投機実
行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 285

VMULT.PH Vector Multiply Paired HalfWord

ベクトル乗算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
011000
MULT

ニーモニック:

VMULT.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULT.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULT.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULT.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULT.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULT.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULT.PH.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULT.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 符号付きベクトル乗算．sc0 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．sc2 の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncにより，投機実行を抑制する．

286 第 3章 命令セット

VMULTU.PH Vector Multiply Unsigned

ベクトル乗算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0

9
s2

8
0

7
s0

6
s

5 0
011001

MULTU

ニーモニック:

VMULTU.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTU.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTU.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTU.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTU.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTU.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTU.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTU.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 符号無しベクトル乗算．sc0 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．sc2 の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 287

VMULTH.PH Vector Multiply Paired HalfWord on High Bit

ベクトル乗算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010000

MULRH

ニーモニック:

VMULTH.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTH.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTH.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTH.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTH.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTH.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTH.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTH.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 符号付きベクトル乗算．16 bit 毎に演算結果の上位 bit(32-16bit) が VGPR[rd] に
格納される．sc0の場合はVGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を
行う．sc2の場合はVGPR[rt] の下位 16 bit を用いて演算を行う．sync により，投機実行を抑
制する．

288 第 3章 命令セット

VMULTUH.PH Vector Multiply Unsigned Paired HalfWord on High Bit

ベクトル乗算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010001

MULTUH

ニーモニック:

VMULTUH.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTUH.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル乗算．16 bit 毎に演算結果の上位 bit(32-16bit) が VGPR[rd] に
格納される．sc0の場合はVGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を
行う．sc2の場合はVGPR[rt] の下位 16 bit を用いて演算を行う．sync により，投機実行を抑
制する．

3.3. Responsive Multithreaded Processor固有の命令 289

VMADD.PH Vector Multiply and Add Paired HalfWord

ベクトル積和演算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100001
MADD

ニーモニック:

VMADD.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMADD.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMADD.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMADD.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMADD.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMADD.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMADD.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMADD.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] + VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル積和演算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合はVGPR[rt]の下位 16 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

290 第 3章 命令セット

VMSUB.PH Vector Multiply and Subtract Paired HalfWord

ベクトル積差演算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100011
MSUB

ニーモニック:

VMSUB.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMSUB.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] - VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル積差演算．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合はVGPR[rt]の下位 16 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 291

VACC.PH Vector Accumulate Paired HalfWord

ベクトル累算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001010
ACC

ニーモニック:

VACC.PH rd, rs (sync(s) = 0)

VACC.PH.sy rd, rs (sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル累算．ベクトルの要素を全て加算する．syncにより，投機実行を抑制する．

292 第 3章 命令セット

VMAC.PH Vector Multiply and Accumulate Paired HalfWord

ベクトル積和演算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
001011
MAC

ニーモニック:

VMAC.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMAC.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMAC.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMAC.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMAC.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMAC.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMAC.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMAC.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル積和演算．2 つのベクトル要素を乗算し，それを全て加算する．sc0 の場
合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．sc2 の場合は
VGPR[rt] の下位 16 bit を用いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 293

VAND.PH Vector And Paired HalfWord

ベクトル論理積 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100100
AND

ニーモニック:

VAND.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VAND.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VAND.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VAND.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VAND.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VAND.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VAND.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VAND.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] and VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2ベクトル論理積．sc0の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合はVGPR[rt]の下位 16 bit を用いて演算を行う．sync により，
投機実行を抑制する．

294 第 3章 命令セット

VOR.PH Vector Or

ベクトル論理和 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100101
OR

ニーモニック:

VOR.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VOR.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VOR.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VOR.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VOR.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VOR.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VOR.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VOR.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] or VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2ベクトル論理和．sc0の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合はVGPR[rt]の下位 16 bit を用いて演算を行う．sync により，
投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 295

VXOR.PH Vector Exclusive Or Paired HalfWord

ベクトル排他的論理和 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100110
XOR

ニーモニック:

VXOR.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VXOR.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VXOR.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VXOR.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VXOR.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VXOR.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VXOR.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VXOR.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] xor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 ベクトル排他的論理和．sc0 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．sc2 の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncにより，投機実行を抑制する．

296 第 3章 命令セット

VNOR.PH Vector Not Or Paried HalfWord

ベクトル否定論理和 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100111
NOR

ニーモニック:

VNOR.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VNOR.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VNOR.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VNOR.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VNOR.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VNOR.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VNOR.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VNOR.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] nor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2ベクトル否定論理和．sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．sc2の場合はVGPR[rt]の下位 16 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 297

VSLLV.PH Vector Shift Left Logical Variable Paired HalfWord

ベクトル左論理シフト VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000100
SLLV

ニーモニック:

VSLLV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSLLV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSLLV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSLLV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSLLV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSLLV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSLLV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSLLV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] � VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 ベクトル左論理シフト．sc0 の場合は VGPR[rs] の代わりに，スカラレジスタ
(SGPR[rs]) を用いて演算を行う．sc2 の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncにより，投機実行を抑制する．

298 第 3章 命令セット

VSRLV.PH Vector Shift Right Logical Variable Paired HalfWord

ベクトル右論理シフト VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000110
SRLV

ニーモニック:

VSRLV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRLV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRLV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRLV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRLV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRLV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRLV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRLV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] � VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 ベクトル右論理シフト．sc0 の場合は VGPR[rs] の代わりに，スカラレジスタ
(SGPR[rs]) を用いて演算を行う．sc2 の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 299

VSRAV.PH Vector Shift Right Arithmetic Variable Paired HalfWord

ベクトル右算術シフト VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000111
SRAV

ニーモニック:

VSRAV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRAV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRAV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRAV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRAV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRAV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRAV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRAV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] � VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右算術シフト．sc0の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs]) を用
いて演算を行う．sc2の場合はVGPR[rt] の下位 16 bit を用いて演算を行う．sync により，投
機実行を抑制する．

300 第 3章 命令セット

VRTLV.PH Vector Rotate Left Variable Paired HalfWord

ベクトル左ローテーション VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000000
SRTLV

ニーモニック:

VRTLV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTLV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTLV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTLV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTLV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTLV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTLV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTLV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] <<< VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル左ローテーション．sc0の場合はVGPR[rs] の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．sc2の場合はVGPR[rt]の下位 16 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 301

VRTRV.PH Vector Rotate Right Variable Paired HalfWord

ベクトル右ローテーション VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000010

SRTRV

ニーモニック:

VRTRV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTRV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTRV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTRV.PH.vv,sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTRV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTRV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTRV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTRV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] >>> VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右ローテーション．sc0の場合はVGPR[rs] の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．sc2の場合はVGPR[rt]の下位 16 bit を用いて演算を行う．syncにより，
投機実行を抑制する．

302 第 3章 命令セット

VCMP.PH Vector Compare

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101000
CMP

ニーモニック:

VCMP.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル比較命令．条件 (cond) により VGPR[rd] に 1 または 0 が入る．sc0 の場
合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．sync により，
投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 303

VSCMP.PH Vector Compare

ベクトル比較 VECTOR

31 26

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001100
SCMP

ニーモニック:

VSCMP.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMP.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMP.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMP.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル比較命令．VGPR[rt] の下位 16 bit を用いて演算を行う．条件 (cond) に
より VGPR[rd] に 1 または 0 が入る．sc0の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．syncにより，投機実行を抑制する．

304 第 3章 命令セット

VCMPU.PH Vector Compare Unsigned Paired HalfWord

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101001
CMPU

ニーモニック:

VCMPU.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPU.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPU.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPU.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル比較命令．条件 (cond) により VGPR[rd] に 1 または 0 が入る．
sc0の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．syncに
より，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 305

VSCMPU.PH Vector Compare Unsigned Paired HalfWord

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001101

SCMPU

ニーモニック:

VSCMPU.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPU.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPU.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPU.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル比較命令．VGPR[rt] の下位 16 bit を用いて演算を行う．条件
(cond) によりVGPR[rd]に 1 または 0 が入る．sc0の場合はVGPR[rt]の代わりに，スカラレ
ジスタ (SGPR[rt]) を用いて演算を行う．syncにより，投機実行を抑制する．

306 第 3章 命令セット

VCMPTS.PH Vector Compare to Scalar Register Paired HalfWord

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101010

CMPTS

ニーモニック:

VCMPTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタに格納さ
れる．sc0の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．
syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 307

VSCMPTS.PH Vector Compare Paired HalfWord to Scalar Register

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001110

SCMPTS

ニーモニック:

VSCMPTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル比較命令．VGPR[rt] の下位 16 bit を用いて演算を行う．結果は各要素ご
とに 1bit を割り当ててスカラレジスタに格納される．sc0の場合はVGPR[rt] の代わりに，ス
カラレジスタ (SGPR[rt]) を用いて演算を行う．syncにより，投機実行を抑制する．

308 第 3章 命令セット

VCMPUTS.PHVector Compare Unsigned Paired HalfWord to Scalar Register

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101011

CMPUTS

ニーモニック:

VCMPUTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPUTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPUTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPUTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタ
に格納される．sc0の場合はVGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算
を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 309

VSCMPUTS.PHVector Compare Unsigned Paired HalfWord to Scalar Register

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001111

SCMPUTS

ニーモニック:

VSCMPUTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPUTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPUTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPUTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ← (VGPR[rs] cond VGPR[rt])

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル比較命令．VGPR[rt] の下位 16 bit を用いて演算を行う．結果は
各要素ごとに 1bit を割り当ててスカラレジスタに格納される．sc0の場合はVGPR[rt] の代わ
りに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．syncにより，投機実行を抑制する．

310 第 3章 命令セット

3.3.9 浮動小数点ベクトル命令

VADD.S Vector Add Single
ベクトル加算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000000
ADD.S

ニーモニック:

VADD.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VADD.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VADD.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VADD.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] + VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル加算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い
て演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 311

VADD.D Vector Add Double

ベクトル加算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
001000

ADD.D

ニーモニック:

VADD.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VADD.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VADD.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VADD.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] + VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル加算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い
て演算を行う．syncにより，投機実行を抑制する．

312 第 3章 命令セット

VSUB.S Vector Subtract Single

ベクトル減算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
000001
SUB.S

ニーモニック:

VSUB.S.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VSUB.S.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VSUB.S.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VSUB.S.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VSUB.S.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VSUB.S.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] − VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル減算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い
て演算を行う．sc1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用いて演算
を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 313

VSUB.D Vector Subtract Double

ベクトル減算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
001001
SUB.D

ニーモニック:

VSUB.D.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VSUB.D.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VSUB.D.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VSUB.D.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VSUB.D.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VSUB.D.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] − VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル減算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い
て演算を行う．sc1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用いて演算
を行う．syncにより，投機実行を抑制する．

314 第 3章 命令セット

VMUL.S Vector Multiply Single

ベクトル乗算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000010
MUL.S

ニーモニック:

VMUL.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMUL.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMUL.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMUL.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル乗算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い
て演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 315

VMUL.D Vector Multiply Double

ベクトル乗算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
001010

MUL.D

ニーモニック:

VMUL.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMUL.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMUL.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMUL.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル乗算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い
て演算を行う．syncにより，投機実行を抑制する．

316 第 3章 命令セット

VDIV.S Vector Divide Single

ベクトル除算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
000011
DIV.S

ニーモニック:

VDIV.S.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIV.S.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIV.S.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIV.S.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIV.S.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIV.S.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] ÷ VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル除算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い
て演算を行う．sc1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用いて演算
を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 317

VDIV.D Vector Divide Double

ベクトル除算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
001011
DIV.D

ニーモニック:

VDIV.D.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIV.D.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIV.D.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIV.D.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIV.D.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIV.D.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] ÷ VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル除算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用い
て演算を行う．sc1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用いて演算
を行う．syncにより，投機実行を抑制する．

318 第 3章 命令セット

VABS.S Vector Absolute Single

ベクトル絶対値演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000101
ABS.S

ニーモニック:

VABS.S rd, rs (sync(s) = 0)

VABS.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← | VFPR[rs] |

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル絶対値演算．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 319

VABS.D Vector Absolute Double

ベクトル絶対値演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
001101
ABS.D

ニーモニック:

VABS.D rd, rs (sync(s) = 0)

VABS.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← | VFPR[rs] |

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル絶対値演算．syncにより，投機実行を抑制する．

320 第 3章 命令セット

VMOV.S Vector Move Single

ベクトル転送 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000110
MOV.S

ニーモニック:

VMOV.S rd, rs (sync(s) = 0)

VMOV.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル転送命令．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 321

VMOV.D Vector Move Double

ベクトル転送 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
001110

MOV.D

ニーモニック:

VMOV.D rd, rs (sync(s) = 0)

VMOV.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル転送命令．syncにより，投機実行を抑制する．

322 第 3章 命令セット

VNEG.S Vector Negate Single

ベクトル符号反転 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000111
NEG.S

ニーモニック:

VNEG.S rd, rs (sync(s) = 0)

VNEG.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← −1 × VFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル符号反転演算．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 323

VNEG.D Vector Negate Double

ベクトル符号反転 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
001111
NEG.D

ニーモニック:

VNEG.D rd, rs (sync(s) = 0)

VNEG.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← −1 × VFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル符号反転演算．syncにより，投機実行を抑制する．

324 第 3章 命令セット

VMADD.S Vector Multiply and Add Single

ベクトル積和演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
010000

MADD.S

ニーモニック:

VMADD.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMADD.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMADD.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMADD.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] + VFPR[rd]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル積和演算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 325

VMADD.D Vector Multiply and Add Double

ベクトル積和演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
011000

MADD.D

ニーモニック:

VMADD.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMADD.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMADD.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMADD.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] + VFPR[rd]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル積和演算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．syncにより，投機実行を抑制する．

326 第 3章 命令セット

VMSUB.S Vector Multiply and Subtract Single

ベクトル積差演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
010001

MSUB.S

ニーモニック:

VMSUB.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMSUB.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMSUB.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMSUB.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] − VFPR[rd]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル積差演算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 327

VMSUB.D Vector Multiply and Subtract Double

ベクトル積差演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
011001

MSUB.D

ニーモニック:

VMSUB.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMSUB.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMSUB.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMSUB.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] − VFPR[rd]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル積差演算．sc0の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．syncにより，投機実行を抑制する．

328 第 3章 命令セット

VCMP.S Vector Compare Single

ベクトル比較 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010010
CMP.S

ニーモニック:

VCMP.S.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.S.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.S.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.S.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] cond VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル比較命令．条件 (cond)によりVFPR[rd]の値が決定する．sc0の場合はVFPR[rt]
の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncにより，投機実行を抑制
する．

3.3. Responsive Multithreaded Processor固有の命令 329

VCMP.D Vector Compare Double

ベクトル比較 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
011010

CMP.D

ニーモニック:

VCMP.D.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.D.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.D.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.D.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] cond VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル比較命令．条件 (cond)によりVFPR[rd]の値が決定する．sc0の場合はVFPR[rt]
の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncにより，投機実行を抑制
する．

330 第 3章 命令セット

VCMPTS.S Vector Compare Single to Scalar Register

ベクトル比較 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010011

CMPTS.S

ニーモニック:

VCMPTS.S.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.S.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.S.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.S.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SFPR[rd] ← VFPR[rs] cond VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納される．
sc0の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncに
より，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 331

VCMPTS.D Vector Compare Double to Scalar Register

ベクトル比較 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
011011

CMPTS.D

ニーモニック:

VCMPTS.D.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.D.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.D.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.D.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SFPR[rd] ← VFPR[rs] cond VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納される．
sc0の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncに
より，投機実行を抑制する．

332 第 3章 命令セット

VCVT.S.D Vector Convert to Single from Double

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101000

VCVT.S.D

ニーモニック:

VCVT.S.D rd, rs (sync(s) = 0)

VCVT.S.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Double to Single(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

倍精度フォーマットから単精度フォーマットへ変換する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 333

VCVT.S.W Vector Convert to Single from Word

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
100010

VCVT.S.W

ニーモニック:

VCVT.S.W rd, rs (sync(s) = 0)

VCVT.S.W.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Word to Single(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

整数フォーマットから単精度フォーマットへ変換する．syncにより，投機実行を抑制する．

334 第 3章 命令セット

VCVT.D.S Vector Convert to Double from Single

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
100001

VCVT.D.S

ニーモニック:

VCVT.D.S rd, rs (sync(s) = 0)

VCVT.D.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Single to Double(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

単精度フォーマットから倍精度フォーマットへ変換する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 335

VCVT.D.W Vector Convert to Double from Word

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101010

VCVT.D.W

ニーモニック:

VCVT.D.W rd, rs (sync(s) = 0)

VCVT.D.W.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Word to Double(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

整数フォーマットから倍精度フォーマットへ変換する．syncにより，投機実行を抑制する．

336 第 3章 命令セット

VCVT.W.S Vector Convert to Word from Single

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
100100

VCVT.W.S

ニーモニック:

VCVT.W.S rd, rs (sync(s) = 0)

VCVT.W.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Single to Word(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

単精度フォーマットから整数フォーマットへ変換する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 337

VCVT.W.D Vector Convert to Word from Double

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101100

VCVT.W.D

ニーモニック:

VCVT.W.D rd, rs (sync(s) = 0)

VCVT.W.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Double to Word(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

倍精度フォーマットから整数フォーマットへ変換する．syncにより，投機実行を抑制する．

338 第 3章 命令セット

VFMFC Move from Vector Floating-Point Control Register

制御レジスタリード VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110000
MFC

ニーモニック:

VFMFC rd, rs (sync(s) = 0)

VFMFC.sy rd, rs (sync(s) = 1)

機能 :

FPR[rd] ← VFCTRL[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトル制御レジスタリード命令．rsで指定された制御レジスタの値を浮動小数点
レジスタに格納する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 339

VFMTC Move to Vector Floating-Point Control Register

制御レジスタライト VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110001
MTC

ニーモニック:

VFMTC rd, rs (sync(s) = 0)

VFMTC.sy rd, rs (sync(s) = 1)

機能 :

VFCTRL[rd] ← FPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトル制御レジスタライト命令．rdで指定された制御レジスタに浮動小数点レジ
スタの値を格納する．syncにより，投機実行を抑制する．

340 第 3章 命令セット

VFMFS Move from Vector Floating-Point Scalar Register

浮動小数点スカラレジスタリード VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110010
MFS

ニーモニック:

VFMFS rd, rs (sync(s) = 0)

VFMFS.sy rd, rs (sync(s) = 1)

機能 :

FPR[rd] ← SFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点スカラレジスタリード命令．rsで指定された浮動小数点スカラレジスタの値を浮動
小数点レジスタに格納する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 341

VFMTS Move to Vector Floating-Point Scalar Register

浮動小数点スカラレジスタライト VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110011
MTS

ニーモニック:

VFMTS rd, rs (sync(s) = 0)

VFMTS.sy rd, rs (sync(s) = 1)

機能 :

SFPR[rd] ← FPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点スカラレジスタライト命令．rdで指定された浮動小数点スカラレジスタに浮動小数
点レジスタの値を格納する．syncにより，投機実行を抑制する．

342 第 3章 命令セット

VFMFV Move from Vector Floating-Point Vector Register

浮動小数点ベクトルレジスタリード VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
110100
MFV

ニーモニック:

VFMFV rd, rs, rt (sync(s) = 0)

VFMFV.sy rd, rs, rt (sync(s) = 1)

機能 :

SFPR[rd] ← VFPR[rs][rt]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトルレジスタリード命令．rsで指定された浮動小数点ベクトルレジスタの rt番
目の要素の値を浮動小数点レジスタに格納する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 343

VFMTV Move to Vector Floating-Point Vector Register

浮動小数点ベクトルレジスタライト VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
110101
MTV

ニーモニック:

VFMTV rd, rs, rt (sync(s) = 0)

VFMTV.sy rd, rs, rt (sync(s) = 1)

機能 :

SFPR[rd] ← VFPR[rs][rt]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトルレジスタライト命令．rdで指定された浮動小数点ベクトルレジスタの rt
番目の要素に浮動小数点レジスタの値を書き込む．syncにより，投機実行を抑制する．

344 第 3章 命令セット

VFMTM Move to Vector Floating-Point Mask Register

浮動小数点ベクトルマスクレジスタライト VECTOR

31 26
011111
VFP

25 21
rs

20 7
00000000000000

0

6
s

5 0
011110
MTM

ニーモニック:

VFMTM rs (sync(s) = 0)

VFMTM.sy rs (sync(s) = 1)

機能 :

VFCTRL[Mask Register] ← VSFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトルマスクレジスタライト命令．rdで指定した浮動小数点スカラレジスタの値
をマスクレジスタに格納する．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 345

VFRSV Vector Floating-Point Register Reserve

浮動小数点ベクトルレジスタ予約 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110110
RSV

ニーモニック:

VFRSV rd, rs (sync(s) = 0)

VFRSV.sy rd, rs (sync(s) = 1)

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

None

概要 :

浮動小数点ベクトルレジスタ予約命令．GPR[rs]に予約するレジスタの構成を指定する．予約
に成功した場合は GPR[rd]に 1が，失敗した場合は 0が格納される．syncにより，投機実行
を抑制する．

346 第 3章 命令セット

VFRLS Vector Floating-Point Register Release

浮動小数点ベクトルレジスタ開放 VECTOR

31 26
011111
VFP

25 16
0000000000

0

15 11
rd

10 7
0000
0

6
s

5 0
110111
RLS

ニーモニック:

VFRLS rd (sync(s) = 0)

VFRLS.sy rd (sync(s) = 1)

機能 :

GPR[rd] ← if(成功) then 1 else 0

例外 :

None

概要 :

浮動小数点ベクトルレジスタ開放命令．開放に成功した場合はGPR[rd]に 1が，失敗した場合
は 0が格納される．syncを 1にすることにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 347

VFDCI Vector Floating-Point Define Compound Instruction

浮動小数点ベクトル複合命令定義 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101110
DCI

ニーモニック:

VFDCI rd, rs (sync(s) = 0)

VFDCI.sy rd, rs (sync(s) = 1)

機能 :

VFCPD[rd] ← GPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトル複合命令の定義を行う．GPR[rs]で定義した命令を rdで指定した複合命令
バッファのアドレスに格納する．syncにより，投機実行を抑制する．

348 第 3章 命令セット

VFECI Vector Floating-Point Execute Compound Instruction

浮動小数点ベクトル複合命令実行 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 6
no

5 0
101111
ECI

ニーモニック:

VFDCI rd, rs, rt, no

機能 :

VFPR[rd] ← VFPR[rs] op VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトル複合命令の実行を行う．noで指定した複合命令バッファのアドレスから命
令を実行する．

3.3. Responsive Multithreaded Processor固有の命令 349

VFLW Vector Floating-Point Load Word

浮動小数点ベクトルロード VECTOR

31 26
011111
VFP

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111010
LW

ニーモニック:

VFLW rt, base (sync(s) = 0)

VFLW.sy rt, base (sync(s) = 1)

機能 :

VFPR[rt] ← MEM[GPR[base]]

例外 :

Vector Floating Point Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

メモリから浮動小数点ベクトルレジスタにロードする．syncにより，投機実行を抑制する．

350 第 3章 命令セット

VFLD Vector Floating-Point Load Double

浮動小数点ベクトルロード VECTOR

31 26
011111
VFP

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111011
LD

ニーモニック:

VFLD rt, base (sync(s) = 0)

VFLD.sy rt, base (sync(s) = 1)

機能 :

VFPR[rt] ← MEM[GPR[base]]

例外 :

Vector Floating Point Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

メモリから浮動小数点ベクトルレジスタにロードする．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 351

VFSW Vector Floating-Point Store Word

浮動小数点ベクトルストア VECTOR

31 26
011111
VFP

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111110
SW

ニーモニック:

VFSW rt, base (sync(s) = 0)

VFSW.sy rt, base (sync(s) = 1)

機能 :

MEM[GPR[base]] ← VFPR[rt]

例外 :

Vector Floating Point Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

浮動小数点ベクトルレジスタをメモリにストアする．syncを 1にすることにより，投機実行を
抑制する．

352 第 3章 命令セット

VFSD Vector Floating-Point Store Double

浮動小数点ベクトルストア VECTOR

31 26
011111
VFP

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111111
SD

ニーモニック:

VFSD rt, base (sync(s) = 0)

VFSD.sy rt, base (sync(s) = 1)

機能 :

MEM[GPR[base]] ← VFPR[rt]

例外 :

Vector Floating Point Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

浮動小数点ベクトルレジスタをメモリにストアする．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 353

VADD.PS Vector Add Paired Single

ベクトル加算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000000
ADD.S

ニーモニック:

VADD.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VADD.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VADD.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VADD.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VADD.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VADD.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VADD.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VADD.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] + VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit× 2単精度ベクトル加算．sc0の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])
を用いて演算を行う．sc2の場合VFPR[rt] の下位 32bit を用いて演算を行う．syncにより，投
機実行を抑制する．

354 第 3章 命令セット

VSUB.PS Vector Subtract Paired Single

ベクトル減算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
s1

7
s0

6
s

5 0
000001
SUB.S

ニーモニック:

VSUB.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PS.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 0, sync(s) = 0)

VSUB.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PS.sv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 1, sync(s) = 0)

VSUB.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PS.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 0, sync(s) = 1)

VSUB.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 1)

VSUB.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 1)

VSUB.PS.sv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] - VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit× 2単精度ベクトル減算．sc0の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])
を用いて演算を行う．sc1の場合はVFPR[rs] の代わりに，スカラレジスタ (SFPR[rs]) を用い
て演算を行う．sc2の場合 VFPR[rt] の下位 32bit を用いて演算を行う．syncにより，投機実
行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 355

VMUL.PS Vector Multiply Paired Single

ベクトル乗算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000010
MUL.S

ニーモニック:

VMUL.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMUL.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMUL.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMUL.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMUL.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMUL.PS.vs.sync rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMUL.PS.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMUL.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit× 2単精度ベクトル乗算．sc0の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])
を用いて演算を行う．sc2の場合VFPR[rt] の下位 32bit を用いて演算を行う．syncにより，投
機実行を抑制する．

356 第 3章 命令セット

VABS.PS Vector Absolute Paired Single

ベクトル絶対値演算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000101
ABS.S

ニーモニック:

VABS.PS rd, rs, rt (sync(s) = 0)

VABS.PS.sy rd, rs, rt (sync(s) = 1)

機能 :

VFPR[rd] ← |VFPR[rs]|

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル絶対値演算．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 357

VNEG.PS Vector Negate Paired Single

ベクトル符号反転 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000111
NEG.S

ニーモニック:

VNEG.PS rd, rs, rt (sync(s) = 0)

VNEG.PS.sy rd, rs, rt (sync(s) = 1)

機能 :

VFPR[rd] ← -1 times VFPR[rs]

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル符号反転演算．syncにより，投機実行を抑制する．

358 第 3章 命令セット

VMADD.PS Vector Multiply and Add Paired Single

ベクトル積和演算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010000

MADD.S

ニーモニック:

VMADD.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMADD.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMADD.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMADD.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMADD.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMADD.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMADD.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMADD.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] times VFPR[rt] + VFPR[rd]

例外 :

Vector Integer Exception :

概要 :

32bit × 2 単精度ベクトル積和演算．sc0 の場合は VFPR[rt] の代わりに，スカラレジスタ
(SFPR[rt]) を用いて演算を行う．sc2の場合は VFPR[rt] の下位 32bit を用いて演算を行う．
syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 359

VMSUB.PS Vector Multiply and Subtract Paired Single

ベクトル積差演算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010001

MSUB.S

ニーモニック:

VMSUB.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMSUB.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] - VFPR[rd]

例外 :

Vector Integer Exception :

概要 :

32bit×単精度ベクトル積差演算．sc0の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])
を用いて演算を行う．sc2の場合はVFPR[rt] の下位 32bit を用いて演算を行う．syncにより，
投機実行を抑制する．

360 第 3章 命令セット

VCMP.PS Vector Compare Paired Single

ベクトル比較 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010010
CMP.S

ニーモニック:

VCMP.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] cond VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル比較命令．条件 (cond) によりVFPR[rd] の値が決定する．sc0 の場
合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．sync により，投
機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 361

VSCMP.PS Vector Compare Paired Single

ベクトル比較 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010010

SCMP.S

ニーモニック:

VSCMP.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMP.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMP.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMP.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] cond VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit× 2単精度ベクトル比較命令．条件 (cond)によりVFPR[rd]の値が決定する．VFPR[rt]の
下位 32bitを用いて演算を行う．sc0の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])
を用いて演算を行う．syncにより，投機実行を抑制する．

362 第 3章 命令セット

VCMPTS.PS Vector Compare Paired Single to Scalar Register

ベクトル比較 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010011

CMPTS.S

ニーモニック:

VCMPTS.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SFPR[rd] ← VFPR[rs] cond VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタに
格納される．sc0の場合はVFPR[rt] の代わりに，スカラレジスタ (SFPR[rt]) を用いて演算を
行う．syncにより，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 363

VSCMPTS.PS Vector Compare Paired Single to Scalar Register

ベクトル比較 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010011

SCMPTS.S

ニーモニック:

VSCMPTS.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPTS.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPTS.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPTS.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SFPR[rd] ← VFPR[rs] cond VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタに
格納される．VFPR[rt]の下位 32bit を用いて演算を行う．sc0の場合はVFPR[rt] の代わりに，
スカラレジスタ (SFPR[rt]) を用いて演算を行う．syncにより，投機実行を抑制する．

365

4
アドレスデコーダ

4.1 レジスタインターフェース

アドレスデコーダの各種設定レジスタはシステムレジスタとして定義されている．そのため各種レジス

タを設定するためにはmtc0命令を用いる．
設定する値はモジュールにより異なる．

• 標準 (TYPE A)

31 16
-

15 8
Address

7 0
Mask

• I/O (TYPE B)

31 12
-

11 8
Address

7 4
-

3 0
Mask

• 外部バス (TYPE C)

31 19
-

18
AR

17 16
WN

15 8
Address

7 0
Mask

• リンク メモリ (TYPE D)

366 第 4章 アドレスデコーダ

31 18
-

17 16
WN

15 8
Address

7 0
Mask

• I/O Base (TYPE E)

31 16
Address

15 0
Mask

bit名 機能

Address ベースアドレス

Mask マスク

WN Word Number

AR Auto Ready

4.2. アドレスマップ 367

4.2 アドレスマップ

接続されるモジュール 初期デコードアドレス 設定レジスタのアドレス タイプ

ROM (EXT 0) 0x00000000 ～ 0x00ffffff 0xa0 TYPE C

EXT 1 0x20000000 ～ 0x20ffffff 0xa1 TYPE C

SDRAM IF0 0x80000000 ～ 0x87ffffff 0xa2 TYPE A

SDRAM IF1 0x88000000 ～ 0x8fffffff 0xa3 TYPE A

SDRAM IF2 0x90000000 ～ 0x97ffffff 0xa4 TYPE A

SDRAM IF3 0x98000000 ～ 0x9fffffff 0xa5 TYPE A

LINK SDRAM 0x04000000 ～ 0x04ffffff 0xa6 TYPE D

LINK DPM 0xc0000000 ～ 0xcfffffff 0xa7 TYPE D

DMAC0 0xffff0000 ～ 0xffff0fff 0xa8 TYPE B

DMAC1 0xffff1000 ～ 0xffff1fff 0xa9 TYPE B

DMAC2 0xffff2000 ～ 0xffff2fff 0xaa TYPE B

PCI 0xffff3000 ～ 0xffff3fff 0xab TYPE B

USB In 0xffff4000 ～ 0xffff4fff 0xac TYPE B

USB Out 0xffff5000 ～ 0xffff5fff 0xad TYPE B

UART 0xffff6000 ～ 0xffff6fff 0xae TYPE B

PP 0xffff7000 ～ 0xffff7fff 0xaf TYPE B

IEEE1394 0xffff8000 ～ 0xffff8fff 0xb0 TYPE B

LINK 0xfffe0000 ～ 0xfffeffff 0xb1 TYPE E

IRC 0xffff9000 ～ 0xffff9fff 0xb2 TYPE B

CLK Generator 0xffffa000 ～ 0xffffafff 0xb3 TYPE B

MDMAC 0xffffd000 ～ 0xffffdfff 0xb4 TYPE B

LINK SDRAM Mode 0xffffe000 ～ 0xffffefff 0xb5 TYPE B

SDRAM Mode 0xfffff000 ～ 0xffffffff 0xb6 TYPE B

I/O Base 0xffff0000 ～ 0xffffffff 0xb8 TYPE E

369

5
MMU

Responsive Multithreaded Processorのキャッシュシステムは命令キャッシュ，データキャッシュともに
物理キャッシュなのでMMUでのアドレス変換はプロセッシングコアとキャッシュの間で行う．また，アド
レス空間上に，TLBによるアドレス変換が行なわれない領域は存在しない．

5.1 TLBエントリ

本MMUにおける TLBエントリ数は命令MMU, データMMUともに 64エントリである．エントリへ
の設定方法は full associative方式とし，設定を行うページ番号に関わらずどのエントリでも設定を行うこ
とを可能である．

以下本MMUにおける TLBエントリの機能の詳細と特徴について述べて行く．
表 5.1に TLBエントリの設定項目の一覧を示す．TLBエントリは全部で 8byteであるが，設定に際し

ては 32bitの整数型データを用いて行うため便宜上エントリ 1とエントリ 2に分かれる．
また TLBエントリに指定した仮想アドレスとコンテキスト IDが一致したかどうかの判断はエントリ番

号の大きな順に行われる．そのため複数のエントリが一致した場合には，よりエントリ番号が大きなTLB
エントリの設定値を用いてアドレス変換が行われる．

TLBのエントリを設定した直後，そのエントリの LRU情報はもっとも最近に参照されたものとして扱
われる．

TLBエントリを初期化した場合，各フィールドの値は表 5.2のようになる．また，TLBエントリの LRU
情報を初期化すると LRUの順序はエントリ 0がもっとも最近アクセスされた tlbエントリとなり，エント
リ 1,2,3,... 62, 63と順にアクセスが古い，という状態になる．

VPN

この VPN フィールドには，アドレス変換を行う仮想アドレスがエントリを検索するために必要な仮想
ページ番号を保持する．Responsive Multithreaded Processorは仮想アドレスに 32bitの信号を用い，最
小ページサイズが 4KBであるため，TLBエントリには表 5.1に示すように仮想アドレスの上位 20bitを保
持する．VPN フィールドはエントリ 1に属し，エントリ設定時には設定を行う仮想ページ番号を設定デー
タの上位 20bitに指定する．

370 第 5章 MMU

表 5.1: TLBエントリ一覧
フィールド名 エントリ番号 データ割り当て 機能

VPN エントリ 1 [31:12] 仮想ページ番号 (Virtual Page Number)

LOCK エントリ 1 [11] エントリのロック

PROTECT エントリ 1 [10:8] 保護情報

SHARE TH エントリ 1 [7:0] エントリの有効情報と共有情報

PPN エントリ 2 [31:12] 物理ページ番号 (Physical Page Number)

PSZ エントリ 2 [11:10] ページサイズ

GROUP エントリ 2 [9:4] コンテキストグループ番号

CACHE LOCK エントリ 2 [3] 該当ページのキャッシュでのロック

UNCACHE エントリ 2 [2] 該当ページのキャッシュ不可

BURST エントリ 2 [1:0] 内部バスアクセス時のバースト転送長

表 5.2: TLBの初期化時の値

フィールド名 初期化時の値

VPN 全 bit 0

LOCK 0 (ロックオフ)

PROTECT 000 (KER Rモード)

SHARE TH 11111111 (全コンテキスト無効)

PPN 全 bit 0

PSZ 00 (4K Byte)

GROUP 全 bit 0

CACHE LOCK 0 (ロックオフ)

UNCACHE 0 (無効)

BURST 11 (バーストなし)

LOCK

TLBミスが起こると，そのミスを起こした仮想アドレスを変換するための新たな設定を TLBエントリ
に行う必要がある．全てのエントリがすでに使われていると，いずれかのエントリを選択して設定の入れ

換えを行わなければならない．本MMUでは各TLBエントリへのアクセス情報を記録した LRU情報を用
い，最もアクセスがなされていないエントリを入れ換えの対象とする．

この LOCK フィールドを設定する (1にする)と，その TLBエントリを LRU情報を用いた入れ換えの
対象から外すことができる．ただし設定を行うエントリを直接指定した場合にはこの LOCKフィールドの
設定は無効となる．

また，LOCKフィールドが設定されたTLBエントリを使ってアドレス変換を行った場合，そのTLBエ
ントリはもっとも最近に参照されたものとして LRU情報が更新される．
この LOCKフィールドはエントリ 1に属する．

5.1. TLBエントリ 371

PROTECT

ページ単位でのメモリ領域の保護を行うため，この PROTECTフィールドにそのための保護情報を指
定する．表 5.3に指定可能な保護情報の一覧を示す．
尚 Responsive Multithreaded Processorでは制限の厳しい順にカーネル・スーパバイザー・ユーザの 3

つのスレッドの動作モードが規定されているが，モードフィールドとして 2bitが利用可能であるため，本
フィールドにはユーザモードよりも更に制限の緩い場合を設定できる．

この PROTECTフィールドはエントリ 1に属する．

SHARE TH

Responsive Multithreaded Processorは同時に最大 8個のスレッドが動作するため，TLBエントリのミ
ス率が高くなってしまう．ミス率を少しでも低く抑えるために，コンテキスト毎にTLBエントリに有効情
報を持つようにする．Responsive Multithreaded Processorはスレッド ID(32bit)ではなくコンテキスト
ID(3bit)を用いてスレッドの実行を制御している．特にコンテキストが有効かどうかは各コンテキストにつ
き 1bitの情報で与えられるので，TLBエントリにはそれに対応する bitを用意している．この SHARE TH
フィールドには，各コンテキストの有効情報を保持する．エントリの有効情報は仮想アドレスの比較に用

いられるだけではなく，エントリの共有と入れ換えエントリの選択にも用いる．

入れ替えを行う TLB エントリは特に指定がなければ LRU 情報に基づいて選択されるが，その前に
SHARE THフィールドを調べて無効なエントリが存在する場合はそれを入れ替えの対象とする．
また，有効であったコンテキストが無効化され，かつそのコンテキストのMMUでのアドレス変換が有

効であった場合には，自動的にこの SHARE THフィールドは無効に設定される．
このフィールドはエントリ 1に属する．

PPN

この PPNフィールドには，VPNフィールドの仮想ページ番号がマップされている物理ページ番号が保
持される．Responsive Multithreaded Processorは物理アドレスに 32bitの信号を用い，最小ページサイ
ズが 4KBであるため，TLBエントリで変換される物理アドレスは表 5.1に示すように上位 20bitである．
PPNフィールドはエントリ 2に属し，エントリ設定時には設定を行う物理ページ番号を設定データの上位
20bitに指定する．

表 5.3: TLBエントリに指定可能なページ保護情報

保護モード 設定コード 保護の詳細

ALL RW 111 全モードでの読み出しと書き込みを許可

ALL R 110 全モードでの読み込み，ユーザモード以上での書き込みを許可

USR RW 101 ユーザモード以上での読み出しと書き込みを許可

USR R 100 ユーザモード以上の読み込み，スーパバイザーモード以上の書き込みを許可

SV RW 011 スーパバイザーモード以上での読み出しと書き込みを許可

SV R 010 スーパバイザーモード以上の読み込み，カーネルモードでの書き込みを許可

KER RW 001 カーネルモードでの読み出しと書き込みを許可

KER R 000 カーネルモードでの読み込みのみを許可

372 第 5章 MMU

PSZ

Responsive Multithreaded Processorでは，複数ページサイズのサポートをしている．TLBエントリで
も複数のページサイズを用いることができるようにしており，表 5.4に指定可能なページサイズを示す．

表 5.4: TLBエントリに指定可能なページサイズ
ページサイズ 設定コード

4K byte 00

64K byte 01

1M byte 10

16M byte 11

この PSZフィールドはエントリ 2に属する．

GROUP

Responsive Multithreaded Processorではコンテキスト IDを用いた制御が行なわれるため，特に一度コ
ンテキストキャッシュに退避されたスレッドが実行を再開する場合には，退避前のTLBエントリの設定値
は全く使うことができない．これはコンテキスト単位で仮想アドレスを識別しているために，実行スレッ

ドが切り替わる際にはどうしても無効化しなければならないからである．各々のスレッドのアドレスマッ

プは通常独立であるから，エントリの無効化は問題にはならない．しかし共有メモリ領域のエントリでは，

退避前までエントリを共有していたスレッドが，実行再開後は全く別のエントリに設定しなければならな

くなる．

そこでそのような無駄を省くためにこの GROUP フィールドを用いる．各 TLBエントリはこのフィー
ルドに設定された IDを用いて有効情報の変更が可能になっている (5.2)．そこで共有メモリ領域を持つス
レッドは，その領域の TLBエントリに設定されたコンテキストグループ番号を知っていれば，実行を再
開したコンテキスト番号をそのコンテキストグループに属する TLBエントリに通知するだけで，容易に
TLBエントリの有効化を行なうことができる．
この GROUPフィールドはエントリ 2に属する．

CACHE LOCK

このフィールドを有効にすることで，該当ページのデータブロックをキャッシュ上にロックすることが

できる．機能は TLBエントリのロックフィールド (5.1) と同等である．
このCACHE LOCKフィールドはエントリ 2に属し，MMUが無効状態でのデフォルトの値は無効 (ロッ

ク不可)となる．

UNCACHE

この UNCACHEフィールドを有効 (1と設定)にすると，そのページのブロックはキャッシュされない．
キャッシュシステム内にはキャッシュメモリ本体以外にもデータが置かれるバッファがいくつかあるが，こ

のフィールドが有効になっているページのデータは，書き込みデータのマージ機構 (6.1.4)や内部バス要求
キューでの複数データヒット機構 (6.1.4)，victim buffer (6.1.3) が無効になる．
このフィールドはエントリ 2に属し，MMUが無効状態でのデフォルトの値は有効 (キャッシュ不可)と

なる．

5.2. MMUの制御 373

BURST

アクセスしたいデータがキャッシュミスとなると，内部バスへ要求を出すことになる．このBURSTフィー
ルドには，その場合の内部バスに対するバースト読み出しの転送長を指定する．設定可能な転送長を表 5.5
に示す．

表 5.5: TLBエントリで指定可能な内部バスのバースト転送長

転送長 設定コード 転送データ量

無し 11 32byte

2 10 64byte

4 01 128byte

8 00 256byte

このフィールドの値は書き込み要求には適応されない．また I/Oなど 32bitバスのデータ読み出しにも
適応されない．I/Oであるかどうかはアドレス空間を用いて識別する．
このフィールドはエントリ 2に属し，MMUが無効状態でのデフォルトの値はバースト転送無しとなる．

5.2 MMUの制御

MMUのコントロールレジスタの一覧を表 5.7に示す．
各レジスタは通常のアドレス空間や，プロセッシングコアのコントロールレジスタのアドレス空間とは

異なる独自のアドレス空間にマッピングされている．そのためMMUのコントロールレジスタへのアクセ
スは表 5.6に示す 4つの専用命令を用いて行う．

表 5.6: MMUのコントロールレジスタアクセス用命令

命令 用途

MFIMM 命令用MMUのコントロールレジスタの値を読み出す

MTIMM 命令用MMUのコントロールレジスタに値を設定

MFDMM データ用MMUのコントロールレジスタの値を読み出す

MTDMM データ用MMUのコントロールレジスタに値を設定

コントロールレジスタの値の設定方法には，設定するデータをそのまま指定するものと，一定の形式に合

わせて指定するものがある．後者の一定の形式はMMUのコントロールレジスタの設定のみならず，キャッ
シュコントローラのコントロールレジスタの設定にも用いられる場合がある (6.1.5)．そこでこの一定の形
式のことを共通設定形式 (図 5.1)と呼ぶことにする．共通設定形式では 1を設定することで該当レジスタ
の機能を有効化することができる．またコンテキストグループ (5.1)に対してはこの共通設定形式を拡張
した独自の形式 (図 5.4)を用いて設定を行う．
コントロールレジスタの設定のタイミングはプロセッサの実行状況によって全く異なるため，実行中の

スレッドに対してページ設定以外の設定情報の変更 (MMUのオン・オフやエントリのフラッシュ) を行う
場合は注意が必要である．

またコントロールレジスタの多くは設定要求 (書き込み要求)のみを規定しており，そのようなレジスタ
に対する読み出し要求には返戻値として 0が返る．

374 第 5章 MMU

context7 context6 context5 context4 context3 context2 context1 context0
15 13 11 9 7 5 3 1

S V S V S V S V S V S V S V S V

14 12 10 8 6 4 2 0

S

V

select field

value field

1に設定すると該当コンテキストを撰択

1に設定すると有効化、0に設定すると無効化

図 5.1: コントロールレジスタの共通設定形式

表 5.7: MMUのコントロールレジスタ一覧
アドレス [7:0] レジスタ名 設定方法 機能

0x00 MMU SPR START 共通形式 アドレス変換の有効・無効

0x04 MMU SPR ALL FLUSH 設定値無し エントリの無効化と LRU情報の初期化

0x08 MMU SPR TLB FLUSH 直接指定 指定したエントリを無効化

0x0c MMU SPR THREAD FLUSH 共通形式 指定したコンテキストを無効化

0x10 MMU SPR GROUP FLUSH 直接指定 指定したグループを全て無効化

0x14 MMU SPR LRU FLUSH 直接指定 LRU情報を初期化

0x18 MMU SPR MAX LOCK 直接指定 エントリをロックできる最大数

0x1c MMU SPR ENTRY1 直接指定 TLBエントリのエントリ 1を設定

0x20 MMU SPR ENTRY2 直接指定 TLBエントリのエントリ 2を設定

0x24 MMU SPR ENTRY INDEX 設定値無し 指定した TLBエントリを設定

0x28 MMU SPR ENTRY LRU 設定値無し LRU情報によりエントリを設定

0x2c MMU SPR GROUP 特殊形式 指定したグループのエントリの有効化・無効化

0x30 MMU SPR EXP ADDR 設定値無し 例外を発生したアドレス

0x34 MMU SPR EXP LOG 設定値無し 発生した例外の詳細情報

MMU SPR START

MMU SPR STARTレジスタはMMU機能の有効・無効を示す．
Responsive Multithreaded Processorはスレッド毎ではなくコンテキスト毎に制御を行うため，MMU SPR START

レジスタもコンテキスト毎に用意されている．コンテキストの指定は書き込みデータの下位 8bit[7:0]で
行う．

またこのレジスタの読み出し要求に対しては，データの下位 8bit[7:0]の上位から順番にコンテキスト番
号 7からコンテキスト番号 0までの設定値が格納される．
設定には図 5.1に示した共通設定形式を用いる．

MMU SPR ALL FLUSH

このレジスタに対して書き込み要求を行うと，全てのTLBエントリの設定データとエントリアクセスの
LRU情報を初期化する．書き込むデータに制約はなく，設定を行うと次クロックで自動的にクリアされる．

5.2. MMUの制御 375

MMU SPR TLB FLUSH

このレジスタに指定した番号の TLBエントリのみを初期化する．TLBエントリの指定は書き込みデー
タの下位 6bit[5:0]で行う．設定を行うと次クロックで自動的にクリアされる．

MMU SPR THREAD FLUSH

各 TLBエントリにおいてこのレジスタに指定したコンテキストのみを無効化する．設定方法は図 5.1に
示した共通設定形式を用いる．設定を行うと次クロックで自動的にクリアされる．

MMU SPR GROUP FLUSH

このレジスタに指定したコンテキストグループに属する TLBエントリを無効化する (5.1)．コンテキス
トグループの指定は書き込みデータの下位 6bit[5:0]で行う．設定を行うと次クロックで自動的にクリアさ
れる．

MMU SPR LRU FLUSH

このレジスタに書き込み要求を行うと，TLBエントリのアクセスに関する LRU情報を初期化する．書
き込むデータに制約はない．設定を行うと次クロックで自動的にクリアされる．

MMU SPR MAX LOCK

このレジスタには TLBエントリをロックし，LRU情報によるエントリの入れ換え対象計算から外すこ
とのできるエントリ数を設定する．既定値は 16エントリ，最小値は 0エントリ，最大値は 63エントリで
あり，このレジスタの値以上のエントリをロックすることは基本的にできない．しかしロックエントリ数

の計算に 1クロック要するため，エントリの設定命令が 2クロック連続するとこのレジスタの値を越えて
ロックが設定される可能性がある．全 64エントリがロックされてしまった場合，ページフォルト発生時に
ページテーブルを設定できなくなってしまう．そのため，64エントリがロックされると例外を発生させる
(5.3) ．MMU SPR ENTRY LRUでエントリ 1の LOCKフィールドを 1にしたTLBエントリをセットす
る時にMMU SPR MAX LOCKの値以上にセットしようとした場合，ロックはされないがTLBエントリ
のほかの内容はセットされる．例えば，MMU SPR MAX LOCKが 16で既にロックされている TLBエ
ントリも 16個存在する時にMMU SPR ENTRY LRUでロックしたエントリをセットする場合，LOCK
フィールドを 0にして TLBエントリをセットすることになる．
このレジスタの読み出し要求に対しては，データの下位 6bit[5:0]に現在の設定値を格納する．

MMU SPR ENTRY1

各 TLBエントリが持つエントリフィールドのうち，このレジスタには仮想アドレス，エントリのロック
指定，ページ保護情報，エントリ共有情報を設定する．設定形式を図 5.2に示す．

MMU SPR ENTRY2

各 TLBエントリが持つエントリフィールドのうち，このレジスタには物理アドレス，ページサイズ，コ
ンテキストグループ，該当ページのキャッシュでのロックの可否，該当ページのキャッシュの可否，該当

ページのバスアクセス時のバースト転送長を指定する．設定形式を図 5.3に示す．

376 第 5章 MMU

7:010:81131:12

仮想ページ番号 ページ保護情報

共有情報

: VPN : PRO

: SHR: LCKエントリロック

LCK PRO SHRVPN

図 5.2: ENTRY1 の設定形式

物理ページ番号

コンテキストグループ

キャッシュロック

キャッシュ不可

バースト転送長

ページサイズ

: PPN

: PSZ

: GRP

: CLC

: UNC

: BRT

1:09:411:1031:12

PPN BRTUNCCLCGRPPSZ

3 2

図 5.3: ENTRY2 の設定形式

MMU SPR ENTRY INDEX

このレジスタに書き込み要求を行いTLBエントリ番号を指定することで，事前に設定しておいたMMU SPR ENTRY1
フィールドとMMU SPR ENTRY2フィールドの値を，その指定された TLBエントリに設定する．TLB
エントリの指定は書き込むデータの下位 6bit[5:0]で行う．

MMU SPR ENTRY LRU

このレジスタに書き込み要求を行うことで，事前に設定しておいたMMU SPR ENTRY1フィールドと
MMU SPR ENTRY2フィールドの値を，LRU情報を元にして最もアクセスがなされていない TLBエン
トリに設定する．書き込むデータに制約はない．

MMU SPR GROUP

このレジスタに書き込み要求を行うことで，指定したコンテキストグループに所属する TLBエントリ
の，指定したコンテキストの有効化・無効化を行う (5.1)．コンテキストグループとコンテキストの指定形
式を図 5.4に示す．

MMU SPR EXP ADDR

このレジスタはアドレス変換において該当するTLBエントリが存在しなかった場合に，その仮想アドレ
スを保持する．アドレスはコンテキスト毎に保持され，その値を読み出すにはデータの下位 3bit[2:0]にコ
ンテキスト番号を指定する．

5.3. MMUが発生させる例外 377

context7 context6 context5 context4 context3 context2 context1 context0
15 13 11 9 7 5 3 1

S V S V S V S V S V S V S V S V

14 12 10 8 6 4 2 01621

コンテキストグループ番号

S

V

select field

value field

1に設定すると該当コンテキストを撰択

1に設定すると有効化、0に設定すると無効化

図 5.4: コンテキストグループの設定形式

このレジスタに対する書き込み要求は，実行したコンテキストに対応するレジスタの値がクリアされる

だけである．

MMU SPR EXP LOG

このレジスタにはページ保護の違反が確認された時にその違反コード (表 5.8)が保持される．

表 5.8: MMUのページ保護違反コード
コード名 違反コード 違反内容

MMU EXP NONE 000 違反無し

MMU EXP PRO ALL R 001 全モードでの書き込み制限違反

MMU EXP PRO USR RW 010 ユーザモード以上に限定されたページへのアクセス違反

MMU EXP PRO USR R 011 ユーザモード以上に限定されたページへの書き込み違反

MMU EXP PRO SPV RW 100 スーパバイザーモード以上に限定されたページへのアクセス違反

MMU EXP PRO SPV R 101 スーパバイザモード以上に限定されたページへの書き込み違反

MMU EXP PRO KER RW 110 カーネルモード以上に限定されたページへのアクセス違反

MMU EXP PRO KER R 111 カーネルモード以上に限定されたページへの書き込み違反

このレジスタの読み出し要求に対しては，4bit目に違反発生の有無が (1で保護違反発生)，下位 3bit[2:0]
に違反コードが格納される．

またこのレジスタに対する書き込み要求は，実行したコンテキストに対応するレジスタの値がクリアさ

れるだけである．

5.3 MMUが発生させる例外

本MMUが発生させる例外を表 5.9に示す．
命令用MMU，データ用MMU共に発生させる例外の種類は同じであるが，命令とデータの区別をつけ

て例外を扱う．

また命令要求が発生させた例外とデータ要求が発生させた例外とではプロセッシングコアでの扱いが異

なるが，MMUに対して設定を行うのはデータ要求であるため，命令用MMUで発生した設定用の例外 (表
5.9の例外の種類の設定)はデータ用MMUの例外コードと一緒に扱われる．

378 第 5章 MMU

表 5.9: MMUの発生させる例外
例外名 例外の種類 命令用MMUのコード データ用MMUのコード

コントロールミス 設定 0x1 0x6

全エントリロック 設定 0x2 0x7

エントリミス 要求 0x3 0x8

モード違反 設定 0x4 0x9

ページ保護違反 要求 0x5 0xa

コントロールミス

どのコントロールレジスタにもマップされていないアドレスを用いてアクセスを行なった場合に発生す

る．このアドレスミスによってコントロールレジスタが影響を受けることはない．またMMUの状態が変
化することもなく，ただ例外の発生を通知するだけである．この例外が発生したとき，コントロールレジ

スタであるMMU SPR EXP ADDR, MMU SPR EXP LOGの値は変化しない．

全エントリロック

全てのエントリがロック指定された時に発生する．一度この例外が発生するとMMUはロックオーバー
状態になる．この間もアドレス変換や TLBエントリの設定は可能であるが，LRU情報による TLBエン
トリの設定は常に最も番号が若い TLBエントリ 0に対してのみ行われる．ロックオーバー状態は TLBエ
ントリのロック数が 63以下になると自動的に解除される．この例外が発生したとき，コントロールレジス
タであるMMU SPR EXP ADDR, MMU SPR EXP LOGの値は変化しない．

エントリミス (TLBミス)

命令要求やデータ要求によって指定された仮想アドレスとコンテキスト IDが，どのエントリの設定値
とも一致しなかった場合に発生する．例外を起こした仮想アドレスをコントロールレジスタに保持するが

(5.2)，MMUの状態は変化しない．例外発生後もアドレス変換や TLBエントリの設定は通常通り可能で
ある．例外発生時，MMU SPR EXP LOGの値は 0(違反なし)に設定される．
尚命令用MMUで本例外が発生した場合，命令フェッチユニットの仕様により命令を返さなければ例外

処理に進むことができないため，フェッチ命令幅の全てを No-opコードとして返す．

モード違反

MMUの設定を行うスレッドはカーネルモードがスーパバイザーモードでなければならない．この例外
はユーザ以下のモードでMMUのコントロールレジスタに要求を行なった場合に発生する．本例外による
コントロールレジスタへの影響はなく，MMUの状態が変化することもない．この例外が発生したとき，コ
ントロールレジスタであるMMU SPR EXP ADDR, MMU SPR EXP LOGの値は変化しない．

ページ保護違反

命令要求やデータ要求によって指定された仮想アドレスとコンテキスト IDが一致した TLBエントリに
おいて，その要求が設定された保護情報に反する場合に発生する．コントロールレジスタには例外コード

(表 5.8)が格納されるが，MMUの状態は変化しない．

5.3. MMUが発生させる例外 379

命令用MMUでこの例外が発生した場合，エントリミスと同様に命令フェッチ幅の全てをNo-opとして
返す．

381

6
CACHE

6.1 キャッシュシステム

6.1.1 概要

Responsive Multithreaded Processorのキャッシュシステムの特徴を以下に示す．またモジュール構成を
図 6.1に示す．本節ではこれらキャッシュシステムを構成する各要素について述べる．

• 32 KB 8-way set-associative方式

• ブロックサイズ，ラインサイズともに 32byte

• Look Through

• ノンブロッキング

• 下位メモリとのデータ一貫性の維持はライトバック方式

• 書き込み要求ミスの処理はライトアロケート方式

• キャッシュポートは 1 ポート

• 物理タグでデータを保持

• 転送ブロック数が可変

• キャッシュのロックが可能

• 3 サイクルのアクセス遅延

• マルチタグ，シングルデータ方式

• 16 エントリの victim buffer

• 最大 16 個のキャッシュミスを同時に保持

• 入れ換えを行うブロックの選択方法は LRUと優先度の 2 通り

• バス待ちキューでの優先度による要求の追い越しが可能

382 第 6章 CACHE

命令用 MMU

データ用 MMU

命令キャッシュ
コントローラ データキャッシュ

タグ・設定情報

データキャッシュ
コントローラ

mem_rw_buffer

victim buffer
コントローラ

victim buffer
コントローラ

read buffer

write buffer
wait buffer
コントローラ

wait buffer
コントローラ

victim buffer

256 bit 内部バス

メモリアクセスユニット命令フェッチ
ユニット

命令キャッシュ

タグ・設定情報

read buffer

victim buffer

CPU コア

データキャッシュシステム

命令キャッシュシステム

図 6.1: キャッシュシステムのモジュール構成

6.1.2 キャッシュ制御

キャッシュの制御は図 6.1の命令キャッシュコントローラ，データキャッシュコントローラで行う．
キャッシュ要求がキャッシュミスを起こした場合には，先に victim bufferで保持されているデータと比較

され (6.1.3)，そこでも該当データを発見できなければ wait buffer から内部バスへアクセスを行う (6.1.4)．

キャッシュでのデータ一貫性の維持

命令，データの両キャッシュコントローラは，内部バスで発生する書き込み要求を常に監視する．そし

てもしキャッシュしているデータが書き込みを受けた場合にそのデータを無効化する．

6.1.3 victim buffer

victim bufferでは，キャッシュブロックの入れ換えに伴いキャッシュメモリを追い出されたデータを，full
associative 方式でエントリに保持する．そしてキャッシュミスを起こした要求のアドレスを現在保持して
いるデータのタグと比較し，もし一致するデータがあれば該当データをキャッシュへと送り込む．

6.1.4 wait buffer

概要

wait buffer は内部バス要求キュー，read buffer とその管理機構からなるキャッシュコントローラの内部
バスインタフェースであり，命令用とデータ用のそれぞれに分かれる．データキャッシュ用の wait buffer
には更に write buffer とその管理機構が付随する．

6.1. キャッシュシステム 383

内部バス要求

内部バス要求キューと write buffer は 16 エントリから成り，victim buffer から送られてくる様々な要
求を順にエントリに格納して行く．

内部バス要求キューの要求順位入れ換え機能

内部バス要求キューの要求順位を入れ替える機構がある．その方法は読み出し要求を書き込み要求より

も優先して行う方法と，優先度が高いコンテキストの要求を優先して行う方法の 2種類である．ただし，
ライトアロケート方式を用いているため通常の書き込み要求は読み出し要求と同じくデータの読み出しを

行うため，追い抜きの対象は write back 要求になっている．

書き込み要求のマージ機能

通常の書き込み要求のデータは 1 byte の文字型や 4 byte の整数型， 8 byte の倍精度浮動点小数型の
データであるため，1 キャッシュラインのデータ幅である 32 byte に対しては小さい．よって同じキャッ
シュラインに対するデータの書き込みは 1 つのエントリにまとめることができるようにしている．
ただし I/O への書き込み要求であった場合には，データのマージは行わない．

6.1.5 キャッシュのコントロールレジスタ

キャッシュのコントロールレジスタの一覧を表 6.1に示す．これらのレジスタはプロセッシングコアのコ
ントロールレジスタと同じアドレス空間にマッピングされており，それらと同じ命令 (表 6.2)を用いてア
クセスする．尚これらのレジスタの設定方法は TLB のコントロールレジスタの設定 (5.2)と同じように
データを直接指定するか，図 5.1に示した共通設定形式を用いる．

表 6.1: キャッシュのコントロールレジスタ
レジスタ名 設定方法 機能 命令用アドレス [7:0] データ用アドレス [7:0]

ON 共通形式 キャッシュの有効・無効 0x80 0x86

REP MODE 直接指定 入れ換え方法の指定 0x81 0x87

ACC SCHE 直接指定 要求の追い越し指定 0x82 0x88

LOCK 共通形式 ロックの有効・無効 0x83 0x89

RESET 直接指定 キャッシュのリセット 0x84 0x8a

FLUSH 共通形式 write backの指定 無し 0x8b

ALL FLUSH 直接指定 全て write back 無し 0x8c

表 6.2: コントロールレジスタをアクセスする命令
命令 用途

MFC0 コントロールレジスタの値を読み出す

MTC0 コントロールレジスタに値を設定

384 第 6章 CACHE

ON

このレジスタを設定することで，コンテキスト毎にキャッシュの有効・無効を指定できる．

初期状態の設定値は全コンテキスト共に無効になっており，またコンテキストが無効化されるとそのコ

ンテキストに対応するフィールドは自動的に無効となる．

このレジスタの設定には共通設定形式 (図 5.1)を用いる．またこのレジスタの読み出し要求に対しては，
データの下位 8 bit [7:0]の上位から順番にコンテキスト番号 7 からコンテキスト番号 0 までの設定値が格
納される．

REP MODE

このレジスタにはキャッシュブロックの入れ換え方法を指定する．0 を設定すると LRU 情報に基づく方
法，1 を設定するとオーナーコンテキストの優先度に基づく方法となる．
設定はデータの 1 bit 目で行われる．このレジスタの初期値は LRU を用いた方法である．またこのレ

ジスタの読み出し要求に対しては，データの最下位 bit [0] に設定値が格納される．

ACC SCHE

このレジスタには，6.1.4で述べた優先度に従った内部バス要求キューの要求入れ換え機能の有効，無効
を指定する．このレジスタに 1 を設定することでその機能を有効にできる．
設定は REP MODEレジスタと同様にデータの 1 bit 目で行われ，初期値は無効である．またこのレジ

スタの読み出し要求に対しては，データの最下位 bit [0] に設定値が格納される．

LOCK

このレジスタには 5.1で述べたコンテキスト毎のキャッシュロックの有効，無効を指定する．このレジ
スタと TLBエントリの CACHE LOCKフィールドが設定されることで，該当コンテキストがキャッシュ
データをロックすることが可能になる．どちらか一方の設定だけではキャッシュロックを行うことはでき

ない．

一旦キャッシュをロックしてしまうと，そのコンテキストが有効である限りそのデータがキャッシュから

追い出されることはない．これはキャッシュの入れ換えを優先度に従う方式で行っていても同様のため，低

優先度のスレッドに対するロック許可や，ロック許可状態での高優先度のスレッドの実行を行う場合には

注意が必要である．

初期状態の設定値は全コンテキスト共に無効になっており，またコンテキストが無効化されるとそのコ

ンテキストに対応するフィールドは自動的に無効となる．

このレジスタの設定には共通設定形式 (図 5.1)を用いる．またこのレジスタの読み出し要求に対しては，
データの下位 8 bit [7:0]の上位から順番にコンテキスト番号 7 からコンテキスト番号 0 までの設定値が格
納される．

RESET

このレジスタに 1 を設定することで，キャッシュと victim buffer のエントリを全て無効化することがで
きる．ただしデータ用のエントリに収められているデータでもその書き戻しは行わない．

このレジスタの読み出し要求に対しては，データの最下位 bit [0] に現在の状態を格納する．1 が読み出
された場合は，現在キャッシュの無効化が行われていることを意味する．

6.1. キャッシュシステム 385

FLUSH (データキャッシュコントローラのみ)

このレジスタを有効に設定することで，キャッシュデータと victim buffer のデータの下位メモリへの書
き戻しを開始する．書き戻しが終了すると，自動的に無効状態になる．設定には共通設定形式 (図 5.1)を
用い，コンテキスト単位で書き戻し要求を指定できるが，無効状態のコンテキストに対する指定でも書き

戻しを行う．

またこのレジスタの読み出し要求に対しては，データの下位 8 bit [7:0]の上位から順番にコンテキスト
番号 7 からコンテキスト番号 0 までの設定値が格納される．

ALL FLUSH

このレジスタに書き込み要求を行うと，それだけで全コンテキストの書き戻しを開始する．指定するデー

タに制限はない．

387

7
システムレジスタ

システムレジスタはMFC0，MTC0命令でアクセスする．アクセスしたいレジスタ番号を入れたレジス
タを rdに指定する．

7.1 レジスタマップ
offset 31 24 23 16 15 8 7 0
0x00 Status Register (Thread0)
0x01 Status Register (Thread1)
0x02 Status Register (Thread2)
0x03 Status Register (Thread3)
0x04 Status Register (Thread4)
0x05 Status Register (Thread5)
0x06 Status Register (Thread6)
0x07 Status Register (Thread7)
0x08 Thread Table Register (Thread0)
0x09 Thread Table Register (Thread1)
0x0a Thread Table Register (Thread2)
0x0b Thread Table Register (Thread3)
0x0c Thread Table Register (Thread4)
0x0d Thread Table Register (Thread5)
0x0e Thread Table Register (Thread6)
0x0f Thread Table Register (Thread7)
0x10 Thread ID Register (Thread0)
0x11 Thread ID Register (Thread1)
0x12 Thread ID Register (Thread2)
0x13 Thread ID Register (Thread3)
0x14 Thread ID Register (Thread4)
0x15 Thread ID Register (Thread5)
0x16 Thread ID Register (Thread6)
0x17 Thread ID Register (Thread7)

388 第 7章 システムレジスタ

offset 31 24 23 16 15 8 7 0
0x18 Instruction Count Register (Thread0)
0x19 Instruction Count Register (Thread1)
0x1a Instruction Count Register (Thread2)
0x1b Instruction Count Register (Thread3)
0x1c Instruction Count Register (Thread4)
0x1d Instruction Count Register (Thread5)
0x1e Instruction Count Register (Thread6)
0x1f Instruction Count Register (Thread7)
0x20 Count Register (Thread0)
0x21 Count Register (Thread1)
0x22 Count Register (Thread2)
0x23 Count Register (Thread3)
0x24 Count Register (Thread4)
0x25 Count Register (Thread5)
0x26 Count Register (Thread6)
0x27 Count Register (Thread7)
0x28 Compare Register (Thread0)
0x29 Compare Register (Thread1)
0x2a Compare Register (Thread2)
0x2b Compare Register (Thread3)
0x2c Compare Register (Thread4)
0x2d Compare Register (Thread5)
0x2e Compare Register (Thread6)
0x2f Compare Register (Thread7)
0x30 Floating-Point Control Register (Thread0)
0x31 Floating-Point Control Register (Thread1)
0x32 Floating-Point Control Register (Thread2)
0x33 Floating-Point Control Register (Thread3)
0x34 Floating-Point Control Register (Thread4)
0x35 Floating-Point Control Register (Thread5)
0x36 Floating-Point Control Register (Thread6)
0x37 Floating-Point Control Register (Thread7)
0x38 Issue Mode Register
0x39 CPU Count Register (Low)
0x3a CPU Count Register (High)

0x3b ～ 0x47 MMU Register
0x48 Exception PC Register (Thread0)
0x49 Exception PC Register (Thread1)
0x4a Exception PC Register (Thread2)
0x4b Exception PC Register (Thread3)
0x4c Exception PC Register (Thread4)
0x4d Exception PC Register (Thread5)
0x4e Exception PC Register (Thread6)
0x4f Exception PC Register (Thread7)
0x50 Exception Cause Register (Thread0)
0x51 Exception Cause Register (Thread1)
0x52 Exception Cause Register (Thread2)
0x53 Exception Cause Register (Thread3)
0x54 Exception Cause Register (Thread4)
0x55 Exception Cause Register (Thread5)
0x56 Exception Cause Register (Thread6)
0x57 Exception Cause Register (Thread7)

7.1. レジスタマップ 389

offset 31 24 23 16 15 8 7 0
0x58 Interruption Wait Register (Thread0)
0x59 Interruption Wait Register (Thread1)
0x5a Interruption Wait Register (Thread2)
0x5b Interruption Wait Register (Thread3)
0x5c Interruption Wait Register (Thread4)
0x5d Interruption Wait Register (Thread5)
0x5e Interruption Wait Register (Thread6)
0x5f Interruption Wait Register (Thread7)
0x60 External Interruption Level Register (Thread0)
0x61 External Interruption Level Register (Thread1)
0x62 External Interruption Level Register (Thread2)
0x63 External Interruption Level Register (Thread3)
0x64 External Interruption Level Register (Thread4)
0x65 External Interruption Level Register (Thread5)
0x66 External Interruption Level Register (Thread6)
0x67 External Interruption Level Register (Thread7)

0x68 ～ 0x69 -
0x6a Exception Base Address Register

0x6b ～ 0x6f -
0x70 ～ 0x73 Event Link In Register
0x74 ～ 0x77 Event Link Out Register
0x80～0x84 Instruction Cache Control Register
0x86～0x8c Data Cache Control Register

0x8e ROM Status
0x8f EXT Status
0x90 Multiplexer Arbitor Mode 256bit Bus
0x91 Multiplexer Arbitor Mode 32bit Bus
0x92 Multiplexer Watchdog Timer 256bit Bus Enable
0x93 Multiplexer Watchdog Timer 256bit Bus Mode
0x94 Multiplexer Watchdog Timer 256bit Bus Reset
0x95 Multiplexer Watchdog Timer 256bit Bus Count
0x96 Multiplexer Error Handler State 256bit Bus
0x97 Multiplexer Error Handler State 32bit Bus
0x98 Multiplexer Error Handler Instruction Cache
0x99 Multiplexer Error Handler Data Cache
0x9a Multiplexer Error Handler DMAC0
0x9b Multiplexer Error Handler DMAC1
0x9c Multiplexer Error Handler DMAC2
0x9d Multiplexer Error Handler PCI
0x9e Multiplexer Error Handler Bus Interface Unit
0x9f Multiplexer Error Handler MDMAC256

0xa0～0xb8 Address Decoder Control Register
0xb9 Multiplexer Watchdog Timer 32bit Bus Enable
0xba Multiplexer Watchdog Timer 32bit Bus Mode
0xbb Multiplexer Watchdog Timer 32bit Bus Reset
0xbc Multiplexer Watchdog Timer 32bit Bus Count
0xbd Multiplexer Error Handler MDMAC32
0xe0 Own Status Register
0xe1 Own Thread Table Register
0xe2 Own Thread ID Register
0xe3 Own Instruction Count Register
0xe4 Own Count Register

390 第 7章 システムレジスタ

offset 31 24 23 16 15 8 7 0
0xe5 Own Compare Register
0xe6 Own Floating-Point Control Register
0xe7 Own Bad Virtual Address Register
0xe8 Own Exception PC Register
0xe9 Own Exception Cause Register
0xea Own Interruption Wait Register
0xeb Own External Interruption Level Register

7.1.1 Status Register

アドレス: 0x00 ～ 0x07 (各スレッド毎)
スレッド毎の状態を示す．リセット後は 0x00000000に初期化される．

31 25
-

24
TS

23
PE

22
EV

21 12
-

11 8
IM

7
-

6
EB

5
C

4 3
MO

2
-

1
EL

0
IE

7.1. レジスタマップ 391

bit名 機能

TS Timer Start
1: タイマーをスタートする．
0: タイマーをストップする．

PE Period
1: Timer Interruptを周期的に発生する
0: One Shot

EV Exception Vector Location．
1: Bootstrap · · · 例外発生時にブート時用の例外ベクタへ制御が移る．
0: Normal · · · 例外発生時に通常の例外ベクタへ制御が移る．

IM Interruption Mask．1をセットすると，対応する種類の割り込みをマスクする．
11: Tiemr Interruption
10: Hardware Interruption
9: Software Interruption1
8: Software Interruption0

EBAE (EB) Exception Base Address Enable
1: Variable · · · TBA(Table Base Address)を基準とした番地の例外ベクタを使用する．
0: Fixed · · · 固定番地の例外ベクタを使用する．

CRAM (C) Control Register Access Mode
0: Precise · · · 直前の命令がコミットされるまで制御レジスタに対するアクセス命令の
発行を待たせる．

MO Mode Bit
00: Kernel Mode
01: Superviser Mode
10: User Mode

EL Exception Level．例外が発生すると 1にセットされる．ERET命令で 0にセットされ
る．

IE Interruption Mode
0: 全ての割り込みが無効
1: 全ての割り込みが有効

7.1.2 Thread Table Register

アドレス: 0x08 ～ 0x0f (各スレッド毎)
スレッドの状態を示す．基本的にスレッド制御命令によって変更を行う．読み書き可能であるが，強制

的に書き込みを行った場合の動作は保証しない．0x08意外は 0x00000000に初期化される．

31 14
-

13
E

12 9
STATE

8
K

7 0
PRIOR

392 第 7章 システムレジスタ

bit名 機能

E Thread Enable
0: そのコンテキストにアクティブスレッドが割り当てられていない．
1: そのコンテキストにアクティブスレッドが割り当てられている．

STATE Thread State
0000: Invalid
0001: Run
0010: CMEM Access Ready
0011: CMEM Access Not Ready
0100: Backup Now
0101: Restore Now
0110: Backup Wait
0111: Restore Wait
1000: Copy or Swap Now
1001: Stop Wait

KEEP (K) Keep Active Thread
0: 通常
1: スレッドをコンテキストキャッシュに退避する命令を無効にする．

PRIOR Thread Priority．256 Level．

7.1.3 Thread ID Register

アドレス: 0x10 ～ 0x17 (スレッド毎)

31 0
Thread ID

bit名 機能

Thread ID スレッドに対するアクセスの際のスレッドの指定に用いる．

7.1.4 Instruction Counter Register

アドレス: 0x18 ～ 0x1f (スレッド毎)

31 0
Instruction Counter

7.1. レジスタマップ 393

bit名 機能

Instruction
Counter

各スレッドが生成されてからコミットした命令の総数をカウントする．

7.1.5 Count Register

アドレス: 0x20 ～ 0x27 (スレッド毎)

31 0
Count

bit名 機能

Count 毎クロックカウントアップされるカウンタ．Compare Register と等しくなると 0にク
リアされる．

7.1.6 Compare Register

アドレス: 0x28 ～ 0x2f (スレッド毎)

31 0
Compare

bit名 機能

Compare このレジスタに 0 以外の値がセットされており，かつ Count Register の値がこのレ
ジスタの値と等しくなった時，タイマ割り込みを発生する．タイマ割り込みは Status
Registerの IMフィールドと IEフィールドで有効または無効に設定される．

7.1.7 Floating-Point Control Register

アドレス: 0x30 ～ 0x37 (スレッド毎)

31 6
-

5 4
RND

3 0
EM

394 第 7章 システムレジスタ

bit名 機能

RND Rounding Mode
00: Round to Nearest
01: Round to Zero
10: Round to Positive Infinity
11: Round to Negative Infinity

EM Exception Mask
各ビットに 1を立てることで、対応する例外をマスクすることができる。
3: Inexact Exception
2: Underflow Exception
1: Overflow Exception
0: Invalid Exception

7.1.8 Issue Mode Register

アドレス: 0x38
発行命令の選択方法を設定するレジスタ．0x00000000に初期化される．

31 28
-

27 25
SA3

24 22
SA2

21 19
SA1

18 16
SA0

15 13
MA3

12 10
MA2

9 7
MA1

6 4
MA0

3 2
SP

1 0
PO

7.1. レジスタマップ 395

bit名 機能

Sub Assign0,
1, 2, 3 (SA0,
1, 2, 3)

発行スロットにスレッドを割り当てる発行方式 (TH ASSIGN)で，SUB POLICYフィー
ルドが SUB FIXに設定されている状態で，スロット毎のメインで割り当てられてい
るスレッドから命令を発行できない場合にこのフィールドで設定されたスレッドから

命令を発行する．

Main As-
sign0, 1, 2, 3
(MA0, 1, 2,
3)

発行スロットにスレッドを割り当てる発行方式 (TH ASSIGN)で，スロット毎にメイ
ンで割り当てるスレッドを指定する．

Sub Policy
(SP)

発行命令選択ポリシーのサブポリシーを設定する．

• 1INST 1TH

00: NORMAL

01: PRED STOP · · · 次に発行すべき命令が分岐予測の結果として発行される命
令であり，キャンセルされる可能性がある場合はそのスレッドの優先度を低下さ

せる．

10: MINST STOP · · · あるスレッドのリオーダバッファの半数以上のエントリ
が埋まっている場合はそのスレッドの優先度を低下させる．

• TH ASSIGN

00: SUB PRIOR · · · スロットにメインで割り当てられているスレッドに発行で
きる命令がない場合は，スロットに割り当てられていないスレッドの中で最も優

先度の高いスレッドから命令を発行する．

01: SUB FIX · · · スロットにメインで割り当てられているスレッドに発行できる
命令がない場合は，スロットに対しサブで割り当てられているスレッドから命令

を発行する．サブのスレッドにも発行できる命令がない場合は，空きスロットと

なる．

Policy (PO) 発行選択ポリシーを設定する．

00: 1INST 1TH · · · 毎クロックサイクル，1スレッドから最大 1命令だけを発行可能
とするポリシー．4スレッド以上のスレッドが実行されていないと，発行スロットに空
きができてしまうことになる．

01: HIGHEST FAST · · · 毎クロックサイクル，最高優先度のスレッドから発行できる
だけの命令を発行し，余った発行スロットは次に高い優先度を持つスレッドに割り当

てる．さらに余った場合は 3番目に高い優先度を持つスレッドでも同様に行う．
10: TH ASSIGN · · · 発行スロットごとに特定のスレッドを割り当てて，そのスレッド
から命令を発行できない場合のみ他のスレッドの命令を発行する．

7.1.9 CPU Count Register

アドレス: 0x39, 0x3a

396 第 7章 システムレジスタ

31 0
CPU Count

bit名 機能

CPU Count 64bitカウンタ．リセット時から毎クロック 1ずつカウントアップしていく．0x39が下
位 32bit，0x3aが上位 32bitを示す．

7.1.10 MMU Register

アドレス: 0x3b ～ 0x47
MMU関連の設定レジスタ．

7.1.11 Exception PC Register

アドレス: 0x48 ～ 0x4f (スレッド毎)

31 0
Exception PC

bit名 機能

Exception
PC

例外を生じた命令，もしくは例外が発生した時点で最後にコミットされた PCを保持
するレジスタ．ERET命令で例外処理からの戻り番地として参照する．

7.1.12 Exception Cause Register

アドレス: 0x50 ～ 0x57 (スレッド毎)
発生した例外の情報を保持するレジスタ．0x00000000に初期化される．

31
D

30 17
-

16 12
HIRL

11
TI

10
HI

9
S1

8
S0

7
-

6 2
CODE

1 0
-

7.1. レジスタマップ 397

bit名 機能

Delay Bit
(D)

例外を発生した命令が Delay Slotの命令である場合に 1がセットされる．

Hardware
Interruption
Level
(HIRL)

外部割込みのレベル．

TI Timer Interruption Pending

HI Hardware Interruption Pending

S1 Software Interruption 1 Pending

S0 Software Interruption 0 Pending

Exception
Code
(CODE)

最後に発生した例外のコードを保持する．

7.1.13 Interruption Wait Register (スレッド毎)

アドレス: 0x58 ～ 0x5f

31 0
Interruption Wait

bit名 機能

Interruption
Wait

各ビットが割り込みレベル (IRL)に対応している．ビットが 1ならそのスレッドは対
応する IRLの外部割込みを受け付ける．

7.1.14 External Interruption Level Register (スレッド毎)

アドレス: 0x60 ～ 0x67

31 0
External Interruption Level

bit名 機能

External In-
terruption
Level

最後に IRCから入力された外部割り込みの IRLを保持する．

398 第 7章 システムレジスタ

7.1.15 Interruption Pending Register

アドレス: 0x68
現在 (多分)使用していない．

7.1.16 Interruption Clear Register

アドレス: 0x69
現在 (多分)使用していない．

7.1.17 Exception Base Address Register

アドレス: 0x6a

31 0
Exception Base Address

bit名 機能

Exception
Base
Address

例外ベクタのベースアドレスを保持する．Status Registerの EBAEビットを 1に設定
すると，例外発生時に EBAに例外の内容に従ったオフセットを加えた番地に制御が移
る．

7.1.18 Event Link In Register

アドレス: 0x70 ～ 0x73

7.1.19 Event Link Out Register

アドレス: 0x74 ～ 0x77

7.1.20 Instruction Cache Control Register

アドレス: 0x80～0x84
6章 (CACHE)のキャッシュのコントローロレジスタを参照。

7.1.21 Data Cache Control Register

アドレス: 0x86～0x8c
6章 (CACHE)のキャッシュのコントローロレジスタを参照。

7.1. レジスタマップ 399

7.1.22 ROM Status

アドレス: 0x8e

31 9
Reserved

8
UC

7 0
Count

bit名 機能

Uncache
(UC)

1を指定するとROMアクセス時に 32bit I/OバスにUncache信号を生成する (現在は
使用されていない)。Read時は反転した値が読み出される。

Count ROMアクセス時の Auto Readyを返すカウントを指定する。

7.1.23 EXT Status

アドレス: 0x8f

31 9
Reserved

8
UC

7 0
Count

bit名 機能

Uncache
(UC)

1を指定すると外部バスアクセス時に 32bit I/OバスにUncache信号を生成する (現在
は使用されていない)。Read時は反転した値が読み出される。

Count 外部バスアクセス時の Auto Readyを返すカウントを指定する。

7.1.24 Multiplexer Arbitor Mode 256bit Bus

アドレス: 0x90

31 1
Reserved

1
MO

bit名 機能

Mode (MO) バスアービトレーションのモードを指定する。0を指定すると固定優先度、1を指定す
るとラウンドロビン方式でバスマスタにバス権を与える。

400 第 7章 システムレジスタ

7.1.25 Multiplexer Arbitor Mode 32bit Bus

アドレス: 0x91

31 1
Reserved

1
MO

bit名 機能

Mode (MO) バスアービトレーションのモードを指定する。0を指定すると固定優先度、1を指定す
るとラウンドロビン方式でバスマスタにバス権を与える。

7.1.26 Multiplexer Watchdog Timer 256bit Bus Enable

アドレス: 0x92

31 1
Reserved

1
MO

bit名 機能

Mode (MO) バスアービトレーションのモードを指定する。0を指定すると固定優先度、1を指定す
るとラウンドロビン方式でバスマスタにバス権を与える。

7.1.27 Multiplexer Watchdog Timer 256bit Bus Mode

アドレス: 0x93
使用していない。

7.1.28 Multiplexer Watchdog Timer 256bit Bus Reset

アドレス: 0x94

7.1.29 Multiplexer Watchdog Timer 256bit Bus Count

アドレス: 0x95

7.1.30 Multiplexer Error Handler State 256bit Bus

アドレス: 0x96

7.1. レジスタマップ 401

7.1.31 Multiplexer Error Handler State 32bit Bus

アドレス: 0x97

7.1.32 Multiplexer Error Handler Instruction Cache

アドレス: 0x98

7.1.33 Multiplexer Error Handler Data Cache

アドレス: 0x99

7.1.34 Multiplexer Error Handler DMAC0

アドレス: 0x9a

7.1.35 Multiplexer Error Handler DMAC1

アドレス: 0x9b

7.1.36 Multiplexer Error Handler DMAC2

アドレス: 0x9c

7.1.37 Multiplexer Error Handler PCI

アドレス: 0x9d

7.1.38 Multiplexer Error Handler Bus Interface Unit

アドレス: 0x9e

7.1.39 Multiplexer Error Handler MDMAC256

アドレス: 0x9f

7.1.40 Address Decoder Control Register

アドレス: 0xa0～0xb8
4章 (アドレスデコーダ)のアドレスマップを参照。

7.1.41 Multiplexer Watchdog Timer 32bit Bus Enable

アドレス: 0xb9

402 第 7章 システムレジスタ

7.1.42 Multiplexer Watchdog Timer 32bit Bus Mode

アドレス: 0xba

7.1.43 Multiplexer Watchdog Timer 32bit Bus Reset

アドレス: 0xbb

7.1.44 Multiplexer Watchdog Timer 32bit Bus Count

アドレス: 0xbc

7.1.45 Multiplexer Error Handler MDMAC32

アドレス: 0xbd

7.1.46 Own Status Register

アドレス: 0xe0

7.1.47 Own Thread Table Register

アドレス: 0xe1

7.1.48 Own Thread ID Register

アドレス: 0xe2

7.1.49 Own Instruction Count Register

アドレス: 0xe3

7.1.50 Own Count Register

アドレス: 0xe4

7.1.51 Own Compare Register

アドレス: 0xe5

7.1.52 Own Floating-Point Control Register

アドレス: 0xe6

7.1. レジスタマップ 403

7.1.53 Own Bad Virtual Address Register

アドレス: 0xe7

7.1.54 Own Exception PC Register

アドレス: 0xe8

7.1.55 Own Exception Cause Register

アドレス: 0xe9

7.1.56 Own Interruption Wait Register

アドレス: 0xea

7.1.57 Own External Interruption Level Register

アドレス: 0xe8

405

8
例外処理

8.1 割り込みコントローラ (IRC)

初期アドレス: 0xffff9000

8.1.1 レジスタマップ

offset 31 24 23 16 15 8 7 0
0x00 31ch 30ch 29ch 28ch 27ch 26ch 25ch 24ch 23ch 22ch 21ch 20ch 19ch 18ch 17ch 16ch
0x04 15ch 14ch 13ch 12ch 11ch 10ch 9ch 8ch 7ch 6ch 5ch 4ch 3ch 2ch 1ch 0x00
0x08 Request Sense Register 0
0x0c Request Clear Register 0
0x10 Mask Register MI

0x14 26’h0 CL IRL Latch
0x18 31’h0 Mode

8.1.2 Trigger Mode Register

オフセット: 0x00,0x04

31 30
31ch

29 28
30ch

27 26
29ch

25 24
28ch

23 22
27ch

21 20
26ch

19 18
25ch

17 16
24ch

15 14
23ch

13 12
22ch

11 10
21ch

9 8
20ch

7 6
19ch

5 4
18ch

3 2
17ch

1 0
16ch

31 30
15ch

29 28
14ch

27 26
13ch

25 24
12ch

23 22
11ch

21 20
10ch

19 18
9ch

17 16
8ch

15 14
7ch

13 12
6ch

11 10
5ch

9 8
4ch

7 6
3ch

5 4
2ch

3 2
1ch

1 0
0x00

406 第 8章 例外処理

bit名 機能

Trigger 各チャネルのトリガモードの設定．offset 0x00ではチャネル 31-17まで，offset0x04で
はチャネル 16-1のトリガモードの設定を行う．

bit Trigger Mode

00 High Level

01 Low Level

10 Rise Edge

11 Fall Edge

8.1.3 Request Sense Register

31 1
Request Sense Register

0
0

bit名 機能

Request
Sense

Trigger Mode Registerで設定されたトリガが端子 IRLIN,IRQINに入力されると，そ
の割り込みチャネルに対応したビットに 1がセットされる．bit31が IRQ31, bit1が
IRQ1に対応．Readのみ

8.1.4 Request Clear Register

31 1
Request Clear Register

0
0

bit名 機能

Request
Clear

Request Clear Registerの bit31-1の中で 1がセットされるとそれに対応する保持され
ていた割り込み要求が 0になる．writeのみ．

8.1.5 Mask Register

31 1
Mask Register

0
MI

8.2. 動作/使用方法 407

bit名 機能

Mask 31-1ビットが割り込みチャネルの 31-1に対応し，1をセットすることで割り込みをマ
スクできる．ただし，Maskが 1の場合でもRequest Sense Register はセットされる．

MI 0ならば，IRLOUTに割り込みレベルラッチの内容を出力．1ならばマスクし，IRLOUT
には “L”を出力

8.1.6 IRL Latch/Clear

31 6
26’h0

5
CL

4 0
IRL Latch

bit名 機能

IRL Latch 割り込みレベルラッチの内容を出力

CL 1を書き込むことで，割り込みレベルラッチの内容をクリアし，次の割り込みレベル
をラッチする．

8.1.7 IRC Mode Register

31 1
31’h0

0
Mode

bit名 機能

Mode 1 ならば端子 IRLIN を IRQIN[31:27] として使用．0 ならば端子 IRLIN をそのまま
IRLOUTに出力．

8.2 動作/使用方法

8.2.1 IRC

IRCモードレジスタが 1に設定されると，入力端子 IRLIN[4:0](IRQIN[31:27]), IRQIN[26:1]に入力さ
れた割り込み信号はトリガモードレジスタに設定されたトリガモードに従ってその割り込みを保持します．

保持された割り込みはMASKレジスタでマスクされていないもののうちでプライオリティが一番高いも
のがコード化されて割り込みレベルラッチ (IRL Latch)に保持されます．保持された IRL Latchのデータ
はMASKレジスタのMIビットが (ビット 0)が 0の場合，端子 IRLOUT[4:0]に出力されます．

IRCモードレジスタが 0に設定されると，端子 IRLIN[4:0]に入力されたデータがそのまま IRLOUT[4:0]
に出力されます．

408 第 8章 例外処理

表 8.1: 割り込みマップ

IRQ31 Bus Error

IRQ30 Address Error

IRQ29 Watch Dog Timer Error

IRQ28 Link

IRQ27 Pulse Counter 8

IRQ26 DMAC2

IRQ25 DMAC1

IRQ24 DMAC0

IRQ23 PCI

IRQ22 USB

IRQ21 IEEE1394

IRQ20 Pulse Counter 7

IRQ19 Pulse Counter 6

IRQ18 Pulse Counter 5

IRQ17 Pulse Counter 4

IRQ16 Pulse Counter 3

IRQ15 Pulse Counter 2

IRQ14 Pulse Counter 1

IRQ13 Pulse Counter 0

IRQ12 UART 1

IRQ11 UART 0

IRQ10 External IO 1

IRQ9 External IO 0

IRQ1-8 Lowに固定

8.2.2 RMT固有機能

• IRL Unit
割り込みが入る度に実行中の全てのスレッドが割り込みハンドラを起動するのでは，非効率的であ

り，割り込みに対するレスポンス時間の増加を招いてしまいます．そのため，RMTでは IRL Unit
という IRLを各スレッドに割り当てる機構を持ちます．

IRL Unit にはスレッド毎に Interruption Wait Register が用意されています．Interruption Wait
Registerの各ビットは IRLに対応しています．IRCが出力した IRLを受け取り，Interruption Wait
Register の IRLに対応するビットが 1のとき，割り込みを受け付け，Exception Unit に外部割り込
みが発生したこととその IRLを通知します．

Interruption Wait Registerはコンテキストスイッチの際にレジスタセットと同様にバックアップ及
びリストアされるために，コンテキストスイッチの度に設定する必要はありません．

• 割り込みによるスレッド起動
外部イベントによるスレッド制御の際のレスポンス時間を短縮するために，停止状態にあるスレッド

8.2. 動作/使用方法 409

(Status Registerの STATEフィールドが 0010 or 0011) に対して外部割り込みがかかった場合はそ
のスレッドを実行状態にします．

ただし，この際に Interruption Wait Registerの対象とする割り込みに対応するビットが 1である必
要があります．

8.2.3 例外処理プロセス

タイマ割り込み，ハードウェア割り込み (外部割り込み)，ソフトウェア割り込みが発生すると，Exception
Cause Registerの対応するPending Registerが 1にセットされます．また，外部割り込みの場合はException
Cause Registerの HIRLに通知された IRL をセットします．これらの割り込みが通常通り発生するには
Status Registerの Interruption Mode(bit0) が 0, Interruption Mask(bit11-8)の対応するビットが 0であ
る必要があります．

これらの割り込みやRMTPUで例外が発生した場合，Status Registerの Exception Level(bit1) が 0な
らば通常通り例外処理が発生します．Exception UnitではCPU coreの exception信号やException Cause
Registerの Pending Registerを参照し，実際に例外処理を行います．例外処理の優先度は例外，タイマ割
り込み，ハードウェア割り込み，ソフトウェア割り込みの順です．

例外処理が発生すると，次の動作が行われます．

• Status Registerの Exception Levelを 1にセット

• その時点のモードを保持し，カーネルモードへ移行

• 例外を生じた命令，もしくは例外が発生した時点で最後にコミットされたPCをException PC Register
に保持

• Exception Code Registerの CODEフィールドに例外を識別するコード (表 8.2)を書き込む

• Status Registerの Exception Base Address Enableが 1ならば Exception Base Address Registerの
値に例外の内容に従ったオフセットの値を加えた番地に制御が移る

Exception Base Address Enableが0ならば固定番地 (Exception Vector Locationが1ならば0xbfc00200,0
ならば 0x80000000)に制御が移る

外部割り込みが起こった際に，対象となるスレッドが停止状態にある場合は通常の例外処理と異なり，ス

レッドが実行状態へ移行する処理のみ行われます．

外部割り込みに対する例外処理ルーチンでは処理に対応した IRCに保持されている割り込み要求をクリ
アし，IRL Latchをクリアする必要があります．その結果次の保持されている割り込みを IRL Latchに保
持することができ，Exception Cause Registerの対応する Pendingフィールドが更新されます．タイマ割
り込みやソフトウェア割り込みの場合は明示的に Exception Cause Registerの対応する Pendingフィール
ドをクリアする必要があります．

例外処理の終了時には ERET命令を実行することで次の動作が行われます．

• Status Rergisterの Exception Levelを 0にセット

• モードを例外発生時のものに戻す

• Exception PC Registerに格納された番地に制御が移る

410 第 8章 例外処理

表 8.2: Exception Code, Offset

種類 コード オフセット

I-TLB SPR Address Miss 0x01 0x010

I-TLB All Entry Locked 0x02 0x020

I-TLB No Entry Matched 0x03 0x030

I-TLB Thread Mode Error 0x04 0x040

I-TLB Protection Error 0x05 0x050

D-TLB SPR Address Miss 0x06 0x060

D-TLB All Entry Locked 0x07 0x070

D-TLB No Entry Matched 0x08 0x080

D-TLB Thread Mode Error 0x09 0x090

D-TLB Protection Error 0x0a 0x0a0

Coprocessor Unusable 0x0b 0x0b0

Reserved (Invalid) Instruction 0x0c 0x0c0

Sytem Call 0x0d 0x0d0

Break Point 0x0e 0x0e0

Integer Overflow 0x0f 0x0f0

Divide By Zero 0x10 0x100

Trap 0x11 0x110

Data Address Miss Align (Load) 0x12 0x120

Data Address Miss Align (Store) 0x13 0x130

Floating Point Overflow 0x14 0x140

Floating Point Underflow 0x15 0x150

Floating Point Divide By 0 0x16 0x160

Floating Point Inexact 0x17 0x170

Floating Point Invalid Operation 0x18 0x180

Reserve 0x19 0x190

Vector Integer Exception 0x1a 0x1a0

Vector Floating Exception 0x1b 0x1b0

Timer Interruption 0x1c 0x1c0

Hardware Interruption 0x1d 0x1d0

Software Interruption 0x1e 0x1e0

Software Interruption 0x1f 0x1f0

411

9
クロックジェネレータ

9.1 接続図

FIN_A
PLL_A

FOUT_A

Link

CPU

SDRAM

Outer

Counter

PWM

CPU, I/O

SDRAM

Outer

Link

Counter

PWM

F_A,R_A,OD_A,
BP_A,OEB_A

1/4

1/2

PWM Input PWM Input

Link SDRAM Link SDRAM1/2

図 9.1: クロック生成部

412 第 9章 クロックジェネレータ

ピン名 概要 デフォルト値

FIN A クロック入力 -

FOUT A PLL出力 -

F A PLLの逓倍数を制御する 16

R A PLLの逓倍数を制御する 3

OD A PLLの逓倍数を制御する 0

PD A PLL Power Down Mode (1:Power Down) 0

BP A PLL Bypass Mode (1: Bypass) 0

OEB A PLL Output Enable (0:Enable) 0

デフォルトでは FIN Aより 75MHzのクロックを入力し，PLL Aから 800MHzが出力される．これら
を分周器で分周し各モジュールにクロックを供給する．

9.2 制御レジスタ

初期アドレス: 0xffffa000

9.2.1 Clock Enable

オフセット: 0x0000
各クロックを有効/無効にする．対応するビットを 1で無効，0で有効になる．初期値は全て 0．

31 22
Reserve

21 0
Enable

bit名 機能

Enable 21: Link Sdram, 20: PWM Input, 19: Link, 18: Outer, 17: PWM, 16: Counter,
15: SDRAM, 14: Vector Floating-Point, 13: Vector Integer, 12: Synchronize, 11:
Floating-Point Reservation Station, 10: SIMD, 9: FPU, 8: Complex INT, 7: Context
Cache, 6: PCI, 5: USB, 4: IEEE1394, 3: DMAC2, 2: DMAC1, 1: DMAC0, 0: CPU

9.2.2 Soft Reset

オフセット: 0x0004
各モジュールにリセットをかける．対応するビットを 0にするとリセットがかかる．ビットを 1に戻さ

ない限りリセット状態が続く (CPUを除く)．

31 22
Reserve

21 0
Reset

9.2. 制御レジスタ 413

bit名 機能

Reset 21: Link Sdram, 20: PWM Input, 19: Link, 18: Outer, 17: PWM, 16: Counter,
15: SDRAM, 14: Vector Floating-Point, 13: Vector Integer, 12: Synchronize, 11:
Floating-Point Reservation Station, 10: SIMD, 9: FPU, 8: Complex INT, 7: Context
Cache, 6: PCI, 5: USB, 4: IEEE1394, 3: DMAC2, 2: DMAC1, 1: DMAC0, 0: CPU

9.2.3 Divider Ratio

オフセット: 0x0008～0x001c, 0x0028, 0x002c
各クロックの分周率を設定する．対応する分周器のアドレスと初期値は以下の通り．

分周器 デフォルト値 アドレスオフセット

CPU 1/2 0x0008

SDRAM 1/4 0x000c

Counter 1/8 0x0010

PWM 1/512 0x0014

Outer 1/8 0x0018

Link 1/1 0x001c

PWM Input 1/512 0x0028

Link SDRAM 1/4 0x002c

31 17
Reserve

16
T

15 0
Ratio

bit名 機能

T 分周せずにクロックをスルーする (1/1指定時)

Ratio クロックの分周率を指定する．指定した数値の半分 (小数点以下切捨て)でクロックが
立ち下がり，指定した数値でクロックが立ち上がる．1を指定した場合の動作は保証
外．1/1の場合は Tビットを 1にすること．

9.2.4 Clock Synchronization

オフセット: 0x0020
1を指定したクロックの立ち上りエッジを CPUのクロックにそろえる．次のクロックで自動的に値はリ

セットされる．

31 8
Reserve

7 1
Sync

0
-

414 第 9章 クロックジェネレータ

bit名 機能

Sync 7: Link SDRAM, 6: PWM Input, 5: Link, 4: Outer, 3: PWM, 2: Counter, 1:
SDRAM

9.2.5 All Reset

オフセット: 0x0024
このアドレスに書き込みを行うと全てにリセットをかける．

415

10
スレッド制御

Responsive Multithreaded Processorにおけるスレッド制御方法について述べる．

10.1 スレッドの種類

RMT Processorのスレッドは 2つに分類される．

• アクティブスレッド

• キャッシュスレッド

アクティブスレッドとはレジスタファイルやプログラムカウンタなどの資源が確保され，プロセッサ内

ですぐにでも実行可能なスレッドを示す．キャッシュスレッドとはコンテキストキャッシュ内に保持されて

いるスレッドを示す．RMT Processorが実行するスレッドはアクティブスレッドで実行状態にあるスレッ
ドのみである．リセット時，スレッド IDが 0のスレッドが優先度 0でアドレス 0から実行される．

10.2 スレッド制御命令

10.2.1 作成・削除

新しくスレッドを作成する場合はmkth命令を用いる．また，アクティブスレッドをコピーして新しい
スレッドを作成することも可能である．

• mkth

新しくアクティブスレッドを作成する．rsでスレッド ID，rtでスタートアドレスを設定する．mkth
命令はアクティブスレッドを作成するだけで実行は開始しない．つまり mkth命令で作成されたス
レッドはストップ状態にある．実行を開始するためには runth命令を使用する．スレッドの作成に成
功すると rdに 1が返り，失敗すると 0が返る．

416 第 10章 スレッド制御

• delth

アクティブスレッドを削除する．rsで削除するスレッドの IDを指定する．スレッドの削除に成功す
ると rdに 1が返り，失敗すると 0が返る．この命令が成功すると指定されたスレッドはプロセッサ
から削除される．

• cpthtoa

アクティブスレッドを別のアクティブスレッドとしてコピーする．rsでコピー元のスレッド ID，rt
で新たに作成するスレッドの IDを指定する．cpthtoa命令はアクティブスレッドのコピーを新しい
アクティブスレッドとして作成する．作成したコピーはストップ状態にあり，実行を開始するために

は runth命令を使用する．スレッドのコピーに成功すると rdに 1が返り，失敗すると 0が返る．

• cpthtom

アクティブスレッドを別のキャッシュスレッドとしてコピーする．rsでコピー元のスレッド ID，rt
で新たに作成するスレッドの IDを指定する．cpthtom命令はアクティブスレッドのコピーを新しい
キャッシュスレッドとして作成する．作成したコピーはコンテキストキャッシュ内にあるため，実行

を開始するためには rstrth命令などでアクティブスレッドにしなければならない．スレッドのコピー
に成功すると rdに 1が返り，失敗すると 0が返る．

10.2.2 状態制御

アクティブスレッドは実行・停止のいずれかの状態にある．これらの状態は以下の命令を用いて制御する．

• runth

停止状態のアクティブスレッドを実行状態にする．rsでスレッド IDを指定する．指定されたスレッ
ドは実行状態になり，優先度に従って実行が開始される．実行開始に成功すると rdに 1が返り，失
敗すると 0が返る．

• stopth

実行状態のアクティブスレッドを停止状態にする．rsでスレッド IDを指定する．指定されたスレッ
ドは停止状態になり，命令実行のスケジューリングからはずされる．再び実行するためには runth命
令を実行する．停止に成功すると rdに 1が返り，失敗すると 0が返る．

• stopslf

自分自身を停止状態にする．停止に成功すると rdに 1が返り，失敗すると 0が返る．

• chgpr

スレッドの優先度を変更する．rsで変更するスレッドの ID，rtで新しい優先度を指定する．優先度
の変更に成功すると rdに 1が返り，失敗すると 0が返る．優先度が変更されると，つぎのクロック
から新しい優先度で命令実行が制御される．

10.2.3 転送

RMT Processorはコンテキストキャッシュを持ち，コンテキストスイッチにおけるオーバヘッドを軽減
している．以下にコンテキストキャッシュとの転送命令を示す．

10.3. 状態遷移 417

• bkupth

アクティブスレッドをコンテキストキャッシュに退避する．rsで退避するアクティブスレッドの ID
を指定する．指定されたアクティブスレッドは実行を停止し，コンテキストキャッシュに退避される．

退避に成功すると rdに 1が返り，失敗すると 0が返る．

• bkupslf

自分自身をコンテキストキャッシュに退避する．退避に成功すると rdに 1が返り，失敗すると 0が
返る．

• rstrth

キャッシュスレッドをアクティブスレッドとして復帰する．rsで復帰するスレッドの IDを指定する．
指定されたキャッシュスレッドはコンテキストキャッシュから読み込まれ，停止状態になる．復帰に

成功すると rdに 1が返り，失敗すると 0が返る．

• swapth

アクティブスレッドとキャッシュスレッドを入れ換える．rsで退避するアクティブスレッドの ID，rt
で復帰するキャッシュスレッドの IDを指定する．指定されたアクティブスレッドは実行を停止し，コ
ンテキストキャッシュに退避される．同時に指定されたキャッシュスレッドがコンテキストキャッシュ

から読み込まれ，実行状態になる．入れ換えに成功すると rdに 1が返り，失敗すると 0が返る．

• swapslf

自分自身とキャッシュスレッドを入れ換える．rtで復帰するキャッシュスレッドの IDを指定する．自
分自身の実行を停止し，コンテキストキャッシュに退避する．同時に指定されたキャッシュスレッド

がコンテキストキャッシュから読み込まれ，実行状態になる．入れ換えに成功すると rdに 1が返り，
失敗すると 0が返る．

10.3 状態遷移

RMT Processorにおけるスレッドの状態遷移を図 10.1に示す．

Active Thread
RUN

Active Thread
STOP

Cache Thread

mkth,
cpthtoa

delth

delth

cpthtom

runth

stopth,
stopslf

bkupth,
bkupslf,
swap(rs),
swapslf

bkupth,
swap(rs)

swap(rt),
swapslf(rt)

rstrth

図 10.1: スレッドの状態遷移

図 10.1において Active Thread RUN状態のスレッドのみ優先度に従ってプロセッサで実行される．

419

11
同期

11.1 共有レジスタ

31個 (レジスタ番号 32は設定レジスタ)の共有レジスタ (64bit)を持ち，そのレジスタにロックをかけ
ることで同期を取ることが可能です．

共有レジスタには次の 3bitとスレッド IDが割り当てられ，その共有レジスタの使用権利をどのスレッ
ドが持つのか意味します．

• Full/Empty bit

• Exclusive / Producer-Consumer bit

• Barrier bit

Full/Empty bitが現在このレジスタにロックがかかっているかを示し，他 2bitはどの種類のロックがか
かっているかを示します．

11.2 同期命令

共有レジスタには次の命令を用いてアクセス可能です．

• RGPEX, WGPEX, RFPEX, WFPEX
Read命令は対象となる共有レジスタの F/E bitが 0のときに実行され，共有レジスタの値をデス
ティネーションレジスタに書き込みます．Read命令が成功すると，対象のレジスタの F/E bitが 1
にし，自分のスレッド IDを書き込みます．

Write命令は対象の共有レジスタの F/E bitが 1でなおかつ自分のスレッド IDが共有レジスタの権
利を所持しているスレッド ID と等しい場合に実行されます．成功すると，ソースレジスタの値を共
有レジスタに書き込み，F/E bitを 0にすることでロックを開放します．ロックが掛かっていない場
合には NOPとなります．

• GPCO, GPPR, FPCO, FPPR
Write命令は対象となる共有レジスタの F/E bitが 0のときに実行され，ソースレジスタの値を共有

420 第 11章 同期

レジスタに書き込みます．成功すると対象のレジスタの F/E bitを 1にします．また，同時にスレッ
ド IDを命令で指定し，その IDをロックをかけた対象の共有レジスタの権利者として書き込みます．

Read命令は対象となる共有レジスタの F/E bitが 1でなおかつ共有レジスタの権利を所持している
スレッド IDが自分のスレッド IDと一致する場合に実行され，共有レジスタの値をデスティネーショ
ンレジスタに読み出します．命令の終了時には F/E bitを 0にします．

• RGPSH, WGPSH, RFPSH, WFPSH
ロックをかけない共有レジスタアクセス命令です．対象の F/E bitが 1のときは実行できません．

• BAR
バリア命令です．共有レジスタは到着スレッド数を数えるのに使用されます．ソースレジスタは対象

となるスレッド数を示します．初めて実行される場合，対象の共有レジスタの F/E bitが 0 のとき
に実行できます．成功すると共有レジスタの値を 1にし，F/E bitを 1にします．2番目以降のバリ
ア命令では共有レジスタの値を incrementしソースレジスタの値と等しくなるまで，そのスレッドは
ストールします．ソースレジスタの値と等しくなると，全てのスレッドのストールを解除します．

共有レジスタアクセス命令の実行条件を表 11.1に示します．

表 11.1: 共有レジスタアクセスの実行条件

命令種別 実行条件 実行後 注釈

F/E E/P bar F/E E/P bar

EX READ E x x F E 0

EX WRITE F E 0 E x x TH ID一致，条件以外では NOP

CON READ F P 0 E x x 対象 TH IDと一致

PRO WRITE E x x F P 0

SH READ E x x E x x

SH WRITE E x x E x x

BARRIER E x x F x 1 バリアに初めに到着する命令

F x 1 F x 1 バリア待ち

E x 0 バリア解放

同期命令の失敗時にはデッドロックの回避のために，対象のスレッドのパイプライン中の命令を全て開

放し，フェッチを止めることでストールさせます．対象のレジスタのロックが開放される (CON READで
は書き込みが起こる)とストールが解除され，再び実行されます．
また，同期命令の失敗時に次のスレッド IDを調べ，そのスレッドがコンテキストキャッシュ内に退避さ

れている場合は同期命令を失敗したスレッドと入れ換えます．

• 対象の共有レジスタにロックが掛かっている場合
ロックを獲得しているスレッド

• Read Consumer命令が値が書き込まれておらず失敗した場合
Read Consumer命令で指定する相手スレッド

また，バリア命令により他の到着スレッドを待つ場合には，同じバリア命令を実行するグループのス

レッドを調べます．その際，そのスレッドが属するグループを設定する命令としてPBAR命令があります．
PBAR命令はバリアに使用する共有レジスタを指定します．バリア待ちのスレッドは現在使用している共

11.2. 同期命令 421

有レジスタ番号と同じ値を PBAR命令で設定されたスレッドがコンテキストキャッシュ内にあるか調べ，
存在する場合は自分と入れ換えます．

この同期命令失敗時のスレッド切替え機能は共有レジスタの 31番に 0以外の値を書き込むことで有効に
なります．defaultでは無効化されています．

423

12
Vector Unit

12.1 概要

RMT Processorの Vector Unitのブロック図を図 12.1 に示す。Vector Integer Unit、Vector Floating
Point Unit共に大きく 3つの部分から成る。

Status
Register

Vector Register
Controller

Vector
Compound
Instruction

Buffer

Vector Control
Unit

Vector
Register Unit
Scalar Register

Vector Register

Vector Execution
Unit 0

Execution
Controller

Vector Execution
Unit 1

Execution
Controller

from Reservation Station

to Common Data Bus to Common Data Busto Memory Unit

図 12.1: Vector Unitのブロック図

• Vector Control Unit

演算ユニットの制御、命令発行を行い、後述する Vector Registerの割り当て、解放を行う。Vector
Length、Mask Bitなどの Vector Unitによる演算に必要な制御情報を管理する。

• Vector Register Unit

424 第 12章 Vector Unit

ベクトル演算を行うためのレジスタを持つ。このレジスタはVector Execution Unitとの接続ポート
の他にMemory Unitとの接続ポートを持ち、Memoryとのデータ転送が行われる。RMT Processor
は 512個のレジスタを持つ。

• Vector Execution Unit

Vector Register Unitからベクトル要素を取り出し、ベクトル演算を行い、結果を Vector Register
Unitに格納する。

12.1.1 Vector Execution Unit

Vector Execution Unitのブロック図を図 12.2 に示す。

Execution Controller

VINT VINT DIV

Accumulator MUX

Reg. ID

Data

Reg. ID,
Data

Op, Reg. ID, Immediate

to CDB

Execution Controller

VFP VFP FDIV

Shifter MUX

Reg. ID

Data

Reg. ID,
Data

Op, Reg. ID, Immediate

to CDB

Vector Integer Unit Vector Floating Point Unit

(a) Vector Integer Unit (b) Vector Floating Point Unit

VINT: Ineger Unit
DIV: Divider
MUX: Multiplexer
VFP: Floating Point Unit
FDIV: Floating Point Divider
CDB: Common Data Bus

図 12.2: Vector Execution Unitのブロック図

Execution Controllerは Vector Register Unitから必要なベクトルデータを取り出し、Vector Integer (
Floating Point) Unitへ送る。

RMT Processorではベクトル演算性能を向上させるために、Vector Integer Unitは 8つ、Vector Floating
Point Unitは 4つの演算器を持つ。それぞれの演算器はパイプライン化され、1クロックに 1つの演算を
開始する。

割り算は使用頻度が低いため、RMT Processorでは Vector Divide Unitを 2つある Vector Execution
Unitのうちの片方のみ除算回路を持つ。

12.1.2 命令フォーマット

ベクトル演算命令のフォーマットはR-Typeを拡張したものを用いる。OpecodeフィールドにはVector
Integer命令用に 011110 (Word)、0x110110 (Paired HalfWord)、111110 (Quad Byte)、Vector Floating
Point命令用に 011111 (Double / Single)、111111 (Paired Single)を用いる。図 12.3 にベクトル演算命令
のフォーマットを示す。

rs、rtフィールドはベクトル演算の Source Register、rdフィールドはDestination Registerを指定する。
functionフィールドにはベクトル演算の種類を指定する。subfuncフィールドはベクトル演算命令により

12.2. Reserve/Release命令 425

31 26 25 21 20 16 15 1110 6 5 0
011110 rs rt rd subfunc function

(a) Vector Integer Instruction Format

31 26 25 21 20 16 15 1110 6 5 0
011111 rs rt rd function

(b) Vector Floating Point Instruction Format

VINT

VFP

subfunc

図 12.3: ベクトル演算命令フォーマット

用途が異なり、ベクトル - スカラ演算を行う際に用いる scalar bitや比較命令において比較条件を指定す
る cond bit、命令の順序制御を行う sync bitが含まれる。

12.2 Reserve/Release命令

ベクトル演算を行うためには大きなベクトルレジスタが必要になる。これを各スレッドに持たせるとゲー

トサイズが大きくなり、また、ベクトル演算を行わないスレッドがある場合にはレジスタが無駄になる。

よって 1つのベクトルレジスタを用意し、それを複数のスレッドで共有して使用することによりベクトル
演算を行う。ベクトルレジスタを必要な量だけ確保して使うことにより、複数のスレッドでベクトルレジス

タを共有する。ベクトルレジスタの共有は、図 12.4 のようにベクトルレジスタを 4つの領域に分け、128
エントリ、256エントリ、512エントリの固定サイズで確保する。スカラレジスタも同様に 4つの領域に分
け、確保したベクトルレジスタの大きさに応じて使用できるスカラレジスタの大きさが決定する。

Vector Register

128entry

128entry

128entry

128entry

256entry

256entry

0

128

256

384

512entry

8entry

8entry

8entry

8entry

16entry

16entry

32entry

Scalar Register

図 12.4: ベクトルレジスタのサイズ

確保したベクトルレジスタは、必要なベクトル長により分割される。ベクトル長は、8length、16length、
32length、64lengthの中から選択する。図 12.5 に RMTProcessorで選択できるベクトルレジスタの構成
を示す。

(a)は 128個のベクトルレジスタを確保した場合の構成を示している。この場合、選択できる構成は、ベ
クトル長 8のレジスタを 16個、もしくはベクトル長 16のレジスタを 8個のどちらかとなる。(b)は 256
個のベクトルレジスタを確保した場合の構成で、ベクトル長 8のレジスタを 32個、ベクトル長 16のレジ
スタを 16個、ベクトル長 32のレジスタを 8個持つ構成の中から選択する。(c)は 512個のベクトルレジ

426 第 12章 Vector Unit

8length16 8

16length

(a) Register Configuration of 128 Entry

8length32 16

16length

8

32length

(b) Register Configuration of 256 Entry

32

16length

32length

16 8

64length

(c) Register Configuration of 512 Entry

図 12.5: ベクトルレジスタの構成

スタを確保した場合で、ベクトル長 16のレジスタを 32個、ベクトル長 32のレジスタを 16個、ベクトル
長 64のレジスタを 8個といった構成の中から一つを選択する。

Vector Unitで演算を行う場合、ベクトル演算を行う前にまず使用する分だけベクトルレジスタを確保
する。ベクトルレジスタの確保は Vector Reserve命令で行う。また Vector Unitで演算を行い、これ以上
Vector Unitを使用しなくなった場合は Vector Release命令で確保していたベクトルレジスタを開放する
ことにより、別のスレッドが新たに Vector Unitで演算を行うことが可能となる。Reserve、Release命令
を用いたプログラム例を図 12.6 に示す。

addu $11, $0, 0x000A # 256 Entry (32Depth x 8) Mode

virsv $10, $11 # Reserve Instruction

== Vector Execution ==

virls $10 # Release Instruction

図 12.6: ベクトル演算のプログラム例

Vector Reserve命令のオペランド (rs)で図 12.5 のどの構成でベクトルレジスタを使用するのかを指定
する。指定する値 (Mode)は表 12.1 の中から選択する。値は上位 2bitが確保するレジスタの大きさ、下

12.3. Status Register 427

位 2bitがベクトル長を示す。Vector Reserve命令はベクトルレジスタの確保が成功すると rdに 1を返す。
rsで指定されたサイズのベクトルレジスタが確保できない場合は rdに 0を返す。

表 12.1: Vector Register Modeの指定

(128 Entry)
8 Depth × 16 0x4
16 Depth × 8 0x5

(256 Entry)
8 Depth × 32 0x8

16 Depth × 16 0x9
32 Depth × 8 0xA

(512 Entry)
16 Depth × 32 0xD
32 Depth × 16 0xE
64 Depth × 8 0xF

Vector Reserve命令によりベクトルレジスタが確保されると、Vector Control Unitの Vector Register
Controller内にある Register Status Tableに、確保したベクトルレジスタの情報を書きこむ。図 12.7 に
Vector Status Tableのフォーマットを示す。

Busy Start Mode

1bit 2bit 4bit

図 12.7: Vector Status Table

Busy Bitはそのスレッドがベクトルレジスタを確保しているかどうかを示す。Start Addressは図 12.4に
示した 4つに分割したベクトルレジスタのどの部分からベクトルレジスタを確保しているのかを示す。Mode
は Vector Reserve命令の rsで指定されたベクトルレジスタの構成を格納する。

Vector Release命令を実行すると、確保していたベクトルレジスタを開放し、rd に 1を返す。ベクトル
レジスタを確保していない時に Vector Release命令を実行すると rdに 0を返す。

12.3 Status Register

Status Registerはベクトル演算を行うために必要な以下の情報を各スレッドごとに保持する。
Status Registerへのアクセスは vimfc, vfmfc (読み込み)、vimtc, vfmtc(書き込み)命令を用いて行う。

12.4 複合演算命令

本ベクトル演算器では、ユーザが複合演算命令を定義し、複合演算実行命令 1 命令で定義された複合
演算命令を処理することにより Vector Unitの使用率を向上させる。複合演算は Vector Control Unitの
Compound Instruction Controller内のCompound Instruction Bufferに定義する。Compound Instruction
Bufferはベクトルレジスタやスカラレジスタと同じように 4つに分割し、確保したベクトルレジスタと同

428 第 12章 Vector Unit

Address Name Description

0x00 Mask (Low) ベクトルレジスタの要素 (下位)に対応し、1を立てることにより
演算をマスクする。マスクは最下位ビットが 1番目の要素、最上位
ビットが 32番目の要素に対応する。

0x01 (Int) Mask (High) ベクトルレジスタの要素 (上位)に対応し、1を立てることにより演
算をマスクする。マスクは最下位ビットが 33番目の要素、最上位
ビットが 64番目の要素に対応する。

0x01 (FP) Rouding Mode 浮動小数点の丸めモードを指定する (0: Round to Nearest, 1:
Round to 0, 2: Round to +∞, 3: Round to -∞)

0x02 Length 演算を行うベクトル長 (実際に指定するのはベクトル長 - 1)を指定
する

0x03 Stride Load / Store時のアドレスのストライドを指定する。実際には各要
素の間隔をワード数で指定する。0を指定した場合は連続した番地
からベクトル要素を読み込む。1を指定すると 1ワードおきに要素
を読み込む。

じ領域を使うようにする。Compund Instruction Buffer全体を 32エントリであるため、ベクトルレジス
タを 128個確保した場合、使用できるエントリ数は 8個、256個確保した場合は、使用できるエントリ数
は 16個、512個確保した場合は使用できるエントリ数は 32個となる。
図 12.8 に Compound Instruction Bufferのフォーマットを示す。

31
N

30 29
SIMD

28 23
Rd

22 17
Rt

16 11
Rs

10 0
Op

図 12.8: Compound Instruction Bufferのフォーマット

一つのエントリに一つの命令を定義し、それを複数合わせることにより複合演算命令を定義する。Next(N)
bitは次のエントリに複合命令が続くことを示す。複合命令の最後の命令はNext Bitを 0にする。Next Bit
を 0にして複合命令を区切ることにより、複数の複合命令を定義することができる。

SIMDフィールドには SIMD演算を行う場合のビット幅を指定する。整数演算の場合、0x0で 32bit演
算 (SIMD演算を行わない)、0x1で 16bit × 2演算、0x2で 8bit × 4演算を行う。浮動小数点演算の場合、
0x0で通常の演算 (SIMD演算を行わない)、0x1で 32bit × 2演算を行う。

Rs, Rtはソースレジスタ、Rdはデスティネーションレジスタを指定する。レジスタの指定は以下の通り
である。

5
V

4 0
ID

図 12.9: レジスタの指定

ベクトルレジスタを使用する場合、Vビットを 1にする。スカラレジスタを使用する場合、Vビットを 0

12.4. 複合演算命令 429

にする。IDには使用するレジスタの IDを指定する。図 12.5で指定した構成に従って IDの中で有効とな
るビット幅が決定する。例えば 8length × 16個の構成では IDのうち下位 4ビットが有効となる。16length
× 32個の構成では IDの 5ビットが有効となる。
実際に使用される rs、rt、rdは次に述べる VIECI、VFECI命令で指定された rs、rt、rdのオフセット

値として用いられる。例えば VIECI命令の rsが 1で Compound Instruction Bufferの rsの IDが 3の場
合、実際に指定される Register IDは 1 + 3の 4となる。

operationには演算を行う命令を指定する。以下に整数演算の場合のフォーマットを示す。

10 9
ACC

8
S

7 4
SUB OP

3 0
OP

図 12.10: Operationのフォーマット (整数演算)

OPには以下を指定する。

• NOP (0x0)

何も行わない。

• AND (0x1)

論理積を計算する。

• OR (0x2)

論理和を計算する。6ビット目 (SUB OP)を 1にすると NORオペレーションとなる。

• XOR (0x3)

排他的論理和を計算する。

• ADD (0x4)

加算する。6ビット目 (SUB OP)を 1にすると減算となる。

• MULT (0x5)

乗算する。4ビット目 (SUB OP)を 1にすると符号なし演算となる。6ビット目 (SUB OP)を 1に
すると演算結果 (64bit中)の上位 32ビットを返す。

• SHIFT (0x6)

シフト演算を行う。4ビット目 (SUB OP)が 0の場合は左シフト、1の場合は右シフトとなる。6ビッ
ト目 (SUB OP)が 1の場合は算術シフトとなる。5ビット目 (SUB OP)が 1の場合はシフトではな
くローテーションとなる。

• COMPARE (0x7)

比較演算を行う。4ビット目 (SUB OP)が 1の場合はオペランドを符号無し数値として扱う。5-7ビッ
ト目 (SUB OP)で比較条件を指定する。比較条件は 0x0: 常に偽、0x1: =、0x2: >=、0x3: >、0x4:
常に真、0x5: �=、0x6: <、0x7: <=となる。

• THROUGH (0x8)

rsの値を返す。

430 第 12章 Vector Unit

• MADD (0x9)

Multiply and ADD演算を行う。6ビット目 (SUB OP)が 1の場合減算となる。

• DIV (0xf)

除算を行う。4ビット目 (SUB OP)が 1の場合、値を符号無しとして扱う。6ビット目 (SUB OP)が
1の場合、剰余演算となる。

Sビットを 1にすると、SIMD演算の場合にスカラ演算を行う。例えば 8bit × 4演算の場合、Sビット
を 1にすると rtの下位 8bitを全てのフィールドで使用する。

ACCフィールドに 0x2を指定すると、各ベクトル要素の演算結果を加算する。この場合、Rdはスカラ
レジスタを指定する必要がある。

以下に浮動小数点演算の場合のフォーマットを示す。

10 9
-

8
S

7
D

6 3
SUB OP

2 0
OP

図 12.11: Operationのフォーマット (浮動小数点演算)

OPには以下を指定する。

• NOP (0x0)

何も行わない。

• THROUGH (0x1)

rsの値を返す。3ビット目 (SUB OP)を 1にすると符号反転を行なう。4ビット目 (SUB OP)を 1に
すると絶対値を求める。

• ADD (0x2)

加算する。4ビット目 (SUB OP)を 1にすると減算となる。

• MULT (0x3)

乗算する。

• CONVERT (0x4)

フォーマット変換を行う。4-3ビット目 (SUB OP)で変換後のフォーマットを指定する。0x0: 単精
度、0x1: 倍精度、0x2: 整数へ変換を行う。6ビット目が 1 の場合ソースオペランドを整数値として
扱う。

• COMPARE (0x5)

比較を行う。5-3 ビット目 (SUB OP) で比較条件を指定する。0x0: False、0x1: Unorderd、0x2:
Equal、0x3: Unorderd or Equal、0x4: Ordered or Less Than、0x5: Unordered or Less Than、0x6:
Ordered or Less Than or Equal、0x7: Unorderded or Less Than or Equal。

• MADD (0x6)

Multiply and Add演算を行う。4ビット目 (SUB OP)が 1の場合減算となる。

12.4. 複合演算命令 431

• DIV (0x7)

除算を行う。

Dビットが 1の場合、オペランドを倍精度として扱う。Dビットが 0の場合、オペランドを単精度とし
て扱う。

Sビットを 1にすると、SIMD演算の場合にスカラ演算を行う。例えば 32bit × 2演算の場合、Sビット
を 1にすると rtの下位 32bitを全てのフィールドで使用する。
複合演算命令はVIDCI、VFDCI命令を用いてCompound Instruction Bufferに定義する。そしてVIECI、

VFECI命令により複合命令の演算を開始する。それぞれの命令フォーマットを図 12.12 に示す。

31 26 25 21 20 16 15 1110 6 5 0
011110 rs 00000 rd 00000 101110

VINT VIDCI

VIDCI (Vector Integer Define Compound Instruction)

31 26 25 21 20 16 15 1110 6 5 0
011110 rs rt rd no 101111

VINT VIECI

VIECI (Vector Integer Execute Compound Instruction)

31 26 25 21 20 16 15 1110 6 5 0
011111 rs 00000 rd 00000 101110

VFP VFDCI

VFDCI (Vector Floating Point Define Compound Instruction)

31 26 25 21 20 16 15 1110 6 5 0
011111 rs rt rd no 101111

VFP VFECI

VFECI (Vector Floating Point Execute Compound Instruction)

図 12.12: 複合演算命令のフォーマット

複合演算定義命令では rsに図 12.8に従ったデータが入ったレジスタを指定し、rdに格納するCompound
Instruction Bufferの IDを指定する。複合演算実行命令では rs、rtに Source Register、rdにDestination
Registerを指定し、noに実行を開始する Compound Instruction Bufferの位置を指定する。
複合演算実行命令が発行されると、Compound Instruction Controllerは Compound Instruction Buffer

から noに指定されたエントリの命令を読み出し、Register IDの変換を行ってからVector Execution Unit
へ読み出した命令を渡す。読み出した命令の Next Bit を見て 1 が立っていたら Compound Instruction
Bufferの次のエントリから命令を読み出し演算を続ける。Next Bitが 0ならばそこで複合演算を終了し、
次の命令を受け付ける。

図 12.13 に複合演算命令の例を示す。例ではエントリの 0から 1でベクトルの加算をした後スカラレジ
スタの値で比較を行っている。また 2から 9で別の複合演算命令として、ベクトル変換命令を定義してい
る。複合演算実行命令で noに 0を指定するとベクトルの加算と比較を実行し、2を指定するとベクトル変
換命令を実行する。

432 第 12章 Vector Unit

Next Rd
1 V0 VADD

Rt
V0

Rs
V0

Operation

0 V1 VCMPS0 V1
1 S0 VMACV0 V0

0
1
2

1 S1 VMACV1 V13
1 S2 VMACV2 V24
1 S3 VMACV3 V35
1 S4 VMACV4 V46
1 S5 VMACV5 V57
1 S6 VMACV6 V68
0 S7 VMACV7 V79

図 12.13: 複合演算の定義例

433

13
Responsive Link

13.1 概要

Responsive Linkは，各種ロボット，自動車，プラント，ホームオートメーション等の種々の分散制御を
実現するために必要なハードリアルタイム通信，及び，画像，音声等のマルチメディアデータを滑らかに

伝送するために必要なソフトリアルタイム通信の両方を同時に可能にするように設計を行っている．特に，

リアルタイムの理論をそのまま応用可能なように，パケットの追い越し機能を実現している．

Responsive Linkは柔軟なリアルタイム通信を実現するために，

• 通信パケットに優先度を付け，高い優先度の通信パケットが低い優先度の通信パケットを通信ノード
毎に追い越し

• ハードリアルタイム通信（データリンク）とソフトリアルタイム通信（イベントリンク）の分離

• 全く同じネットワークアドレス（送信元アドレス及び送信先アドレス）を持つ通信パケットの経路を
優先度によって別の経路に設定することによって専用回線や迂回路を設け実時間通信を制御

• 通信パケットの優先度を通信ノード毎に付け替え可能にすることによってパケットの加減速を分散管
理で制御

• ハードウェアによるフレーム単位のエラー訂正

という方法を組み合わせることによって，分散管理を用いて大規模かつ量子時間の小さい実時間通信を実

現する．さらに，

• 通信速度を動的に変更可能

• トポロジーフリー，

• Hot-Plug&Play

等の様々な機能を実現する．

Responsive Linkは国内では情報処理学会試行標準 (IPSJ-TS 2003:0006)として標準化されており，国際
的にはでは ISO/IEC JTC1 SC25 WG4において標準化作業が行われている．

434 第 13章 Responsive Link

13.2 Responsive Linkのインタフェース

ソフトリアルタイム通信（以下，単にデータと呼ぶ）のデータサイズ（画像データ，音声データ等）は大

きく，それに対してハードリアルタイム通信（以下，単にイベントと呼ぶ）のデータサイズ（制御コマン

ド，同期信号等）は非常に小さい．従って，従来型の 1系統の通信路で全ての通信を行う方法では，同時
に通信すべき通信データとして，大量のデータパケットと，ごくわずかではあるが分散リアルタイム制御

用途には非常に重要なイベントパケットが同一種類のパケットとして存在する．データとイベントを，共

有された同一の通信線を通して時分割に通信を行う従来方式ではイベント伝達の時間が正確にバウンドで

きないので，ハードリアルタイムシステムは実現困難であると考えられる．

また，複数のモジュールでひとつの通信チャネルを共有するシリアルバスでは，同時に何台のモジュー

ルが通信するかによってバンド幅が動的に変化し時間をバウンドすることが困難であり，実効速度も出に

くい．

さらに，リアルタイム通信におけるトレードオフとして，ソフトリアルタイム通信は主にバルク的なマ

ルチメディアデータの通信等に用いられ，ハードリアルタイム通信は主に制御等に用いられるので，

• ソフトリアルタイム：バンド幅保証 ⇒
スループットをできるだけ上げたい

• ハードリアルタイム：レイテンシ保証 ⇒
レイテンシをできるだけ小さくしたい

という要求がある．しかしながらパケットサイズを大きくするとスループットは高くなるが，同時にレイ

テンシも長くなる．逆にパケットサイズを小さくするとレイテンシは短くなるが，オーバヘッドが大きく

なりスループットが低くなる．

従って，Responsive Linkでは，データラインとイベントラインを分離し，かつ各ラインの結合形態を
point-to-pointの双方向シリアル通信として設計されている（図 13.1参照）．以下，それぞれをデータリ
ンク，イベントリンクと呼ぶ．データリンクではパケットサイズを固定長かつ大きめにしてソフトリアル

タイム通信に使用し，イベントリンクではパケットサイズを固定長かつ小さめにしてハードリアルタイム

通信に使用する．

Tx Data+

Tx Data-

Rx Data+

Rx Data-

Responsive Link Cable
(Enhanced Category 5)

Responsive Link Connector
(RJ-45)

Tx Event+

Tx Event-

Rx Event+

Rx Event-

Event Link

Data Link

4

3

2

5

6

7

8

1

4

3

2

5

6

7

8

1
Tx Data+

Tx Data-

Rx Data+

Rx Data-

Tx Event+

Tx Event-

Rx Event+

Rx Event-

Responsive Link Connector
(RJ-45)

図 13.1: Responsive Linkインタフェース

13.3. パケットフォーマット 435

13.3 パケットフォーマット

図 13.2に Responsive Linkのパケットフォーマットを示す．通信パケットは，ヘッダ部，ペイロード部，
トレイラ部から構成する．ヘッダ部は優先度付のネットワークアドレスから構成し，トレイラ部は制御情

報とステータスから構成される．

通信パケットは固定長で，ハードリアルタイム通信用のイベントリンクのパケットサイズは 16バイト
（ペイロード：8バイト）と小さく，ソフトリアルタイム通信用のデータリンクのパケットサイズは 64バ
イト（ペイロード：56バイト）と大きい．

Source Addr. Destination Addr.

Event Packet Format (16B)Data Packet Format (64B)

Source Addr. Destination Addr.

Payload

Redundancy bitsData bits

1 bit

1 byte

Serial Number (Cnt.)CorrectFatalInt.Start End

0 Full Data Length

Dirty0 Dirty1 Dirty2 Dirty3 Dirty4 Dirty5 Dirty6 Dirty7

Dirty8 Dirty9 Dirty10 Dirty11 Dirty12 Dirty13 Dirty14Dirty15

Control & Status Format (32bits)

Control & Status

Control & Status

0

1

2

3

Payload

Frame Format (12bits)

図 13.2: Responsive Linkのパケットフォーマット

436 第 13章 Responsive Link

図 13.2の通信パケットのヘッダ部に対して，図 13.3に示すようにネットワークアドレスに優先度を付
加する．256レベル (8bit)の優先度を有し，優先度は 0が一番低く，数字が大きくなるにしたがって高く
なる．

31 16 15 0

Priority[7-4] Priority[3-0]Source Address Destination Address

図 13.3: Responsive Linkのヘッダフォーマット

Responsive Linkの最大通信ノード数は，ネットワークアドレス長に制限され，優先度を使用しない場
合，理論的には 232 ノードとなる (図 13.3参照)．Responsive Linkの規格で推奨している使用法（ノード
毎にノードアドレスを割り当て，12bitの送信元アドレス，12bitの送信先アドレス，8bitの優先度を用い
てルーティングを行う）の場合には，212 = 4096ノードとなる．4096よりノード数が大きなシステムを
構築する際には，経路にアドレスを割り当てる（24bitのネットワークアドレスと 8bitの優先度を用いて
ルーティングを行う）ことにより 224 = 16Mノードまでのノード数をサポートする．

13.3.1 固定長（64B）のデータパケット

レスポンシブリンクのスイッチ部はカットスルー型のスイッチを採用している．データパケットは固定

長 (64byte)で，パケットに優先度が付加されている．データパケットはアドレス（ソースとデスティネー
ション），ペイロード，ステータスから構成される．カットスルー型のスイッチなので，衝突が起きない限

りデータはノードを経由して転送されるが，あるノードで衝突が起こった場合は，優先度の高いパケット

が低いパケットを追い越すことができるようになっている．この機能によって従来までの集中管理型では

なく分散管理型のリアルタイム通信を実現している．　　　　　　　　　　　　　　　　

データパケットは，2byteの送信元アドレス・2byteの送信先アドレス・56byte のペイロード・4byteの
制御・状態データの計 64byteより構成される．4byteの制御・状態データは以下のフォーマットをとる．
　　　　　　　　　　

UD ユーザ定義フラグ（任意に設定可能）

Full ペイロード 56byteがすべて有効データで埋められているとき 1，それ以外は 0

Data Length ペイロードの有効データ長．1から 56の値をとる．

Dirty0-15 パケットのどのワード（4byte）にエラーが存在するかを示すビット．パケットの
2ワード目にエラーがある場合はDirty1が 1となる．（ハードウェアによりセットされる）

Start このパケットがスタートパケットであるとき 1，それ以外は 0

End このパケットがエンドパケットであるとき 1，それ以外は 0

Int このパケットを受け取る際に割り込みを生じるときは 1，それ以外は 0

Fatal このパケットに致命的なエラーが存在するときは 1，それ以外は 0（ハードウェアによりセットされる）

Correct このパケットの一部分にエラーが存在し，それが修復されたときは 1，
それ以外は 0（ハードウェアによりセットされる）

Serial Number パケットのシリアルナンバ．スタートパケットが 0，以降 0から 7までを繰り返す．

13.3. パケットフォーマット 437

13.3.2 固定長（16B）のイベントパケット

イベントパケットも固定長 (16byte)で，送信元アドレス，送信先アドレス，ペイロード，ステータスか
ら構成される．イベントの場合もノードで衝突がない限り，直接ノードを経由してルーティングされるが，

衝突が生じた場合はデータの場合と同様に，優先順位に従ってパケットの追い越しを行なう．

4byteの制御・状態データは以下のフォーマットをとる．

UD ユーザ定義フラグ（任意に設定可能）

Full ペイロード 8byteがすべて有効データで埋められているとき 1，それ以外は 0

Data Length ペイロードの有効データ長．1から 8の値をとる．

Dirty0-15 パケットのどのバイトにエラーが存在するかを示すビット．パケットの

2バイト目にエラーがある場合は Dirty1が 1となる．（ハードウェアによりセットされる）

Start このパケットがスタートパケットであるとき 1，それ以外は 0

End このパケットがエンドパケットであるとき 1，それ以外は 0

Int このパケットを受け取る際に割り込みを生じるときは 1，それ以外は 0

Fatal このパケットに致命的なエラーが存在するときは 1，それ以外は 0（ハードウェアによりセットされる）

Correct このパケットの一部分にエラーが存在し，それが修復されたときは 1，
それ以外は 0（ハードウェアによりセットされる）

Serial Number パケットのシリアルナンバ．スタートパケットが 0，以降 0から 7までを繰り返す．

13.3.3 優先度による追い越し機構

優先度を用いたパケットの追い越し機構を実現するために，追い越し用バッファと退避用外部記憶を有

したネットワークスイッチを搭載している．図 13.4は 5入力 5出力で一つの入力部当たり追い越し用バッ
ファが 4 パケット分あるネットワークスイッチの構成を示している．（実際に RMTP に実装されている
Responsive Linkには 8パケット分の追い越し用バッファが実装されている．）図 13.4において，最後の数
字はポート番号を示している．入力ポート (In0～4)から入力された通信パケットは，通信ノードで衝突し
ない場合，そのまま出力ポート (Out0～4)へ出力を行う．異なる入力ポートから入力された通信パケット
が同じ出力ポートに出力を行なう場合，通信パケットに付加された優先度に従い，低い優先度の通信パケッ

トを追い越し用バッファ（意味的には追い越され用バッファ）に貯めて出力を待たし，高い優先度の通信

パケットを先に出力させる．高い優先度の通信パケットの出力の後に低い優先度の通信パケットを追い越

し用バッファから出力ポートに出力し，優先度に従った通信パケットの追い越しを行う．

この際，内部のスイッチングは，ヘッダ部受信のオーバヘッド及びルーティングテーブルの参照時間を

隠蔽するために図 13.4のように 8bitパラレル（byte単位）で行うように設計されている．
上記の通信パケットの追い越しを実現するために通信パケットの大きさと等しい追い越し用バッファを 8

本入力ポート側に搭載している．さらに，出力が待たされ続けている時に入力が入り続けバッファが溢れそ

うになった場合に，追い越し用バッファの内容を一時的に退避するための退避用外部記憶 (DDR SDRAM)
を設けることができるようになっている．

図 13.5は図 13.4のネットワークスイッチのひとつの入力部の詳細を示している．図 13.5において，最
後の数字はポート番号を示している．通信パケットの追い越しを行うために，まず，入力ポート (In)から
入力された通信パケットを，入力ポインタ (In-Pointer)で指し示されている追い越し用バッファ0から追い
越し用バッファ3のうち使用されていない空バッファに書き込む．入力パケットのヘッダ部分は必ず全て
受信し追い越し用バッファに書き込み，その受信されたヘッダを元に図 13.6のようなルーティングテーブ
ルを参照し出力ポート番号と優先度を得る．得られた出力ポート番号は図 13.5のリンクストローブ (L0～

438 第 13章 Responsive Link

L4)に書き込む．例えば L2ビットが有効であればその入力パケットの出力先は出力ポート 2であることを
示す．

Out0 Out1 Out2 Out3 Out4

Fifo00
Fifo01
Fifo02
Fifo03

Fifo10
Fifo11
Fifo12
Fifo13

Fifo20
Fifo21
Fifo22
Fifo23

Fifo30
Fifo31
Fifo32
Fifo33

Fifo40
Fifo41
Fifo42
Fifo43

SDRAM
 I/F

32bit

8bit

SDRAM

SDRAM
Arbitor

In0

In1

In2

In3

In4

Priority
Arbitor0 MUX0 Priority

Arbitor1 MUX1 Priority
Arbitor2 MUX2 Priority

Arbitor3 MUX3 Priority
Arbitor4 MUX4Routing

 Table
Table
Arbitor

MPU

図 13.4: Responsive Linkのネットワークスイッチ

図 13.5: Responsive Linkの追い越し用バッファ

図 13.5において L0から L4までの複数ビットが有効であればマルチキャストを意味し，全て有効であ
ればブロードキャストを意味する．入力部の出力側は出力ポート毎 (Out0～Out4)にそれぞれ独立に各追

13.4. フレームフォーマット 439

い越し用バッファのリンクストローブを参照し，自出力ポートのリンクストローブが有効な場合，出力側

ポート側に配置された当該優先度調停器 (図 13.4の Priority ArbitorN)に対して優先度と共に出力要求を
行なう．図 13.5の PriorityNは図 13.4の Priority ArbitorNに接続されている．優先度調停器は，出力要
求が一つの入力ポートからだけある場合はただちに出力許可を与え，出力要求が複数ある場合は優先度の

一番高いものに出力許可を与えるようにする．一番優先度の高い要求が複数ある場合は，ラウンドロビン

方式で出力許可を与える．

通信パケットの衝突がない場合や，衝突があってもその時点での最高優先度の通信パケットの場合は，

ヘッダの受信とルーティングテーブル参照の遅延時間後に直ちに出力を開始する．入力部の各出力ポート

側ではパケットの送信終了直後に対応するリンクストローブを無効にし，全てのリンクストローブが無効

になったらそのバッファが空であることを意味する．

例えば，In-pointerが追い越し用バッファ1を指している場合，入力ポート In から入力されたパケット
は，まずヘッダ部が追い越し用バッファ1に入る．次にそのヘッダを元にルーティングテーブルを引き，リ
ンクストローブと優先度を得る．例えば，L1と L3が有効だった場合，Out-pointer1とOut-pointer3は共
にその追い越し用バッファ1を指し，Out1とOut3側が出力要求と共にその優先度をそれぞれ Priority1と
Priority3に出力する．例えば，Out3にすぐに出力可能であれば，出力許可が Priority Arbitor3から与え
られるので，直ちに追い越し用バッファ1からOut3に出力を開始する．出力が終われば，Out3側が追い
越し用バッファ1の L3をクリアする．また，Out1には直ちに出力許可がおりなかったとすると，出力許可
が得られるまで出力要求と優先度を Priorty1に出力し続ける．ここで，Out1への出力待ちの状態で，同
じくOut1へ出力したい高優先度パケットが新たに追い越し用バッファ2に入ってきた場合，Out-pointer1
はより優先度の高いパケットの入っている追い越し用バッファ2を指すようになり，その高優先度パケット
の出力要求と優先度を Priority1に出力するようになる．後から到着した高優先度パケットの出力が終わる
と，他に Out1に出力したい高優先度パケットがない場合，Out-pointer1は再び追い越し用バッファ1を
指して，同様に出力を継続しようとする．このように，同一系路上の先行する低優先度パケットが待たさ

れている際にも，後続の高優先度パケットが追い越していくことを可能にする．

図 13.5において，空バッファが少なくなっていき残り 1本になってしまった場合，次の入力パケットは
退避用外部記憶 (DDR SDRAM)に退避を行うようになっている．出力が進んで空バッファの残りが多くな
り 2本以上になると，退避用外部記憶に退避されていた入力パケットを優先度を考慮して追い越し用バッ
ファに書き戻すことにより，出力を継続する．

また，退避用外部記憶が溢れそうになると，そのノードのプロセッシングコアに対して割り込みをかけ

られるようになっている．退避用外部記憶が溢れる場合は，アドミッションコントロールを行ってパケッ

トの破棄を行ったり，送信元に送信データの一時停止を行うように制御する等の方法が考えられるが，そ

のプロトコル自身は Responsive Linkの規格では定めていない．それらは上位のプロトコルで行うことに
なるので，上記割り込みをかける閾値を設定可能にするように設計している．

リアルタイム通信を実現するために，優先度によるパケットの追い越しをこのように再送を行なわなな

くてよいように設計されている．

13.4 フレームフォーマット

1byteは，図 13.2の Frame Formatような冗長ビットを含めたフレームとしてシリアルに送受信される．
詳細は低レベル通信の節を参照．

Data bits 8bitのデータ

Redundancy bits byte毎にRedudancy bits（冗長ビット）を付加することで，CRC等とは異なり，パ
ケット全てを受信し終わらなくても byte毎にエラー訂正が可能

440 第 13章 Responsive Link

13.5 ルーティング・テーブル

Responsive Linkの経路制御は，図 13.6に示すようなルーティングテーブル（経路制御表）を設定する
ことによって行う．ルーティングテーブルは，Responsive Linkコントローラ内に置き，そのノードのロー
カルプロセッサから読み書きできるようになっている．図 13.6において，Reference部はパケットのヘッ
ダと同一であり，Referent部に当該パケットに関する設定を行う．EEビット及びDEビットは，それぞれ
そのラインがイベントリンク用の設定かデータリンク用の設定かを示す．両方とも設定されていれば，両

リンクとも同様の設定になる．L[4-0]は，前述のリンクストローブビットであり，出力ポート（複数可）を
指し示す．

ルーティングテーブルの大きさ（エントリ数）は実装依存で有限となるため，非常に大きな分散システム

を構築する際には溢れてしまう可能性がある．ルーティングテーブルに入りきらない大規模なシステムを構

築する際には，ローカルノードプロセッサの主記憶上に完全なルーティングテーブルを用意し，Responsive
Linkコントローラ上のルーティングテーブルはキャッシュとして用いるようにする．つまり，TLB付きの
MMUとページテーブルを用いたメモリ管理と同様な管理手法を行うようにする．
そのために，ルーティングテーブルにヒットしないエントリがあった際には，ローカルノードのプロセッ

サに対して割り込みをかけると同時に，該当パケットを一時的に前述の退避用外部記憶に退避する．割り

込みをかけられたプロセッサは，主記憶上の完全なルーティングテーブルをソフトウォークしてエントリ

を検索し，そのエントリを Responsive Linkコントローラ上のルーティングテーブルの適切なエントリと
スワップするようにする．（多くの場合，最近使用されていないエントリとスワップすると考えられるが，

それはRT-OSのポリシ依存である．）Responsive Linkコントローラ側は，イベントリンクとデータリンク
それぞれについて，LRUエントリアドレスが分かるように設計し，RT-OSに対してヒントを与えるよう
にする．その後，退避していたパケットを追い越しバッファに書き戻すことによって継続的にルーティン

グを実現する．

上記のような機構により，大規模な分散リアルタイムシステムが構築可能である．ただし，コントロー

ラ内のルーティングテーブルに収まる範囲の規模でないと，厳密にハードリアルタイム性を維持するのは

困難となる．

また，分散リアルタイムシステムの規模が大きくなればなるほど（つまりルーティングテーブルのサイ

ズが大きくなればなるほど）通信のジッタは大きくなり，リアルタイム性の時間粒度も大きくなるが，近

傍で激しく通信している経路をキャッシュに置き，そうでないものは主記憶上のルーティングテーブルに

置く等の方法をとることにより，運用が可能であると考えられる．

EE DE P1 P0 PE L4 L3 L2 L1 L0
Priority[7-4] Priority[3-0]Source Address (16bit) Destination Address (16bit)

0
1
2
3

Priority[7-0] : Priority
EE : Event Enable
DE : Data Enable
PE : Priority exchange Enable
P[7-0] : New Priority
L[4-0] : Output Port Number

EE DE P1 P0 PE L4 L3 L2 L1 L0
EE DE P1 P0 PE L4 L3 L2 L1 L0
EE DE P1 P0 PE L4 L3 L2 L1 L0

Reference Referent

P7 P6

P7 P6
P7 P6
P7 P6

P5 P4

P5 P4
P5 P4
P5 P4

P3 P2

P3 P2
P3 P2
P3 P2

図 13.6: Responsive Linkのルーティングテーブル

13.6. パケットの加減速制御 441

13.6 パケットの加減速制御

リアルタイム通信パケットの制御を外部から行うことができるようにするために，通信ノード毎にパケッ

トの優先度の付け替えができるようにして，分散管理型でのリアルタイム通信の制御を実現している．

優先度の付け替えは，図 13.6のルーティングテーブルを用いることによって行なう．図 13.6において，
ネットワークアドレスと優先度を元にルーティングテーブルを参照し出力ポート番号を決定する際に，優

先度を付け替えないモード（図 13.6の優先度付替ビット PEが無効）の場合は優先度はそのままであるが，
優先度を付け替えるモード（優先度付替ビット PEが有効）の場合，出力ポートから出力する際に優先度
(Priority[7-0])を新優先度 (P7～P0)に置き換える．つまり，現ノードでの通信パケットの優先度は入力パ
ケットのヘッダに付加されている優先度で決定され，その優先度に従って追い抜きやルーティングが決定

されるが，次ノード以降での通信パケットの優先度を制御することができる．ルーティングテーブルの設

定はソフトウェア（分散リアルタイムオペレーティングシステム等）で行ない，ルーティング（経路制御）

自身はハードウェアで行なうようになっている．

このパケットの加減速制御機構により，例えば，リアルタイム通信の流量やレイテンシを監視するミド

ルウェアを用いて，リアルタイム通信の制御を可能とする．リアルタイム性の低い通信パケットがバルク

的に流れていて，そのパケットが他のリアルタイム性の高いパケットの通信のリアルタイム性を阻害して

いたとしたら，通信監視ミドルウェアが当該パケットの優先度を下げることによって，リアルタイム性の

制御を行うことができる．あるいは，あるノードでデッドラインミスが発生してしまった場合，その通信

パケットの優先度を途中の経路で上げることにより（特にホットスポットで優先度を上げると効果的），次

回からのデッドラインミスを防ぐことが可能となる．

13.7 優先度に従った経路制御

優先度に従って専用回線や迂回路を設けたり，データの流量の制御を行なうことができるように，全く

同じネットワークアドレスを持つ通信パケットの経路を優先度によって別の経路に設定することができる

ようにしている．そのために，基本的にはネットワークアドレスと優先度の組でルーティングテーブルを

参照する．

優先度ごとに必ずルーティングテーブルを設定しなければならないと煩雑であるので，デフォルトルー

トを設けることができる．ネットワークアドレスは同じであるが優先度が一致する組合わせ（経路）がルー

ティングテーブル上に無い場合には，最も優先度の低い優先度 0の経路がデフォルト経路となるようになっ
ている．つまり，

1. ネットワークアドレスと優先度の両方が一致すればその経路が第一優先

2. ネットワークアドレスは一致するが優先度が一致しない場合，優先度 0の経路

となる．ここで，優先度 0の経路はデフォルト経路となるので，途中で経路が消滅してしまわないように
ルーティングテーブルに必ず登録する必要がある．

図 13.7は，2次元格子の交点に通信ノードがあるとし，全く同じ送信元から送信先に対して異なる優先
度の通信パケットを同時に通信している状態を示す．例えば，優先度 0のイベントリンクの経路上は別の
通信ノードからの通信パケットも同じ経路を通って送信先に通るように設定しておき，優先度 3の経路は
送信元と送信先の優先度 3の通信パケットしか通らないように設定しておくことにより，他の通信パケッ
トと衝突が起きない専用回線を実現することができる．Responsive Linkには優先度による追い越し機構が
あるが，衝突があると追い越しのために多少のオーバヘッドが生じてしまうので，このように優先度を用

いてパケットの衝突が全くない専用回線を設定することにより，非常にレイテンシ及びジッタが小さいリ

アルタイム経路の実現を可能とする．また，優先度が異なる経路を複数設定することによってマルチリン

クを実現し，バンド幅を広げることも同時に可能とする．

442 第 13章 Responsive Link

Source

Destination

Data (Priority0)

Event (Priority3)

Data (Priority1)

Event (Priority0)

図 13.7: Responsive Linkの優先度付経路

制御用の分散システムでは図 13.8のような木構造を採る場合が多い．図 13.8において通信ノード 0か
ら通信ノード 5に通信する場合，優先度 0の通信パケットは途中に通信ノード１と通信ノード 2という中
間ノードを経由して通信を行なうが，優先度 1の通信パケットは通信ノード 0から直接通信ノード 5へ通
信を行なうことができる．これは，例えばヒューマノイドロボットを開発した際に，当初は頭モジュール，

肩モジュール，肘モジュール，指モジュールと接続しそれらの経路をホップして通信を行っていたが，設

計後にどうしても頭モジュールと指モジュール間の通信レイテンシが間に合わないと判明した場合，後付

で頭モジュールと指モジュールを直接接続し優先度を変えて通信することにより，容易に通信経路（この

場合は専用回線）の増設を可能とする．この機能は，実システムを構築する際に手助けとなる．

13.8. 低レベル通信 443

Source

Destination

Data (Priority0)

Node0

Node1

Node2 Node3 Node4

Node5 Node6 Node7 Node8 Node9 Node10

Data (Priority1)

図 13.8: Responsive Linkの優先度付木構造経路

13.8 低レベル通信

Responsive Linkは分散制御用途であるので，必ずエラー訂正を行わなければならない．その際，できる
だけエラー訂正によってリアルタイム性が損なわれないようにする必要がある．

ここで，パケット単位でCRCを付加しエラー訂正を行う方法では，パケット全体を受信しないとエラー
訂正できない．その場合，ホップ毎にレイテンシが積算されていくので，リアルタイム通信用のエラー訂

正としては好ましくない．そこで，レスポンシブリンクでは 1ホップごとにフレーム（図 13.2参照）単位
でエラー訂正を行い，1フレーム (8bitデータ+4bit冗長符号) につき 1bitのエラーであれば，再送するこ
となしにハードウェアで誤り訂正を行うようにする．

13.8.1 CODEC

Responsive Link の CODEC は，8bitの情報ビット列に，誤り訂正用の 4bitの冗長ビット列を加えた
12bitを 1フレームとして通信を行う．本 CODECで行われる符合化は，以下のような流れとなる．

1. 巡回組織ハミング符合化（冗長ビット列を加える誤り訂正符合化）

2. Bit Stuffing（連続した 1の符合に 0を挿入）

3. NRZI符合化

以下，各符合化について説明を行う．

13.8.2 巡回組織ハミング符号化

誤り訂正符合として，生成多項式が x4 + x + 1の巡回組織ハミング符合を採用する．この符合化では，
8bitデータの下位 (LSB)側に 4bitの冗長ビット列を付加することで，12bit中の任意の 1bitの誤りを受信

444 第 13章 Responsive Link

側で訂正することを可能にし，表 13.1より誤りの位置を特定できる．送信時には，これら 12bitのビット
列は，MSB側から 1bitずつ送信を行う．

表 13.1: シンドロームとエラーの位置
Syndrome Error Position (4 Meaning

redundancy bits)

0000 00000000 0000 No error

0001 00000000 0001 Redundancy-bit error

0010 00000000 0010 Redundancy-bit error

0100 00000000 0100 Redundancy-bit error

1000 00000000 1000 Redundancy-bit error

0011 00000001 0000 0bit error

0110 00000010 0000 1bit error

1100 00000100 0000 2bit error

1011 00001000 0000 3bit error

0101 00010000 0000 4bit error

1010 00100000 0000 5bit error

0111 01000000 0000 6bit error

1110 10000000 0000 7bit error

13.8.3 Bit Stuffing

1が長時間連続することによって引き起こされるリンクへの直流成分が発生や，受信側のビット同期へ
の支障を回避するために，通信データ中に 5つの連続した 1が現れた場合には，その後ろに 0を挿入する．

13.8.4 NRZI符合化

最終的に送信される際に NRZI(Non Return to Zero Inverted) 符合化を行う．NRZI符合化は，0を送
る場合にはリンクのデータビットを反転し，1を送る場合にはデータビットの状態を前のまま保持する．

13.8.5 セットアップパターン

電源投入直後や，予期できないバースト的なリンクエラーなどの後は，送受信インタフェース間でフレー

ム同期がとれない場合がある．そのような場合，明示的にリンクの初期化を行うようにする．具体的には，

以下に示すセットアップパターンを受信側に送信する．

セットアップパターン：000001111110

このパターンは，連続した 1が 6個以上は連続しないという bit stuffingの規則に反しているため，いか
なる通常のパケットとも区別される．受信側では，このパターンを受信するとその後，最初に認識したフ

レームを，新しいパケットの第 1フレームとして解釈する．

13.8. 低レベル通信 445

表 13.3: 通信速度とケーブル
Speed (Mbaud) 100 200 400

Maximum Length (m) 100 80 60

Recommendable Cable Cat5e Cat5e Cat6

13.8.6 DPLLを用いたビット同期

受信側に DPLL(Digital Phase Lock Loop)機構を設計し，受信用クロックの立ち上がりエッジに同期
して受信信号をサンプリングする．1bit転送あたりのサンプリング数はソフトウェアの設定によって可変
(4,8,16,32,64,128,256)にする．DPLLでは設定された周期ごとに受信用クロックを生成し，受信信号のエッ
ジを検出することにより，信号のエッジ間の中央で受信用クロックが立ち上がるように，受信用クロック

の周期を微調整を行う．表 13.2に DPLLのモードを示す．

モード名 p mode2 p mode1 p mode0 d clk周期/1bit転送

Mode2 1 1 1 2

Mode4 0 0 0 4

Mode8 0 0 1 8

Mode16 0 1 0 16

Mode32 0 1 1 32

表 13.2: DPLLモードの設定

13.8.7 エラーの取扱い

Responsive Linkでは，誤り訂正符合化によって 1[bit/frame]の誤りまでは自動的にエラー訂正を行うこ
とができる．エラーの箇所を受信側で特定するために，図 13.2のトレイラ部のDirtyビットを立てる．具
体的には，データリンクの場合ワード (4byte)単位で，イベントリンクの場合バイト単位で，エラーのあっ
た場所のDirtyビットを立てる．エラーがハードウェアによって訂正されても，訂正しきれなくてもDirty
ビットは立てるようにする．また，そのパケット中に 1箇所でもエラー訂正が行われハードウェアで訂正
しきれた場合，トレイラ部の Correctビットを立てる．エラー訂正不可能だった場合，Fatalビットを立て
る．受信側のアプリケーションでは，これらを参考にし，例えば，受信データを本当に制御に使用してよ

いかどうか等を判断することを可能にする．

13.8.8 通信速度

Responsive Linkの通信（変調）速度は，様々な環境（コンフィギュレーション，アプリケーション）を
想定し，400, 200, 100, 50, 12.5, 6.25 [Mbaud] の範囲で段階的に可変とする．
表 13.3に，通信速度と最大通信距離，推奨ケーブルの関係を示す．例えば，最大変調速度 400[Mbaud]

で通信する場合，ケーブルにはCategory6を使用し，最大通信距離は 60[m]以内である．この場合，DPLL
の基準周波数にはデューティ比が 1対 1の 800[MHz]のアップダウンエッジを使用し，サンプリング数 4
で DPLLを行うことによって実現する．

446 第 13章 Responsive Link

レスポンシブプロセッサは組み込み用途を想定しているので，消費電力が大きな問題となる．一般に通

信速度（動作周波数）を速くすれば消費電力が大きくなり，遅くすれば小さくなる．通信速度の変更は，受

信クロックを変更するのではなくDPLLのサンプリング数を変更することによって行う．従って，通信速
度が遅い場合の通信は，通信速度が遅くなることによる安定性の増加とDPLLのサンプリング数が増加す
ることによる安定性の増加という 2重の恩恵を受ける．

13.9 メモリマップ

レスポンシブリンク部のアドレスマップは以下の通りである．

デコードアドレス 接続される I/O

0xFFFE 0xxx レスポンシブリンク内部レジスタ

0xFFFE 1xxx レスポンシブリンク用 IRC (r/w)

0xFFFE 2xxx ルーティングテーブルアドレス部 (r/w)

0xFFFE 3xxx ルーティングテーブルリンク部 (r/w)

0xC0xx xxxx イベント入力用DPM (r)

0xC4xx xxxx イベント出力用DPM (r/w)

0xC8xx xxxx データ入力用DPM (r)

0xCCxx xxxx データ出力用DPM (r/w)

初期アドレス: 0xfffe0000

13.10 レジスタマップ

13.10.1 SDRAMモードレジスタ

オフセット: 0x0000

31 2
30’h0

1 0
SDMODE

Responsive Linkは，パケット追い越し用に外付けの SDRAMを付けることができる．SDMODE(SDram
MODE)レジスタは，パケット追い越し用外付けDDR SDRAMの有無と大きさを示す．外付け SDRAM
を搭載しない場合は，内蔵の追い越しバッファ（各リンク 8パケット分）のみで優先度付きパケットの追
越を行う．

13.10. レジスタマップ 447

bit名 機能

29’h0 0

SDMODE Default 000
000 : 外付け SDRAMなし
001 : 外付け SDRAMあり，容量： 8MB
010 : 外付け SDRAMあり，容量： 16MB
011 : 外付け SDRAMあり，容量： 32MB
100 : 外付け SDRAMあり，容量： 64MB
101 : 外付け SDRAMあり，容量： 128MB
110 : 外付け SDRAMあり，容量： 256MB
111 : 外付け SDRAMあり，容量： 512MB

13.10.2 レスポンシブリンク速度設定レジスタ

オフセット: 0xFFFE 0004
属性 リード／ライト

31 28
-

27 25
Data4

24 22
Data3

21 19
Data2

18 16
Data1

15 12
-

11 9
Event4

8 6
Event3

5 3
Event2

2 0
Event1

RSL(Responsive Link Speed): Default 000
本レジスタはレスポンシブリンクの変調速度を示す．
111 : 800 Mbaud
000 : 400 Mbaud
001 : 200 Mbaud
010 : 100 Mbaud
011 : 50 Mbaud

bit名 機能

Data4 Data Link 4用 RSL

Data3 Data Link 3用 RSL

Data2 Data Link 2用 RSL

Data1 Data Link 1用 RSL

Event4 Event Link 4用 RSL

Event3 Event Link 3用 RSL

Event2 Event Link 2用 RSL

Event1 Event Link 1用 RSL

13.10.3 レスポンシブリンク初期化レジスタ

オフセット: 0xFFFE 0008

448 第 13章 Responsive Link

属性 リード／ライト

31 21
-

20 17
DLINIT

16
D s

15 5
-

4 1
ELINIT

0
E s

RLINIT(Responsive Link INITialization)レジスタはレスポンシブリンクのスイッチの初期化およびエ
ンコーダ／デコーダ部分の初期化を行なう．
0: 通常動作

1: 初期化

bit名 機能

DLINIT Data linkの各エンコーダ／デコーダの初期化
DLINIT[4]: RLINIT[20]: Data link4の初期化
DLINIT[3]: RLINIT[19]: Data link3の初期化
DLINIT[2]: RLINIT[18]: Data link2の初期化
DLINIT[1]: RLINIT[17]: Data link1の初期化

D s Data link switchの初期化

ELINIT Event linkの各エンコーダ／デコーダの初期化
ELINIT[4]: RLINIT[4]: Event link4の初期化
ELINIT[3]: RLINIT[3]: Event link3の初期化
ELINIT[2]: RLINIT[2]: Event link2の初期化
ELINIT[1]: RLINIT[1]: Event link1の初期化

E s Event link switchの初期化

13.10.4 レスポンシブリンク割り込みクリアレジスタ

オフセット: 0xFFFE 000C 属性 リード／ライト

31 7
-

6 1
RLIC

0
-

RLIC(Responsive Link Irq Clear)レジスタはイベントリンクの割り込み要求のクリアを行なう．
Default 0
0: 通常動作

1: クリア

13.10. レジスタマップ 449

bit名 機能

RLIC[1] Data-Out EOP(End Of Packet) IRQ Clear: データパケットがDPMの設定した範囲
から送信された場合に生じる割り込みのクリア

RLIC[2] Event-Out EOP IRQ Clear: イベントパケットが DPMの設定した範囲から送信され
た場合に生じる割り込みのクリア

RLIC[3] Data-In EOP IRQ Clear: データパケットが DPMの設定した範囲に受信された場合
に生じる割り込みのクリア

RLIC[4] Event-In EOP IRQ Clear: イベントパケットがDPMの設定した範囲に受信された場
合に生じる割り込みのクリア

RLIC[5] Data Packet-In IRQ Clear: 割り込みビットの設定されたデータパケットが到着した
場合に生じる割り込みのクリア

RLIC[6] Event Packet-In IRQ Clear: 割り込みビットの設定されたイベントパケットが到着し
た場合に生じる割り込みのクリア

13.10.5 レスポンシブリンク送信停止割り込みクリアレジスタ

オフセット: 0xFFFE 0010 属性 リード／ライト

31 21
-

20 16
DWIRQC

15 5
-

4 0
EWIRQC

Responsive Linkはパケット追い越し用 SDRAMを使用している際には追い越し用 SDRAMが溢れそう
になると送信停止割り込みを自動生成する．同様に，追い越し用 SDRAMを使用していない際には，追い
越し用バッファが溢れそうになると送信停止割り込みを自動生成する．本WIRQC(Wait IRQ Clear)レジ
スタはレスポンシブリンク送信停止割り込み要求のクリアを行なう．

Default 0
0: 通常動作

1: クリア

450 第 13章 Responsive Link

bit名 機能

DWIRQC Data link WIRQC
DWIRQC[4]: WIRQC[20]: Data link4
DWIRQC[3]: WIRQC[19]: Data link3
DWIRQC[2]: WIRQC[18]: Data link2
DWIRQC[1]: WIRQC[17]: Data link1
DWIRQC[0]: WIRQC[16]: Data link0(CPU)

EWIRQC Event link WIRQC
EWIRQC[4]: WIRQC[4]: Event link4
EWIRQC[3]: WIRQC[3]: Event link3
EWIRQC[2]: WIRQC[2]: Event link2
EWIRQC[1]: WIRQC[1]: Event link1
EWIRQC[0]: WIRQC[0]: Event link0(CPU)

13.10.6 レスポンシブリンク継続割り込みクリアレジスタ

オフセット: 0xFFFE 0014 属性 リード／ライト

31 21
-

20 16
DCIC

15 5
-

4 0
ECIC

Responsive Linkは，SDRAMに退避されたパケットがスイッチに書き戻された（再度送信された）際に
レスポンシブリンク継続割り込み CI(Coutinuous Irq) を発生する．CIC(Continuous Irq Clear)レジスタ
はその割り込み要求 CIのクリアを行なう．
Default 0
0: 通常動作

1: クリア

13.10. レジスタマップ 451

bit名 機能

DCIC Data CIC
DCIC[4]: CIC[20]: Data link4
DCIC[3]: CIC[19]: Data link3
DCIC[2]: CIC[18]: Data link2
DCIC[1]: CIC[17]: Data link1
DCIC[0]: CIC[16]: Data link0(CPU)

ECIC Event CIC
ECIC[4]: CIC[4]: Event link4
ECIC[3]: CIC[3]: Event link3
ECIC[2]: CIC[2]: Event link2
ECIC[1]: CIC[1]: Event link1
ECIC[0]: CIC[0]: Event link0(CPU)

13.10.7 レスポンシブリンク致命的エラー割り込みクリアレジスタ

オフセット: 0xFFFE 0018 属性 リード／ライト

31 21
-

20 16
DFIC

15 5
-

4 0
EFIC

Responisve Linkは，各リンクの受信パケットにハードウェアで回復不可能なエラーがあった場合にレ
スポンシブリンク致命的エラー割り込み FI(Fatal Irq)を発生する．FIC(Fatal Irq Clear)レジスタは，そ
の割り込み要求 FIのクリアを行なう．
Default 0
0: 通常動作

1: クリア

452 第 13章 Responsive Link

bit名 機能

DFIC Data FIC
DFIC[4]: FIC[20]: Data link4
DFIC[3]: FIC[19]: Data link3
DFIC[2]: FIC[18]: Data link2
DFIC[1]: FIC[17]: Data link1
DFIC[0]: FIC[16]: Data link0(CPU)

EFIC Event FIC
EFIC[4]: FIC[4]: Event link4
EFIC[3]: FIC[3]: Event link3
EFIC[2]: FIC[2]: Event link2
EFIC[1]: FIC[1]: Event link1
EFIC[0]: FIC[0]: Event link0(CPU)

13.10.8 レスポンシブリンクルーティングテーブル割り込みクリアレジスタ

オフセット: 0xFFFE 001C 属性 リード／ライト

31 2
-

1 0
RTIRQC

Responsive Linkは，ルーティングテーブルにマッチするエントリが無かった場合にレスポンシブリンク
ルーティングテーブル割り込み (RTIRQ)を発生する．RTIRQC(Routing Table IRQ Clear)レジスタは，
その割り込み要求 RTIRQのクリアを行なう．
Default 0
0: 通常動作 (r)／割り込みクリア (w)
1: 割り込み状態 (r)／割り込み発生（デバッグ用）(w)

bit名 機能

RTIC[0] Event Routing Table IRQ Clear

RTIC[1] Data Routing Table IRQ Clear

13.10.9 レスポンシブリンク SDRAMバスリクエストレジスタ

オフセット: 0xFFFE 0020 属性 リード／ライト

31 1
-

0
RLSDBREQ

13.10. レジスタマップ 453

Responsive Linkの追い越し用 SDRAMのバスには，Responsive Linkとプロセッサバスの 2つのバスマ
スタが接続されている．通常，プロセッサ側から追い越し用 SDRAMにアクセスする際には，データのト
ランザクション毎に，バス権の調停が行われている．プロセッサ側からバースト的に追い越し用 SDRAM
をアクセスしたい場合には，本ビットを有効にすることで，追い越し用 SDRAMバスのバス権をプロセッ
サ側（プロセッサや DMAC等）が常に得ることができる．（本ビットを設定しなくてもアクセス可能であ
る．）Responsive Link側が追い越し用 SDRAMバスを参照できなくなる (パケットの退避・復帰ができな
くなる)という副作用がある．

bit名 機能

RLSDBREQ RLSDBREQ (Responsive Link SDram-Bus REQuest) : Default 1
本ビットはレスポンシブリンクの SDRAMバスへの明示的なバスリクエストを行なう．
0: バスリクエストイネーブル

1: バスリクエストディスエーブル

13.10.10 レスポンシブリンク SDRAMバスグラントレジスタ

オフセット: 0xFFFE 0024 属性 リード／ライト

31
MSG

30 21
-

20 16
DSG

15 5
-

4 0
ESG

RLSDBGRNT(Responsive Link SDram Bus GRaNT)レジスタは，追い越し用 SDRAM バスのバスグ
ラント（どのバスマスタがバス権を有しているか）を示す．

0: バス権獲得

1: バス権開放

454 第 13章 Responsive Link

bit名 機能

MSG Mpu Sdram bus Grant: MPUがバス権を得ている

DSG Data link Sdram bus Grant: Data Linkがバス権を得ている
DSG[4]: RLSDBGRNT[20]: Data link4
DSG[3]: RLSDBGRNT[19]: Data link3
DSG[2]: RLSDBGRNT[18]: Data link2
DSG[1]: RLSDBGRNT[17]: Data link1
DSG[0]: RLSDBGRNT[16]: Data link0(CPU)

ES Event link Sdram bus Grant: Event Linkがバス権を得ている
ESG[4]: RLSDBGRNT[4]: Event link4
ESG[3]: RLSDBGRNT[3]: Event link3
ESG[2]: RLSDBGRNT[2]: Event link2
ESG[1]: RLSDBGRNT[1]: Event link1
ESG[0]: RLSDBGRNT[0]: Event link0(CPU)

13.10.11 レスポンシブリンクルーティングテーブルバスリクエストレジスタ

オフセット: 0xFFFE 0028 属性 ライト

31 1
-

0
BRQ

Responsive Linkのルーティングテーブルのバスには，Responsive Linkとプロセッサバスの 2つのバス
マスタが接続されているが，デフォルトのバスマスタは Responsive Linkである．プロセッサ側からルー
ティングテーブルをアクセスしたい場合には，本ビットを有効にすることで，ルーティングテーブルバス

のバス権をプロセッサ側（プロセッサやDMAC等）が得ることができる．Responsive Link側がルーティ
ングテーブルを参照できなくなる（パケットのルーティングができなくなる）という副作用がある．

bit名 機能

BRQ RLTBLBREQ (Responsive Link rouging TaBLe Bus REQuest): Default 1
本ビットはレスポンシブリンクのルーティングテーブルバスへのバスリクエストを行

なう．
0: バスリクエストイネーブル

1: バスリクエストディスエーブル

オフセット: 0xFFFE 0028 属性 リード

13.10. レジスタマップ 455

31
MRR

30 21
-

20 16
DRR

15 5
-

4 0
ERR

本ビットはプロセッサバス側からレスポンシブリンクのルーティングテーブルバスへのバスリクエスト

を示す．
0: バスリクエスト有

1: バスリクエスト無

bit名 機能

MRR Mpu Routing table bus Request

DRR Data link Routing table bus Request
DRR[4]: RLTBLBREQ[20]: Data link4
DRR[3]: RLTBLBREQ[19]: Data link3
DRR[2]: RLTBLBREQ[18]: Data link2
DRR[1]: RLTBLBREQ[17]: Data link1
DRR[0]: RLTBLBREQ[16]: Data link0(CPU)

ER Event link Routing table bus Request
ERR[4]: RLTBLBREQ[4]: Event link4
ERR[3]: RLTBLBREQ[3]: Event link3
ERR[2]: RLTBLBREQ[2]: Event link2
ERR[1]: RLTBLBREQ[1]: Event link1
ERR[0]: RLTBLBREQ[0]: Event link0(CPU)

13.10.12 レスポンシブリンクルーティングテーブルバスグラントレジスタ

オフセット: 0xFFFE 002C 属性 リード

31
MRG

30 21
-

20 16
DRG

15 5
-

4 0
ERG

RLTBLBGRNT (Responsive Link routing TaBLe Bus GRaNT) レジスタは，レスポンシブリンクの
ルーティングテーブルバスのバスグラント（どのバスマスタがバス権を有しているか）を示す．

0: バス権獲得

1: バス権開放

456 第 13章 Responsive Link

bit名 機能

MRG Mpu Routing table bus Grant: MPUがバス権を得ている

DRG Data link Routing table bus Grant: Data Linkがバス権を得ている
DRG[4]: RLTBLBGRNT[20]: Data link4
DRG[3]: RLTBLBGRNT[19]: Data link3
DRG[2]: RLTBLBGRNT[18]: Data link2
DRG[1]: RLTBLBGRNT[17]: Data link1
DRG[0]: RLTBLBGRNT[16]: Data link0(CPU)

ERG Event link Routing table bus Grant: Event Linkがバス権を得ている
ERG[4]: RLTBLBGRNT[4]: Event link4
ERG[3]: RLTBLBGRNT[3]: Event link3
ERG[2]: RLTBLBGRNT[2]: Event link2
ERG[1]: RLTBLBGRNT[1]: Event link1
ERG[0]: RLTBLBGRNT[0]: Event link0(CPU)

13.10.13 イベントリンクLRUアドレスレジスタ

オフセット: 0xFFFE 0030 属性 リード

31 10
-

9 0
ELLRUA

bit名 機能

ELLRUA ELLRUA (Event Link LRU Address) レジスタはイベントリンクのルーティングテー
ブル中で，最も近くに使用されたテーブルの格納されているアドレスを示す．

13.10.14 データリンクLRUアドレスレジスタ

オフセット: 0xFFFE 0034 属性 リード

31 10
-

9 0
DLLRUA

bit名 機能

DLLRUA DLLRUA (Data Link LRU Address) レジスタはデータリンクのルーティングテーブ
ル中で，最も近くに使用されたテーブルの格納されているアドレスを示す．

13.10. レジスタマップ 457

13.10.15 レスポンシブリンク用割り込みコントローライネーブルレジスタ

オフセット: 0xFFFE 0038 属性 リード

31 1
-

0
RLICE

bit名 機能

RLICE RLICE (Responsive Link Interrupt Controller Enable) レジスタはレスポンシブリン
ク用割り込みコントローラ RLIRCのイネーブルビットを示す．1のとき，RLIRCは
出力を行っている．

13.10.16 イベントリンク用 SDRAMループカウントレジスタ

オフセット: 0xFFFE 0040 属性 リード／ライト

31 8
-

7 0
ELSDCNT

追い越し用 SDRAMに退避されたイベントパケットを Responsive Linkイベントスイッチに再度送信し
てよいかどうかを調べる間隔を指定する．短すぎると消費電力が大きくなり，長すぎるとリアルタイム性

が損なわれる．

bit名 機能

ELSDCNT ELSDCNT (Event Link SDram loop CouNTer)レジスタの設定により，追い越し用
SDRAMに退避されているイベントパケットをイベントスイッチに再送しようとする
リトライの間隔を 1パケット分の送信時間を単位として指定する．(1 - 40)
Default: 32

13.10.17 データリンク用 SDRAMループカウントレジスタ

オフセット: 0xFFFE 0044 属性 リード／ライト

31 4
-

3 0
DLSDCNT

追い越し用 SDRAMに退避されたデータパケットをResponsive Linkデータスイッチに再度送信してよ
いかどうかを調べる間隔を指定する．短すぎると消費電力が大きくなり，長すぎるとリアルタイム性が損

なわれる．

458 第 13章 Responsive Link

bit名 機能

DLSDCNT DLSDCNT (Data Link SDram loop CouNTer) レジスタの設定により，追い越し用
SDRAMに退避されているデータパケットをデータスイッチに再送しようとするリト
ライの間隔を 1パケット分の送信時間を単位として指定する．(1 - 95)
Default: 4

13.10.18 レスポンシブリンクスイッチモードレジスタ

オフセット: 0xFFFE 0048 属性 リード／ライト

31 2
-

1 0
RLSM

RLSM(Responsive Link Switch Mode)レジスタの設定により，レスポンシブリンクのスイッチの動作を
変更する．

0: Cut Through Mode レイテンシ的に有利であるがパケットの追い越しをしにくい

1: Store and Forward Mode レイテンシ的に不利であるがパケットの追越しをしやすい
Default: 0

bit名 機能

RLSM[0] Event Link Switchの設定

RSLM[1] Data Link Switchの設定

13.10.19 レスポンシブリンク用オフラインレジスタ

オフセット: 0xFFFE 004c 属性 リード

31 21
-

20 16
DRLOL

15 5
-

4 0
ERLOL

Responsive Linkは Plug&Playをサポートするために，リンクアップしていたリンクがリンクダウンす
るとオフライン割り込みを発生し，リンクダウンしていたリンクがリンクアップするとオンライン割り込

みを発生する．

RLOL(Responsive Link OffLine)レジスタをリードすることにより，どのリンクがオフライン／オンラ
インかを調べることができる．

1: Offline
0: Online

13.11. DPM (Dual Port Memory) 459

bit名 機能

DRLOL Data linkの RLOLレジスタ
DRLOL[4]: RLOL[20]: Data link4
DRLOL[3]: RLOL[19]: Data link3
DRLOL[2]: RLOL[18]: Data link2
DRLOL[1]: RLOL[17]: Data link1
DRLOL[0]: RLOL[16]: Data link0(CPU)

ERLOL Event linkの RLOLレジスタ
ERLOL[4]: RLOL[4]: Event link4
ERLOL[3]: RLOL[3]: Event link3
ERLOL[2]: RLOL[2]: Event link2
ERLOL[1]: RLOL[1]: Event link1
ERLOL[0]: RLOL[0]: Event link0(CPU)

オフセット: 0xFFFE 004c 属性 ライト

31 2
-

1 0
RLOL

本ビットの設定により，レスポンシブリンクのオフライン割り込み及びオンライン割り込みをクリアで

きる．
1: 割り込みクリアを行わない

0: 割り込みクリア

bit名 機能

RLOL[0] Responsive Link Down IRQ Clear: オフライン割り込みのクリア

RLOL[1] Responsive Link Wakeup IRQ Clear: オンライン割り込みのクリア

13.11 DPM (Dual Port Memory)

Responsive Linkとプロセッサは基本的にDPMを介してデータの送受信を行う．DPMはその名の通り
2portを有しており，片方はプロセッサバスに接続され，もう片方はResponsive Linkの Link0に接続され
ている．

Data in/out control registerおよび，Event in/out control registerを設定することでパケットの送信/
受信方法を決定することができる．イベントパケットの送信および，受信には Event packet in/out専用の
DPMを用い，データパケットの送信および，受信には Data packet in/out専用の DPMを使用する．
以下に Event in/out，Data in/outそれぞれの DPMについて説明する．

460 第 13章 Responsive Link

13.11.1 Event Output

図 13.9にイベントリンク出力用 DPMの構成を示す．Event out control register（図 13.10参照）に対
して，開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word
address)を設定することにより，複数パケットを一度に送信できる．From Addrと To Addrは人間に分
かりやすいようにこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意され

ている．From Addr, To Addr共に，設定された word address − 1のアドレスにDPM のプロセッサバス
側からデータが書かれた瞬間に，DPMから Link0に対して出力を開始する．
例えば，Mode0を使用し，From Addrを 0x00に設定し To Addrを 0x07 (byte address: 0x1c)に設定

したとする．プロセッサバス側からDMACもしくはプロセッサによってPayload0, Payload1の順にDPM
にデータが書かれたとすると，DPMのプロセッサ側から 0x06番地にデータが書かれた瞬間にDPMから
Responsive Linkの Link0に出力を開始する．（この場合，実際には From Addrには意味がない．）
あるいは，Mode0 を使用し，From Addr を 0x1f(byte address 0x3c) に設定し To Addr を 0x2f(byte

address: 0x7c)に設定し，さらにDMACを continuous modeで使用すると，Payload0～3の領域とPayload4
～7の領域を使用して，主記憶等に用意したDPMよりも大きな連続データをハードウェアのみで自動送信
することができる．（DPMのアドレスデコードの範囲内では，シャドウアドレスでも CSが生成されDPM
にアクセスできるように設計しているため．）

13.11. DPM (Dual Port Memory) 461

DPM for Event Output

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 4

Control & Status

Source Addr. Destination Addr.

Payload 5

Control & Status

Payload 0

Payload 1

Payload 2

offset address
 0xC400_00XX

0x00

0x10

0x20

0x00

0x08

0x10

0x60

Source Addr. Destination Addr.

Payload 3

Control & Status

Source Addr. Destination Addr.

Payload 6

Control & Status

Source Addr. Destination Addr.

Payload 7

Control & Status

0x30

0x40

0x50

0x60

0x70

Payload 3

Payload 4

Payload 5

0x18

0x20

0x28

Payload 6

Payload 7

0x30

0x38

0x40

0x48

0x50

0x58

0x68

0x70

0x78

Payload 8

Payload 9

Payload 10

Payload 11

Payload 12

Payload 13

Payload 14

Source Addr. Destination Addr.

Control & Status

図 13.9: DPM for Event Output

462 第 13章 Responsive Link

Control Register
for Event Output

offset address
 0xFFFE_F40X

From Addr. To Addr.

DMA Counter

Current Packet Number

mode dreq int

0x0

0x4

0x8

図 13.10: Event Out Control Register

DPM制御レジスタ

DPMの制御レジスタ（図 13.10参照）に以下を設定することで，送信の制御を行う．

制御レジスタ (r/w)

• Mode0: mode bitに 0を設定．すべてのパケットに headrと trailerを付加する．

• Mode1: mode bitに 1を設定．最後に共通の headerと trailerを付加する (すべてのパケットの
宛先が同一となる)．

• Int: 本ビットを 1に設定すると，終了時に EOP(End Of Packet) 割り込みを生成する．

• Dreq: 本ビットを 1に設定すると，DMA Counterに設定した回数分だけ DMAを行う．

• From Addr: 設定された word address − 1のアドレスにDPM のプロセッサバス側からデータ
が書かれた瞬間に DPMから Link0に対して出力を開始する．

• To Addr: 設定された word address − 1のアドレスにDPM のプロセッサバス側からデータが
書かれた瞬間に DPMから Link0に対して出力を開始する．

DMA Counter (r/w) DMAの回数を指定する

Current Packet Number (r)現在送信されているパケット番号（図 13.9の payload番号に相当）を示す

13.11.2 Event Input

図 13.11にイベントリンク入力用 DPMの構成を示す．Event in control register（図 13.12参照）に対
して，開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word
address)を設定することにより，複数パケットを一度に受信できる．From AddrとTo Addrは人間に分か
りやすいようにこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されて

いる．From Addr, To Addr共に，設定された word address − 1のアドレスに DPM の Responsive Link
側からデータが書かれた瞬間に，DPMからプロセッサバス側に対して出力 (DMA転送)を開始する (dreq
bitが設定されている場合）．int bitの割り込みを利用して，ソフトウェアで受信することもできる．
例えば，Mode0 を使用し，From Addr を 0x00 に設定し To Addr を 0x07 (byte address: 0x1c) に設

定したとする．Responsive Link 側から Payload0, Payload1の順に DPMに受信データが書かれていく．
Responsive Link側からDPM の 0x06番地にデータが書かれた瞬間にDPMからプロセッサバス側に出力
（DMA転送）を開始する．（この場合，実際には From Addrには意味がない．）

13.11. DPM (Dual Port Memory) 463

あるいは，Mode0 を使用し，From Addr を 0x1f(byte address 0x3c) に設定し To Addr を 0x2f(byte
address: 0x7c)に設定し，さらにDMACを continuous modeで使用すると，Payload0～3の領域とPayload4
～7の領域を使用して，主記憶等に用意したDPMよりも大きなメモリ領域（サイクリックバッファ等）に
対して，受信データをハードウェアのみで連続的に自動受信することができる．（DPMのアドレスデコー
ドの範囲内では，シャドウアドレスでもCSが生成されDPMにアクセスできるように設計しているため．）

464 第 13章 Responsive Link

DPM for Event Input

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 4

Control & Status

Source Addr. Destination Addr.

Payload 5

Control & Status

Payload 0

Source Addr. Destination Addr.

Control & Status

Payload 1

Payload 2

offset address
 0xC000_00XX

0x00

0x10

0x20

0x00

0x08

0x10

0x60

Source Addr. Destination Addr.

Payload 3

Control & Status

Source Addr. Destination Addr.

Payload 6

Control & Status

Source Addr. Destination Addr.

Payload 7

Control & Status

0x30

0x40

0x50

0x60

0x70

Payload 3

Payload 4

Payload 5

0x18

0x20

0x28

Payload 6

Payload 7

0x30

0x38

Source Addr. Destination Addr.

Control & Status

0x40

Source Addr. Destination Addr.

Control & Status

0x48

Source Addr. Destination Addr.

Control & Status

0x50

Source Addr. Destination Addr.

Control & Status

0x58

Source Addr. Destination Addr.

Control & Status

0x68

Source Addr. Destination Addr.

Control & Status

0x70

Source Addr. Destination Addr.

Control & Status

0x78

図 13.11: DPM for Event Input

13.11. DPM (Dual Port Memory) 465

Control Registers
 for Event Input

From Addr. To Addr.

Current Packet Number

mode dreq int

0x0

0x4

0x8

Packet Valid Status0xC

offset address
 0xFFFE_F00X

図 13.12: Event in control register

DPM制御レジスタ

DPMの制御レジスタ（図 13.12参照）に以下を設定することで，受信の制御を行う．

制御レジスタ (r/w)

• Mode0: mode bitに 0を設定．すべてのパケットそれぞれに headerと trailerが付加された状
態で DPMに受信される．

• Mode1: mode bitに 1を設定．ヘッダとペイロードを図 13.11のように分離して受信．

• Int: 本ビットを 1に設定すると，受信終了時にプロセッサに受信完了割り込みを発生する．

• Dreq: 本ビットを 1に設定すると，From Addrか To Addrに設定した word address − 1にパ
ケットを受信した際に，DMAに対して DREQを発生する．

• From Addr: 設定された word address − 1のアドレスにDPM の Responsive Link側からデー
タが書かれた瞬間に DPMからプロセッサバス側に対して出力を開始する．

• To Addr: 設定された word address − 1のアドレスに DPM の Responsive Link側からデータ
が書かれた瞬間に DPMからプロセッサバス側に対して出力を開始する．

Current Packet Number (r) 現在送信されているパケット番号（図 13.11の payload番号に相当）を
示す

Packet Valid Status ハードウェアデバッグ用レジスタ

13.11.3 Data Output

図 13.13にデータリンク出力用DPMの構成を示す．Data out control register（図 13.14参照）に対して，
開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word address)
を設定することにより，複数パケットを一度に送信できる．From Addrと To Addrは人間に分かりやす
いようにこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されている．

From Addr, To Addr共に，設定された word address − 1のアドレスに DPM のプロセッサバス側から

データが書かれた瞬間に，DPMから Link0に対して出力を開始する．
例えば，Mode0を使用し，From Addrを 0x000に設定し To Addrを 0x01f (byte address: 0x07c)に

設定したとする．プロセッサバス側からDMACもしくはプロセッサによって Payload0, Payload1の順に

466 第 13章 Responsive Link

DPMにデータが書かれたとすると，DPMのプロセッサ側から word address 0x01e番地にデータが書か
れた瞬間に DPM から Responsive Linkの Link0に出力を開始する．（この場合，実際には From Addrに
は意味がない．）

あるいは，Mode0を使用し，From Addrを 0x0ff(byte address 0x3fc)に設定し To Addrを 0x1ff(byte
address: 0x7fc) に設定し，さらに DMAC を continuous mode で使用すると，Payload0～15 の領域と
Payload16～31の領域を使用して，主記憶等に用意した DPMよりも大きな連続データをハードウェアの
みで自動送信することができる．（DPMのアドレスデコードの範囲内では，シャドウアドレスでも CSが
生成され DPMにアクセスできるように設計しているため．）

DPM for Data Output

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 30

Control & Status

Source Addr. Destination Addr.

Payload 31

Control & Status

Payload 0

Source Addr. Destination Addr.

Control & Status

Payload 1

Payload 2

Payload 34

Payload 35

offset address
 0xCC00_0XXX

0x000

0x040

0x080

0x0C0

0x780

0x7C0

0x000

0x038

0x070

0x770

0x7A8

0x7E0

0x7F8

0x7FC

図 13.13: DPM for Data Output

13.11. DPM (Dual Port Memory) 467

Control Register
for Data Output

offset address
 0xFFFE_FC0X

From Addr. To Addr.

DMA Counter

Current Packet Number

mode dreq int

0x0

0x4

0x8

図 13.14: Data Out Control Register

DPM制御レジスタ

DPMの制御レジスタ（図 13.14参照）に以下を設定することで，送信の制御を行う．

制御レジスタ (r/w)

• Mode0: (r/w) mode bitに 0を設定．すべてのパケットに headrと trailerを付加する．

• Mode1: (r/w) mode bitに 1を設定．最後に共通の headerと trailerを付加する (すべてのパ
ケットの宛先が同一となる)．

• Int: (r/w) 本ビットを 1に設定すると，終了時に EOP(End Of Packet) 割り込みを生成する．

• Dreq: (r/w) 本ビットを 1に設定すると，DMA Counterに設定した回数分だけ DMAを行う．

• From Addr: (r/w) 設定された word address − 1のアドレスにDPM のプロセッサバス側から
データが書かれた瞬間に DPMから Link0に対して出力を開始する．

• To Addr: (r/w)設定されたword address − 1のアドレスにDPMのプロセッサバス側からデー
タが書かれた瞬間に DPMから Link0に対して出力を開始する．

DMA Counter (r/w) DMAの回数を指定する

Current Packet Number (r) 現在送信されているパケット番号（図 13.13の payload番号に相当）を
示す

13.11.4 Data Input

図 13.15にデータリンク入力用DPMの構成を示す．Data in control register（図 13.16参照）に対して，
開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word address)
を設定することにより，複数パケットを一度に受信できる．From Addrと To Addrは人間に分かりやす
いようにこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されている．

From Addr, To Addr共に，設定された word address − 1のアドレスにDPM の Responsive Link側から
データが書かれた瞬間に，DPMからプロセッサバス側に対して出力 (DMA転送)を開始する (dreq bitが
設定されている場合）．int bitの割り込みを利用して，ソフトウェアで受信することもできる．
例えば，Mode0を使用し，From Addrを 0x000に設定し To Addrを 0x01f (byte address: 0x07c)に設

定したとする．Responsive Link側から Payload0, Payload1,...の順にDPMに受信データが書かれていく．

468 第 13章 Responsive Link

Responsive Link側からDPMの word address 0x1e番地にデータが書かれた瞬間にDPMからプロセッサ
バス側に出力（DMA転送）を開始する．（この場合，実際には From Addrには意味がない．）
あるいは，Mode0を使用し，From Addrを 0x0ff(byte address 0x3fc)に設定し To Addrを 0x1ff(byte

address: 0x7fc) に設定し，さらに DMAC を continuous mode で使用すると，Payload0～15 の領域と
Payload16～31の領域を使用して，主記憶等に用意したDPMよりも大きなメモリ領域（サイクリックバッ
ファ等）に対して，受信データをハードウェアのみで連続的に自動受信することができる．（DPMのアド
レスデコードの範囲内では，シャドウアドレスでも CSが生成され DPMにアクセスできるように設計し
ているため．）

DPM for Data Input

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 30

Control & Status

Source Addr. Destination Addr.

Payload 31

Control & Status

Payload 0

Source Addr. Destination Addr.

Control & Status 31

Payload 1

Payload 2

offset address
 0xC800_0XXX

0x000

0x040

0x080

0x0C0

0x780

0x7C0

0x000

0x038

0x070

0x7F8

0x7FC

Source Addr. Destination Addr.

Control & Status 1

0x708

Source Addr. Destination Addr.

Control & Status 0

0x700

Payload 31
0x070

0x0A8

図 13.15: DPM for Data Input

13.12. 通信方法 469

Control Registers
 for Data Input

From Addr. To Addr.

Current Packet Number

mode dreq int

0x0

0x4

0x8

Packet Valid Status0xC

offset address
 0xFFFE_F80X

図 13.16: Data In Control Register

DPM制御レジスタ

DPMの制御レジスタ（図 13.16参照）に以下を設定することで，受信の制御を行う．

制御レジスタ (r/w)

• Mode0: mode bitに 0を設定．すべてのパケットそれぞれに headerと trailerが付加された状
態で DPMに受信される．

• Mode1: mode bitに 1を設定．ヘッダとペイロードを図 13.15のように分離して受信．

• Int: 本ビットを 1に設定すると，受信終了時にプロセッサに受信完了割り込みを発生する．

• Dreq: 本ビットを 1に設定すると，From Addrか To Addrに設定した word address − 1にパ
ケットを受信した際に，DMAに対して DREQを発生する．

Current Packet Number (r) 現在送信されているパケット番号（図 13.15の payload番号に相当）を
示す

Packet Valid Status ハードウェアデバッグ用レジスタ

13.12 通信方法

13.12.1 手順

1. 通信速度の設定—Responsive Link速度設定レジスタ

2. リンクの初期化—Responsive Link初期化レジスタ

3. ルーティングテーブルのバスリクエスト—Responsive Link　バスリクエストレジスタ

4. ルーティングテーブルの設定

5. ルーティングテーブルのバスリリース—Responsive Link　バスリクエストレジスタ

6. DPMの設定—Event in/out control レジスタおよび，Data in/out control レジスタ

7. DPMにデータを書き込む　→　パケット送信

470 第 13章 Responsive Link

DMAを用いた送信

DPMの容量には当然限界がある．しかし，レスポンシブリンクでは，DMAとDPMが協調して動作す
ることで，DPMの容量を越えるような大きなデータを一度に送信することが可能である．その際の手順
は以下の通りである．ただし，総データ量は N packet分であることを仮定する．

DPMの設定

1. Nの約数のうち最大のものを fとする．ただし，データリンクでは f¡36，イベントリンクでは f¡15で
あるとする．

2. DPMの DMA Counterを (N/f)-1に設定する．

3. DPMの MODE1 HEADER及び MODE1 TRAILERに宛先およびパケットの持つべき性質 (受信
側での割込みなど)を設定する．

4. DPMのコントロールレジスタをmode 1,from(0),to(f*0xe+0xd),DREQに設定する．(mode 0で送
信する場合，DMAの転送元にはパケットの形でデータが存在している必要がある．ただし，この場
合手順３は必要無い．)

DMAの設定

1. DMAの送信元を送信したいデータの格納されているメモリの先頭アドレスに設定する．

2. DMAの送信先を送信用 DPMの先頭のアドレスにする．

3. DMAの送信先を送信用 DPMの先頭のアドレスにする．

4. DMAのコントロールレジスタは SAU, RL, MTM, STをONにする． (この STによる起動がDMA
Counterの設定時に差し引いた 1回に相当する)

13.12.2 相互通信の際の注意点

　相互通信をする際に注意すべきは，二つのボードをつなげてから，まずそれぞれのボードにおいて「通

信速度の設定」を行い，さらに，それぞれのボードにおいて「リンクの初期化」を行う．

当然，通信速度は同じでなければならない．また，リンクの初期化はボードをつなげてから行わないと

相互通信ができないので注意すること．その他の設定は個別に各ボードで行う．（モニタでの相互通信には，

リンクの初期化モジュールを作成し，ボードをつなげたあと，そのモジュールを実行することにより相互

通信を行う．）

471

14
DMAC

• 32/16/8 bit I/F

• 入力チャネル：４

• 優先順位：固定優先度及びラウンドロビン

• Memory to memory転送機能

• Bus sizing機能 (8, 16bit I/O用)

• Bus swapping機能 (8, 16bit I/O用)

14.1 レジスタマップ

DMAC 初期アドレス

DMAC0 FFFF0000

DMAC1 FFFF1000

DMAC2 FFFF2000

offset 31 24 23 16 15 8 7 0
0x800 - PRI

0x804 - IC

0x40*(x)+0x04 PSA<31:0>
0x40*(x)+0x08 MDA<31:0>
0x40*(x)+0x18 LN<31:0>
0x40*(x)+0x0c ID<31:0>
0x40*(x)+0x10 - DASSAUBM RL PCIMTMMR32P16P 8P S16 S8 IERIED ST

0x40*(x)+0x14 L0 L1 L2 L3 - ER ED

472 第 14章 DMAC

14.1.1 DMA制御レジスタ

ライト／リード

オフセット: 0x800

31 1
-

0
PRI

bit名 機能

PRI PRIority :Default 0 本ビットは DMAチャネルのプライオリティを示す 0:プライオ
リティはラウンドロビン 1:プライオリティは ch0>ch1>ch2>ch3

14.1.2 DMA割り込みクリアレジスタ

オフセット: 0x804

31 1
-

0
IC

bit名 機能

IC Interrupt Clear 本ビットは DMA割り込みのクリアを行う． 0:割り込みクリア

14.1.3 ポート／ソースアドレスレジスタ

オフセット: 0x40*(x) +0x04

31 0
PSA<31:0>

bit名 機能

PSA<31:0> Port/Source Address :Default X チャネル xのDMAに対し，本ビットはメモリから
I/Oへの転送の時（MODEレジスタのMTMビットが０）ポートアドレスを示し，メ
モリからメモリへの転送の時（MODEレジスタのMTMビットが１）ソースアドレス
を示す．

14.1. レジスタマップ 473

14.1.4 メモリ／デスティネーションアドレスレジスタ

オフセット: 0x40*(x) +0x08

31 0
MDA<31:0>

bit名 機能

MDA<31:0> Memory/Destination Address :Default X チャネル xのDMAに対し，本ビットはメ
モリから I/Oへの転送の時（MODEレジスタのMTMビットが０）メモリアドレス
を示し，メモリからメモリへの転送の時（MODEレジスタのMTMビットが１）デス
ティネーションアドレスを示す．

14.1.5 転送レングスレジスタ

オフセット: 0x40*(x) +0x18

31 0
LN<31:0>

bit名 機能

LN<31:0> transfer LeNgth :Default X チャネル xの DMAに対し，本レジスタは転送レングス
を示す．単位はバイトである．

14.1.6 データバッファレジスタ

オフセット: 0x40*(x) +0x0c

31 0
ID<31:0>

bit名 機能

ID<31:0> Internal Data :Default X チャネル xの DMAに対し，DMA転送時一度内部のデー
タバッファにてメモリにライトするデータを組み立てるが，そのデータバッファの値

が読める．どのロケーションに有効なデータがあるかはステータスレジスタを見る必

要がある．

474 第 14章 DMAC

14.1.7 転送モード制御レジスタ

オフセット: 0x40*(x) +0x10

31 15
-

14
DAS

13
SAU

12
BM

11
RL

10
PCI

9
MTM

8
MR

7
32P

6
16P

5
8P

4
S16

3
S8

2
IER

1
IED

0
ST

ライト／リード

14.1. レジスタマップ 475

bit名 機能

DAS Destination Address Update :Default X 0:メモリアドレスレジスタで設定したアドレ
スが次の転送にも使用される． 1:メモリアドレスレジスタの値は，最後に転送を行っ
たアドレスより１ワード先を示す．

SAU Source Address Update :Default X 0:ポートアドレスレジスタで設定したアドレスが
次の転送にも使用される． 1:ポートアドレスレジスタの値は，最後に転送を行ったア
ドレスより１ワード先を示す．

BM Burst Mode :Default X 0:バースト転送しない． 1:バースト転送する．

RL Responsive Link :Default X 1:レスポンシブリンク用 DPMに対する DMA転送を行
う．

PCI PCI :Default X 1:PCIに対して DMA転送を行う．

MTM Memory To Memory transfer :Default X 0:ポートアドレスレジスタで設定した I/O
とメモリ間のDMA転送であることを示す．転送方向はMRビットにて指定する． 1:
ソースアドレスからデスティネーションアドレスへ，レングスレジスタで設定したバ

イト数のデータを DMA転送を行う．アドレスカウンタは UP方向のみのカウントと
する．また，4バイトバウンダリでない転送領域及びレングスのDMA転送はMemory
To Memoryではサポートしない．

MR MR Memory Read :Default X 0:I/Oからメモリへの転送であることを示す． 1:メモ
リから I/Oへの転送であることを示す．

32P 32bit I/O Port :Default X 0:don ’t care 1:MTMビットが 0の時 32bitの I/Oポー
トとの転送であることを示す．この時，ポートアドレスのビット 1，0は無視される．

16P 16P 16bit I/O Port :Default X 0:don ’t care 1:MTMビットが 0の時 16bitの I/O
ポートとの転送であることを示す．この時，ポートアドレスのビット 0 は無視され，
ビット１によりどのデータバスに接続されるか（D31-16 or D15-0）を示す．

8P 8P 8bit I/O Port :Default X 0:don’t care 1:MTMビットが 0の時 8bitの I/Oポー
トとの転送であることを示す．この時，ポートアドレスのビット 1，0によりどのデー
タバスに接続されるか（D31-24 or D23-16 or D15-8 or D7-0）を示す．

S16 Swap at 16bit :Default X 0:don ’t care 1: 16bit単位でデータのスワップを行う．

31 A B C D 0 → 31 C D A B 0

S8 Swap at 8bit :Default X 0:don ’t care 1: 8bit 単位でデータのスワップを行う．

31 A B C D 0 → 31 B A D C 0
S16=1,S8=1をセットすると以下のようにスワップされる．

31 A B C D 0 → 31 D C B A 0

IER Interrupt enable of ER-bit :Default 0 0:割込みを発生しない． 1:割込み発生を許可す
る．

IED Interrupt enable of ED-bit :Default 0 0:割込みを発生しない． 1:割込み発生を許可す
る．

ST Start :Default 0 0:DMA転送を停止させる．0 をライト後 DMACは初期化される．
1:DMA転送を起動する．

本レジスタで設定できるモードは次ページの通りであり，それ以外の設定では動作の保証はしない．

476 第 14章 DMAC

転送モード スワップなし スワップあり スワップあり リトルエンディアン

(S16=0,S8=0) (S16=0,S8=1) (S16=1,S8=0) (S16=1,S8=1)

メモリ (32bit) メモリ (32bit) ○ × × ○

メモリ (32bit) I/O 32bit(D31-0) ○ ○ ○ ○

I/O 16bit(D31-16) ○ × × ○

I/O 16bit(D15-0) ○ × × ○

I/O 8bit(D31-24) ○ × × ○

I/O 8bit(D23-16) ○ × × ○

I/O 8bit(D15-8) ○ × × ○

I/O 8bit(D7-0) ○ × × ○

メモリ (D31-16) I/O8bit(D31-24) ○ × × ○

14.1.8 ステータスレジスタ

オフセット: 0x40*(x)+0x14 ライト／リード

31
L0

30
L1

29
L2

28
L3

27 2
-

1
ER

0
ED

bit名 機能

L0 Location 0 :Default 0 0:内部データレジスタのD31-24は有効なデータでない． 1:内
部データレジスタの D31-24は有効なデータである．

L1 Location 1 :Default 0 0:内部データレジスタの D23-16は有効なデータでない． 1:内
部データレジスタの D23-16は有効なデータである．

L2 Location 2 :Default 0 0:内部データレジスタのD15-8は有効なデータでない． 1:内部
データレジスタの D15-8は有効なデータである．

L3 Location 3 :Default 0 0:内部データレジスタの D7-0は有効なデータでない． 1:内部
データレジスタの D7-0は有効なデータである．

ER Error :Default 0 0:don’t care 1:DMA転送中にエラーが発生してDMA転送が停止
したことを示す．本ビットは 0をライトするとクリアされる．

ED END :Default 0 0:don’t care 1:DMA転送が終了すると 1に設定される．本ビット
は 0をライトするとクリアされる．

477

15
バスサイジング機能付きDMA

15.1 本DMAの特徴

256 bit ⇔ 32 bitのバスサイジングをしながら転送する。

15.2 制御レジスタ

表 15.1: 制御レジスタ一覧
アドレス レジスタ名 用途

0xFFFFD000 PSA 転送元アドレスを指定 (32 bit)

0xFFFFD004 MDA 転送先アドレスを指定 (32 bit)

0xFFFFD008 LENGTH 転送データ数を指定 (byte)

0xFFFFD00C MODE 転送モード指定、転送開始指定

15.3 制御レジスタ詳細

15.3.1 PSAレジスタ

アドレス: 0xFFFFD000
DMA転送先のアドレスを 32 bitで指定する。Read/Write可能。

31 0
PSA

478 第 15章 バスサイジング機能付き DMA

15.3.2 MDAレジスタ

アドレス: 0xFFFFD004
DMA転送元のアドレスを 32 bitで指定する。Read/Write可能。

31 0
MDA

15.3.3 LENGTHレジスタ

アドレス: 0xFFFFD008
DMA転送するデータ数を byte単位で指定する。Read/Write可能。

31 0
LENGTH

15.3.4 MODEレジスタ

アドレス: 0xFFFFD00C

31 7
0

66
DAU

5
SAU

4 1
MODE

0
START

15.4. 注意事項 479

bit名 機能

DAU DMA転送開始時に転送先として設定されているアドレス。Writeのみ可能。

設定値 動作

0 MDAに設定したアドレス

1 前回の転送先の続き

SAU DMA転送開始時に転送元として設定されているアドレス。Writeのみ可能。

設定値 動作

0 MDAに設定したアドレス

1 前回の転送元の続き

MODE DMA転送元と転送先の対象を指定する。Read/Write可能。

設定値 転送先 転送元

0000 I/O I/O

0100 Memory I/O

0001 I/O Memory

0101 Memory Memory

1100 SDRAM I/O

1101 SDRAM Memory

0011 I/O SDRAM

0111 Memory SDRAM

1111 SDRAM SDRAM

• SDRAM : DDR SDRAM I/F (256 bit bus)

• Memory : 32 bit busに接続されたメモリ

• I/O : 32 bit bus に接続された I/O

START DMAの転送の開始を指定する。Read/Write可能。

設定値 動作

0 DMA転送終了状態

1 DMA転送開始/転送中

15.4 注意事項

• データ転送に指定するアドレスは 8word(32Byte)アラインにそろえる必要がある。

481

16
パルスカウンタ

16.1 パルスカウンタ概要

• 位相（2入力）による Up-Down Counter（いわゆるマウスカウンタ）

• bit幅：32bit

• パルスカウント機能：カウント数がコンペアレジスタにあらかじめ設定されている数になるとパルス
（割り込み）を発生

• 上記パルス発生の許可レジスタ及びステータスレジスタ

• 外部からのトリガ入力によってその時点でのカウントレジスタ値を別のカウント保持レジスタにコ
ピーし値を保持

• 外部入力

• チャネル数：9

16.2 レジスタインタフェース

16.2.1 パルスカウンタ制御レジスタ

アドレス パルスカウンタ制御レジスタ　

0xFFFF7000 パルスカウンタ [0]

0xFFFF7020 パルスカウンタ [1]

0xFFFF7040 パルスカウンタ [2]

0xFFFF7060 パルスカウンタ [3]

0xFFFF7080 パルスカウンタ [4]

0xFFFF70a0 パルスカウンタ [5]

0xFFFF70c0 パルスカウンタ [6]

0xFFFF70e0 パルスカウンタ [7]

0xFFFF7100 パルスカウンタ [8]

482 第 16章 パルスカウンタ

INT

INTEN

CONTROL REG
CNTEN

UP/DOWN COUNTER

A

B

COMPSELFF

TIMER

SEL

REG

DATA

LATCH PULSE COUNT VALUE

24

CLR

REG

図 16.1: パルスカウンタブロック図

ライト時

31 7
-

6
START

5
SEL

4 3
MD

2
INTEN

1
CLR

0
CNTEN

bit名 機能

START START :Default 0 0：内部タイマをリセットして、停止させる。1：内部タイマを起動
させる。

SEL Select :Default 0 カウンタの割り込み動作モードの選択を行う。0：カウンタの値がコ
ンペアデータレジスタに設定された値と同じになった時に割込みを発生させる。1：内
部タイマにより設定された値によって、周期的に割込みを発生させる。

MD<4:3> Mode :Default 0 00：1逓倍でカウントアップする。01：2逓倍でカウントアップする。
10,11：4逓倍でカウントアップする。

INTEN Interrupt Enable :Default 0 0:割り込み禁止 1:割り込み許可

CLR counter CLear :Default 1 0:カウンタをクリアする 1:don ’t care

CNTEN Count Enable :Default 0 0:カウンタを停止する 1:カウンタを起動する

リード時

16.2. レジスタインタフェース 483

31
INT

30 7
-

6
START

5
SEL

4 3
MD

2
INTEN

1
CLR

0
CNTEN

bit名 機能

INT Interrupt :Default 0 0:割込み発生なし 1:割込み発生本レジスタのビットは本レジスタ
をリードするとクリアされる。

START START :Default 0 0：内部タイマをリセットして、停止させる。1：内部タイマを起動
させる。

SEL Select :Default 0 カウンタの割り込み動作モードの選択を行う。0：カウンタの値がコ
ンペアデータレジスタに設定された値と同じになった時に割込みを発生させる。1：内
部タイマにより設定された値によって、周期的に割込みを発生させる。

MD<4:3> Mode :Default 0 00：1逓倍でカウントアップする。01：2逓倍でカウントアップする。
10,11：4逓倍でカウントアップする。

INTEN Interrupt Enable :Default 0 0:割り込み禁止 1:割り込み許可

CLR counter CLear :Default 1 0:カウンタをクリアする 1:don ’t care

CNTEN Count Enable :Default 0 0:カウンタを停止する 1:カウンタを起動する

16.2.2 コンペアデータレジスタ

アドレス コンペアデータレジスタ

0xFFFF7004 パルスカウンタ [0]

0xFFFF7024 パルスカウンタ [1]

0xFFFF7044 パルスカウンタ [2]

0xFFFF7064 パルスカウンタ [3]

0xFFFF7084 パルスカウンタ [4]

0xFFFF70A4 パルスカウンタ [5]

0xFFFF70C4 パルスカウンタ [6]

0xFFFF70E4 パルスカウンタ [7]

0xFFFF7104 パルスカウンタ [8]

リード／ライト時

31 0
CMP<31:0>

bit名 機能

CMP<31:0> Compare Data :Default X カウンタ値と比較す比較データを格納する。SEL bitが 0
の場合、カウンタがこの値と等しくなると割込みを発生する。

484 第 16章 パルスカウンタ

16.2.3 カウンタレジスタ

アドレス カウンタレジスタ

0xFFFF7008 パルスカウンタ [0]

0xFFFF7028 パルスカウンタ [1]

0xFFFF7048 パルスカウンタ [2]

0xFFFF7068 パルスカウンタ [3]

0xFFFF7088 パルスカウンタ [4]

0xFFFF70A8 パルスカウンタ [5]

0xFFFF70C8 パルスカウンタ [6]

0xFFFF70E8 パルスカウンタ [7]

0xFFFF7108 パルスカウンタ [8]

リード時

31 0
CNT<31:0>

bit名 機能

CNT<31:0> Count Data :Default X ラッチパルスが入力された時にカウンタの値が本レジスタに
ラッチされる。

16.2.4 タイマレジスタ

アドレス タイマレジスタ

0xFFFF700C パルスカウンタ [0]

0xFFFF702C パルスカウンタ [1]

0xFFFF704C パルスカウンタ [2]

0xFFFF706C パルスカウンタ [3]

0xFFFF708C パルスカウンタ [4]

0xFFFF70AC パルスカウンタ [5]

0xFFFF70CC パルスカウンタ [6]

0xFFFF70EC パルスカウンタ [7]

0xFFFF710C パルスカウンタ [8]

リード／ライト時

31 0
TIMER<31:0>

16.2. レジスタインタフェース 485

bit名 機能

TIMER<31:0> Timer Data :Default X 周期割り込みに使用するタイマ値を設定する。カウンタクロッ
クをカウントし本タイマ値と等しくなると、SEL bitが 1の場合、割り込みを発生さ
せる。

487

17
PWM発生器

17.1 PWM発生器概要

• Counter兼 Timer

• Up-Down Counter

• Bit幅：32bit

• PWM出力：内部レジスタの設定によってデューティ比の異なる矩形波を出力

• 外部入力可能

• チャネル数：9

17.2 PWMコントロールレジスタ

アドレス CTRLレジスタ　

0xFFFF7200 PWMCTRL[0]

0xFFFF7220 PWMCTRL[1]

0xFFFF7240 PWMCTRL[2]

0xFFFF7260 PWMCTRL[3]

0xFFFF7280 PWMCTRL[4]

0xFFFF72a0 PWMCTRL[5]

0xFFFF72c0 PWMCTRL[6]

0xFFFF72e0 PWMCTRL[7]

0xFFFF7300 PWMCTRL[8]

リード／ライト

31 3
-

2
P

1
CLR

0
CNTEN

488 第 17章 PWM発生器

B

COMP

16bit Counter

"0"

load

’<’ COMP
FF

Register A

Register B

A

16

16

16

図 17.1: PWM発生器ブロック図

bit名 機能

P Positive :Default 0 0:カウンタ値がタイミングレジスタ値よりも小さい時 PWM出力
は 0となる 1:カウンタ値がタイミングレジスタ値よりも小さい時 PWM出力は 1とな
る

CLR Counter clear :Default 0 0:don ’t care 1:カウンタをクリアする

P Count Enable :Default 0 0:カウンタを停止する 1:カウンタを起動する

17.3 PWMサイクルレジスタ

アドレス PWMサイクルレジスタ

0xFFFF7204 CY[0]

0xFFFF7224 CY[1]

0xFFFF7244 CY[2]

0xFFFF7264 CY[3]

0xFFFF7284 CY[4]

0xFFFF72a4 CY[5]

0xFFFF72c4 CY[6]

0xFFFF72e4 CY[7]

0xFFFF7304 CY[8]

17.4. PWM出力反転制御レジスタ 489

リード／ライト

31 0
CY<31:0>

bit名 機能

CY<31:0> Cycle :Default X サイクル時間を決定するレジスタである．カウンタ値が本レジスタ
値と同じになったらカウンタは値‘ ０ ’をロードする．

17.4 PWM出力反転制御レジスタ

アドレス PWM出力反転制御レジスタ

0xFFFF7208 RV[0]

0xFFFF7228 RV[1]

0xFFFF7248 RV[2]

0xFFFF7268 RV[3]

0xFFFF7288 RV[4]

0xFFFF72a8 RV[5]

0xFFFF72c8 RV[6]

0xFFFF72e8 RV[7]

0xFFFF7308 RV[8]

リード／ライト

31 0
RV<31:0>

bit名 機能

RV<31:0> ReVerse timing :Default X PWM出力を反転する時間を決定するレジスタである．カ
ウンタ値が本レジスタ値と同じになったら PWM出力は反転する．

491

18
DDR SDRAM I/F

• 主記憶

– 32/128 bit I/Fのいずれかを選択可能

• Link SDRAM

– 32 bit I/F

• 2/2.5/3の CAS Latencyに対応

• tWTR(Internal Write to Read Command Delay)が 1の DDRチップにのみ対応

• 設定レジスタはワードアクセスのみ有効

18.1 レジスタマップ

DDR SDRAM I/F 初期アドレス

主記憶 I/F FFFFF000

Link SDRAM FFFFE000

offset 31 24 23 16 15 8 7 0
0x0 - State S
0x4 - CS - RAS - CAS
0x8 - EMRS
0xC - MRS2 - MRS1
0x10 -
0x14 - RFC - RP - RCD - MRD
0x18 - RASmax - RASmin
0x1C - REFRESH
0x20 - W

492 第 18章 DDR SDRAM I/F

18.1.1 主記憶 I/F幅設定レジスタ

オフセット: 0x20

31 1
-

0
W

bit名 機能

W Width :Default 0 本ビットで主記憶 I/Fのビット幅を設定する。 本レジスタは主記
憶 I/Fでのみ有効である。 0: 32 bit 1: 128 bit

18.1.2 I/F起動レジスタ

オフセット: 0x0

31 8
-

7 1
State

0
S

bit名 機能

State State (Read Only) 本ビットは I/Fの内部状態を示す。

S Start :Default 1 本ビットで I/Fの起動/停止を設定する。 0: I/F起動 1: I/F停止

18.1.3 メモリモジュール設定レジスタ

オフセット: 0x4

31 18
-

17 16
CS

15 12
-

11 8
RAS

7 4
-

3 0
CAS

18.1. レジスタマップ 493

bit名 機能

State CS: Default 2(主記憶 128 bit I/F) 2(主記憶 32 bit I/F) 1(Link SDRAM I/F) 本ビッ
トは各 I/Fの CS出力信号の接続本数を設定する。

RAS Row Address Width: Default 12(主記憶 128 bit I/F) 13(主記憶 32 bit I/F) 13(Link
SDRAM I/F) 本ビットは各 I/Fに接続されている DDRチップの Row Address幅を
設定する。

CAS Column Address Width: Default 10(主記憶 128 bit I/F) 9(主記憶 32 bit I/F) 9(Link
SDRAM I/F) 本ビットは各 I/Fに接続されている DDRチップの Column Address
幅を設定する。

18.1.4 EMRS設定レジスタ

オフセット: 0x8

31 12
-

11 0
EMRS

bit名 機能

EMRS Extended Mode Register Set: Default 0 本レジスタは I/Fの起動時に、DDRチップ
の Extended Mode Reigister Set に書き込む値を設定する。

18.1.5 MRS設定レジスタ

オフセット: 0xC

31 28
-

27 16
MRS2

15 12
-

11 0
MRS1

bit名 機能

MRS2 Mode Register Set 2: Default 0x21 本レジスタは I/Fの起動時に、DDR チップの
Mode Reigister Set に二度目に書き込む値を設定する。

MRS1 Mode Register Set 1: Default 0x121 本レジスタは I/Fの起動時に、DDRチップの
Mode Reigister Set に最初に書き込む値を設定する。

494 第 18章 DDR SDRAM I/F

18.1.6 DDR設定レジスタ 1

オフセット: 0x14

31 28
-

27 24
RFC

23 20
-

19 16
RP

15 12
-

11 8
RCD

7 4
-

3 0
MRD

bit名 機能

RFC tRFC: Default 9 本レジスタは、I/Fに接続されているDDRチップの tRFC値をサイ
クル単位で指定する。サイクルの周期は DDRチップに与えているクロックと同じで
ある。

RP tRP: Default 2 本レジスタは、I/Fに接続されているDDRチップの tRP値をサイク
ル単位で指定する。サイクルの周期は DDRチップに与えているクロックと同じであ
る。

RCD tRCD: Default 1 本レジスタは、I/Fに接続されている DDRチップの tRCD値をサ
イクル単位で指定する。サイクルの周期は DDRチップに与えているクロックと同じ
である。

MRD tMRD: Default 1 本レジスタは、I/Fに接続されているDDRチップの tMRD値をサ
イクル単位で指定する。サイクルの周期は DDRチップに与えているクロックと同じ
である。

18.1.7 DDR設定レジスタ 2

オフセット: 0x18

31 30
-

29 16
RASmax

15 14
-

13 0
RASmin

bit名 機能

RASmax tRAS max: Default 0x2328 本レジスタは、I/F に接続されている DDR チップの
tRASmax値をサイクル単位で指定する。サイクルの周期はDDRチップに与えている
クロックと同じである。

RASmin tRAS min: Default 6 本レジスタは、I/Fに接続されている DDRチップの tRASmin
値をサイクル単位で指定する。サイクルの周期は DDRチップに与えているクロック
と同じである。

18.1.8 リフレッシュインターバル設定レジスタ

オフセット: 0x18

18.1. レジスタマップ 495

31 16
-

15 0
REFRESH

bit名 機能

REFRESH REFRESH: Default 0x48a8 本レジスタは、I/Fに接続されているDDRチップのリフ
レッシュ周期をサイクル単位で指定する。サイクルの周期は DDRチップに与えてい
るクロックと同じである。

497

19
PCI I/F

初期アドレス: 0xffff3000

19.1 アドレスマップ

19.1.1 Local Bus

PCI I/F

offset 31 24 23 16 15 8 7 0
0x00 0x0000 temeee lte lts lme lms 0 pe ps le ls id 0
0x04 data 4’b0000 dreq bst rest data 4’b0000 dreq bst rest
0x08 MailboxA Higher (PCI → Local)
0x0c MailboxA Lower (PCI → Local)
0x10 MailboxB (Local → PCI)
0x14 Reserved
0x18 Local AD Mode Local AD
0x1c Reserved
0x20 Local Bus Acess Port(Local-BAP)
0x24 Reserved
0x28 PCI Bus Acess Port (PCI-BAP)
0x2c Reserved
0x30 Current Local AD
0x34 Reserved
0x38 Reserved
0x3c Reserved

DMA(Channel0)

498 第 19章 PCI I/F

offset 31 24 23 16 15 8 7 0
0x40 B/C AR Mode Base/Current Address Register(B/C AR)
0x44 B/C DCR 00 Base/Current Data Count Register(B/C DCR)
0x48 dsr 00000 cdcecaumas32 dsmr dmr
0x4c 00000000 dcr dmcr damr
0x50 16’h0000 fdcr 00 fdcr
0x54 rqpr 00 rqpr wqpr wqpr00
0x58 fsr mrber fsmr 8’h00
0x5c 8’h00 fcr fmcr famr

DMA(Channel0)

offset 31 24 23 16 15 8 7 0
0xc0 B/C AR Mode Base/Current Address Register(B/C AR)
0xc4 B/C DCR 00 Base/Current Data Count Register(B/C DCR)
0xc8 dsr 00000 cdcecaumas32 dsmr dmr
0xcc 00000000 dcr dmcr damr
0xd0 16’h0000 fdcr 00 fdcr
0xd4 rqpr 00 rqpr wqpr wqpr00
0xd8 fsr mrber fsmr 8’h00
0xdc 8’h00 fcr fmcr famr

PCI Configration Register

offset 31 24 23 16 15 8 7 0
0x100 VendorID DeviceID
0x104 Command Status
0x108 RevisionID ClassCode
0x10c CacheLineSize LatencyTimer HeaderType BIST
0x110 Base Address Register
0x114 Rerserved
0x118 Rerserved
0x11c Rerserved
0x120 Rerserved
0x124 Rerserved
0x12c SubsystemVendorID SubsystemID
0x130 Expansion ROM Base Address
0x134 Cap Ptr Reserved
0x138 Reserved
0x13c InterruptLine InterruptPin Min Gnt Max Lat

19.1.2 PCI Bus

PCI I/F

19.1. アドレスマップ 499

offset 31 24 23 16 15 8 7 0
0x00 pe ps le ls id 0 temeee lte lts lme lms 0 0x0000
0x04 dreq bst rest data 4’b0000 dreq bst rest data 4’b0000
0x08 MailboxA Lower (PCI → Local)
0x0c MailboxA Higher (PCI → Local)
0x10 MailboxB (Local → PCI)
0x14 Reserved
0x18 Local AD Mode
0x1c Reserved
0x20 Local Bus Acess Port(Local-BAP)
0x24 Reserved
0x28 PCI Bus Acess Port (PCI-BAP)
0x2c Reserved
0x30 Current Local AD
0x34 Reserved
0x38 Reserved
0x3c Reserved

DMA(Channel0)

offset 31 24 23 16 15 8 7 0
0x40 Base/Current Address Register(B/C AR) Mode
0x44 Reserved
0x48 Base/Current Data Count Register(B/C DCR) 00
0x4c Reserved
0x50 dmr dsmr 00000 cdcecaumas32 dsr
0x54 Reserved
0x58 damr dmcr dcr 00000000
0x5c Reserved
0x60 16’h0000fdcr 00
0x64 Reserved
0x68 rqpr 00wqpr 00
0x6c Reserved
0x70 fsrmrberfsmr8’h00
0x74 Reserved
0x78 8’h00fcrfmcrfamr
0x7c Reserved

DMA(Channel1)

500 第 19章 PCI I/F

offset 31 24 23 16 15 8 7 0
0xc0 Base/Current Address Register(B/C AR) Mode
0xc4 Reserved
0xc8 Base/Current Data Count Register(B/C DCR) 00
0xcc Reserved
0xd0 dmr dsmr 00000 cdcecaumas32 dsr
0xd4 Reserved
0xd8 damr dmcr dcr 00000000
0xdc Reserved
0xe0 16’h0000fdcr 00
0xe4 Reserved
0xe8 rqpr 00wqpr 00
0xec Reserved
0xf0 fsrmrberfsmr8’h00
0xf4 Reserved
0xf8 8’h00fcrfmcrfamr
0xfc Reserved

19.2 PCI I/F レジスタマップ

PCI BUS側は little endian．8bitのmemory space．

19.2.1 割り込み制御レジスタ

オフセット: 0x0000(Local)

31 16
0x0000

15
te

14
me

13
ee

12
lte

11
lts

10
lme

9
lms

8
0

7
pe

6
ps

5
le

4 3
ls

2 1
id

0
0

オフセット: 0x0000(PCI)

31
pe

30
ps

29
le

28 27
ls

26 25
id

24
0

23
te

22
me

21
ee

20
lte

19
lts

18
lme

17
lms

16
0

15 0
0x0000

19.2. PCI I/F レジスタマップ 501

bit名 機能

te Target abort interrupt Enable (Default:’b1)
Local:R, PCI R/W
Master動作時に Target Abortを受信した際の PCI BUSへの割り込み制御
1:割り込み許可 0:不許可

me Master Abort Interrupt Enable (Default:’b0)
Local:R, PCI R/W
Master動作時にMaster Abortを受信した際の PCI Busへの割り込み制御
1: 割り込み許可 0:不許可

ee End of Process Interrupt Enable (Default:’b0)
Local: R/W, PCI: R
DMAレジスタの CDCRが”0”になったときの Local Busへの割り込み制御
1: 割り込み許可 0:不許可

lte Target Abort Interrupt Enable for Local side (Default:’b0)
Local: R/W, PCI: R
Master動作時に Target Abortを受信した際の Local Busへの割り込み制御
1: 割り込み許可 0:不許可

lts Target Abort Interrupt Status for Local side (Default:’b0)
Local: R/W, PCI: R
Master動作の Target Abort受信用の割り込みレジスタ (Local Bus側) 受信時に”1”
にセットされ，Local Bus側から”1”を書込むことでリセット

lme Master Abort Interrupt Enable for Master side (Default:’b0)
Local: R/W, PCI: R
Master動作時にMaster Abortを受信した際の Local Busへの割り込み制御
1: 割り込み許可 0:不許可

lms Master Abort Interrupt Status for Master side (Default:’b0)
Local: R/W, PCI: R
Master動作のMaster Abort受信用の割り込みレジスタ (Local Bus側) 受信時に”1”
にセットされ，Local Bus側から”1”を書込むことでリセット

502 第 19章 PCI I/F

bit名 機能

pe PCI Bus Interrupt Enable (Default:’b1)
Local: R, PCI: R/W
MailboxBへの書込み時の PCI Busへの割り込み制御．
1: 割り込み許可 0: 不許可

ps PCI Bus Interrupt Status (Default:’b0)
Local: R, PCI: R/W
DoorbellB用の割り込みレジスタ，割り込み発生時に”1”にセット
PCI BUSから”1”を書込むことでリセット

le Local Bus Interrupt Enable (Default:’b1)
Local: R/W, PCI: R
MailboxAへの書込み時の LocalBusへの割り込み制御．High,Low一括で行なう．
1: 割り込み許可 0: 不許可

ls Local Bus Interrupt Status (Default:’b00)
Local: R/W, PCI: R
DoorbellA用の割り込みレジスタ，割り込み発生時に”1”にセット
MailBoxA(Lower) - LIS(Lower),bit3 MailBoxA(Higher) - LIS(Higher), bit4
Local Busから”1”を書込むことでそれぞれリセット．割り込み解除には双方リセット
する必要あり．

id ID0,ID1 (Default:’b00)
Local: R/W, PCI: R
LocalBusから任意の値を書込み可，PCIから読み込み可．
bit3: ID1, bit2: ID0

19.2.2 プログラム制御レジスタ

オフセット: 0x0004(Local)

31 28
data

27 24
4’b0000

23
dreq

22 21
bst

20 16
rest

15 12
data

11 8
4’b0000

7
dreq

6 5
bst

4 0
rest

オフセット: 0x0004(PCI)

31
dreq

30 29
bst

28 24
rest

23 20
data

19 16
4’b0000

15
dreq

14 13
bst

12 8
rest

7 4
data

3 0
4’b0000

Channel1: 0x0007, 0x0006
Channel0: 0x0005, 0x0004

19.2. PCI I/F レジスタマップ 503

bit名 機能

data FIFO data number for Master Transaction
Local: R, PCI: R
Master転送用の FIFO内のデータ数をバイト単位で出力

dreq DMA Request
Local: R, PCI: R
PCI I/Fからの dreq を出力

bst Burst Number
Local: R, PCI: R
PCI I/Fからの burst ack を出力
’b00: 8, ’b01: 4, ’b10: 2, ’b00: single

rest Remaining Number of Master Transaction
Local: R, PCI: R
Master転送時の残り転送数
’b10000 - 8以上, ’b01000 - 4-7 ’b00100 - 2-3, ’b00010 - 1 ’b00001 - 0

19.2.3 MailboxA

オフセット: 0x000c(Local), 0x0008(PCI)

31 0
MailboxA Lower (PCI → Local)

オフセット: 0x0008(Local), 0x000c(PCI)

31 0
MailboxA Higher (PCI → Local)

bit名 機能

MailboxA MailBoxA (PCI → Local)(Default: 64’h0)
Local: R, PCI: R/W
PCI Busから任意の値を書くことができ，Local Busから読み出すことが可能
32Bit PCI - ’h0cのみ, 64Bit PCI - ’h08, ’h0c

19.2.4 MailboxB

オフセット: 0x0010(Local), 0x0010(PCI)

504 第 19章 PCI I/F

31 0
MailboxB (Local → PCI)

bit名 機能

MailboxB MailBoxB (Local → PCI)(Default: 64’h0)
Local: R/W, PCI: R
Local Busから任意の値を書くことができ，PCI Busから読み出すことが可能

19.2.5 Local AD

オフセット: 0x0018(Local)

31 26
Local AD

25 24
Mode

23 0
Local AD

オフセット: 0x0018(PCI)

31 2
Local AD

1 0
Mode

bit名 機能

Local AD Address for Local Bus (Default: 32’h0)
Local: R, PCI: R/W
Target Transaction時に Local Busの address busに出力するアドレスを指定．転送
開始時にこの値を Current Local AD に読み込む．実際に出力する値は [Local AD,
2’b00]．

Mode Address Update Mode in Target Transaction (Default: 2’b0)
Local: R, PCI: R/W
Local ADの更新モードを指定．
2’b00: リニアインクリメント, その他: 固定

19.2.6 Local Bus Access Port

オフセット: 0x0020(Local), 0x0020(PCI)

31 0
Local Bus Acess Port(Local-BAP)

19.3. Master Transaction用 DMAレジスタマップ 505

bit名 機能

Local-BAP Local Bus Access Port
Local:不可, PCI: R/W
PCI Busから Local Busへのアクセスポート．このポートへアクセスすると Local Bus
の権利を取得して transactionを行う．

19.2.7 PCI Bus Access Port

オフセット: 0x0028, 0x00a8(Local), 0x0028, 0x00a8(PCI)

31 0
PCI Bus Acess Port (PCI-BAP)

bit名 機能

PCI-BAP PCI Bus Access Port
Local: R/W, PCI: 不可
Local Bus から PCI Busへのアクセスポート．このポートへアクセスすると Master
Transaction用の FIFOとの転送を行う．
’h28: Channel0, ’ha8: Channel1

19.2.8 Current Local AD

オフセット: 0x0030(Local), 0x0030(PCI)

31 0
Current Local AD

bit名 機能

C-Local AD Current Local AD
Local: R, PCI: R
Target Transaction時に Local Bus転送に用いられている現在のアドレスを出力．転
送開始時に Local ADに変更がある場合は Local ADの値を取り込む．

19.3 Master Transaction用DMAレジスタマップ

Channelごとに独立して用意．bit7 = Channel No.

506 第 19章 PCI I/F

19.3.1 Address Register

オフセット: 0x0040, 0x00c0(Local)

31 26
B/C AR

25 24
Mode

23 0
Base/Current Address Register(B/C AR)

オフセット: 0x0040, 0x00c0(PCI)

31 2
Base/Current Address Register(B/C AR)

1 0
Mode

bit名 機能

B/C AR Base/Current Address Register (Default: 30’h0)
Local: R/W, PCI: R/W
PCI Master動作時に PCI Busに出力するアドレスの指定．実際に出力されるアドレ
スは [AR,2’b00]．このポートへの書き込みはBARと CARを同時に変更するので，転
送中に明示的に BARを変更することは推奨しない．

Mode Address Update Mode in Master Transaction (Default: 2’b00)
Local: R/W, PCI: R/W
Master Transaction時のアドレス更新モードの指定
2’b00:リニアインクリメント, その他: 固定

19.3.2 Data Count Register

オフセット: 0x0044, 0x00c4(Local)

31 26
B/C DCR

25 24
00

23 0
Base/Current Data Count Register(B/C DCR)

オフセット: 0x0048, 0x00c8(PCI)

31 2
Base/Current Data Count Register(B/C DCR)

1 0
00

19.3. Master Transaction用 DMAレジスタマップ 507

bit名 機能

B/C DCR Base/Current Data Count Register (Default: 30’h0)
Local R/W, PCI R/W
Master Transaction時の転送バイト数の指定．64bit PCIでは 8, 32bit PCIでは 4ず
つ減少．Byte Enableに関わらず一定．このポートへの書き込みは BDCR,CDCR同
時に値を変更するので，転送中に値を明示的に変更することは推奨しない．

19.3.3 DMA Control Register

オフセット: 0x0048, 0x00c8(Local)

31 24
dsr

23 19
00000

18
cdce

17
cau

16
mas32

15 8
dsmr

7 0
dmr

オフセット: 0x0050, 0x00d0(PCI)

31 24
dmr

23 16
dsmr

15 11
00000

10
cdce

9
cau

8
mas32

7 0
dsr

508 第 19章 PCI I/F

bit名 機能

dsr DMA Status Register (Default: 8’h10)
Local: R, PCI: R
DMAの状態出力ポート．
[4]: pci req の値を出力．CoreへのMaster転送要求時に”0”．
[0]: tc(terminal count)の値を出力．cdcrが 0のとき”1”．

cdce Circulate Data Count Enable (Default: 1’b0)
Local: R/W, PCI: R/W
CDCRが 0に Local Bus側のDMAが転送を終了した際に自動的に転送を開始するか
を指定．開始する際には CDCRには BDCRの値がロードされる．
1’b1:自動開始, 1’b0: 待機

cau Current Address Update (Default: 1’b0)
Local: R/W, PCI: R/W
CDCE=1の場合の自動転送開始時における CARの設定方法の指定．
1’b1:最後の転送の次のアドレス (アドレス更新モードが固定ならば変更なし) 1’b0:BAR

mas32 Master 32Bit Mode (Default: 1’b0)
Local: R/W, PCI: R/W
Core-I/F間の転送モードの指定．PCI-BUS幅と同じ値の設定を推奨．
PCI-32bit, 64Bit Modeの場合はDisconnectやRetryの際にデータが消える恐れあり．

dsmr DMA Single Mask Register (Default: 8’h04)
Local: R/W, PCI: R/W
Master Transactionにおける PCI DMA転送開始シグナル (pci req)のマスク．
DSMR,DAMRの両方のマスクを解除する必要がある．bit[2]がマスク．

dmr DMA Mode Register (Default:8’h00)
Local: R/W, PCI R/W
Master Transaction時のコマンドの指定．下位 4bitが app cmdに出力．

19.3.4 DMA Stop/Reset Register

オフセット: 0x004c, 0x00cc (Local)

31 24
00000000

23 16
dcr

15 8
dmcr

7 0
damr

オフセット: 0x0058, 0x00d8 (PCI)

31 24
damr

23 16
dmcr

15 8
dcr

7 0
00000000

19.3. Master Transaction用 DMAレジスタマップ 509

bit名 機能

dcr DMA Clear Register
Local: W, PCI: W
ソフトウェアで DMAを初期化するポート．このポートへ書き込むとDMA(内部レジ
スタと status)が初期化される．

dmcr DMA Mask Clear Register
Local: W, PCI: W
このポートへ書き込むと DMA Mask(DSMR,DAMR)がクリアされる．

damr DMA All Mask Register (Default:8’h01)
Local: R/W, PCI: R/W
Channel0,1双方に効果のあるマスクレジスタ．どちらのChannelのポートへ書き込ん
でも同じ意味．

19.3.5 FIFO Data Register

オフセット: 0x0050, 0x00d0(Local)

31 16
16’h0000

15 10
fdcr

9 8
00

7 0
fdcr

オフセット: 0x0060, 0x00e0(PCI)

15 0
16’h0000

31 18
fdcr

17 16
00

bit名 機能

fdcr FIFO Data Count Register
Local: R, PCI: R
Master Transaction用 FIFOのデータ数 (byte count)．

19.3.6 FIFO Request Paremter Register

オフセット: 0x0054,0x00d4(Local)

31 26
rqpr

25 24
00

23 16
rqpr

15 10
wqpr

7 0
wqpr

9 8
00

オフセット: 0x0068,0x00e8(PCI)

510 第 19章 PCI I/F

15 2
rqpr

1 0
00

31 18
wqpr

17 16
00

bit名 機能

wqpr Write Request Parameter Register (Default: 14’h0)
Local: R/W, PCI: R/W
PCI busに write requestを出す閾値の設定．
byte countで設定し，FIFOのデータ数が上回ると要求を出す．

rqpr Read Request Parameter Register (Default: 14’0)
Local: R/W, PCI: R/W
PCI busに read requestを出す閾値の設定．
byte countで設定し，FIFOの空きデータ数が上回ると要求を出す．

19.3.7 FIFO Control Register

オフセット: 0x0058, 0x00d8(Local)

31 24
fsr

23 16
mrber

15 8
fsmr

7 0
8’h00

オフセット: 0x0070, 0x00f0(PCI)

7 0
fsr

15 8
mrber

23 16
fsmr

31 24
8’h00

bit名 機能

fsr FIFO Status Register
Local: R, PCI: R
FIFOの Status出力ポート．
[7] - Full, [6] - Empty, [5] - R/W , [4] - MREQ ,
[3] - MACK , [0] - EOP

mrber Master Read Byte Enable Register (Default: 8’h00)
Local: R, PCI: R/W
Master Read Transaction時に出力する Byte Enableの設定．

fsmr FIFO Single Mask Register (Default: 8’h04)
Local: R/W, PCI: R/W
対応するChannelの pci req のmask register．bit[2]がマスク．DMAと同様にFSMR
と FAMRの両方を解除する必要がある．

19.4. 動作/使用方法 511

19.3.8 FIFO Stop/Reset Register

オフセット: 0x005c, 0x00dc(Local)

31 24
8’h00

23 16
fcr

15 8
fmcr

7 0
famr

オフセット: 0x0078, 0x00f8(Local)

7 0
8’h00

15 8
fcr

23 16
fmcr

31 24
famr

bit名 機能

fcr FIFO Clear Register
Local: W, PCI: W
このポートへの書き込みは FIFO内のデータをクリアする．内部レジスタはクリアさ
れない．

fmcr FIFO Mask Clear Register
Local: W, PCI: W
このポートへの書き込みは対応する Channelの FSMR,FAMRを解除する．

famr FIFO All Mask Register (Default: 8’h01)
Local: R/W, PCI: R/W
両 Channelにマスクをかける．bit[0]がマスク．

19.4 動作/使用方法

19.4.1 Target Transaction (PCI → Local)

PCI Bus側から Local BUSをアクセスする際には転送前に Local ADを設定する必要があります．Local
ADの設定後，Local Bus Access Portにアクセスすると，PCI I/Fが Local Busの権利を要求し，CPU
busのバスマスタとして動作します．Local Bus側へ出力されるアドレスは Local ADです．各転送ごとに
アドレスは更新され，そのモードは Local ADの下位 2bitで決定されます．
データの転送の際には一時的に PCI I/F内にある FIFOにデータが格納されますが，転送自体は Local

Busの権利を獲得してから行なわれます．Local Busの権利を獲得するのに時間がかかるので，PCI Bus
の仕様にある 16clock ruleは無視し，初めのデータ転送に限り 255clockで retryをかけます．次のデータ
転送からは 8clock ruleを守ります．

• Target Write Transaction
Local Busの権利を取り，FIFOに空きがある場合のみ trdy がアサートされます．FIFOに空きが無
くなった場合は trdy をディアサートし続けます．ただし，8clockたった場合は disconnectします．
Local Bus側への転送は FIFOにデータが格納された時点で開始します．

512 第 19章 PCI I/F

• Target Read Transaction
Local Busの権利を取るとすぐに Local Busの転送を始めます．この転送は必ず Burst Access にな
り，複数データを一度に取ってこようとします．FIFOにデータが格納されると trdy がアサートさ
れます．FIFOにデータがない場合は 8clockたった時点で disconnect されます．常にデータを先に
取りに行くので，transaction終了時に FIFOはリセットされます．

• target initiated termination
terminationが起こる要因は次の 2つです．stopがアサートされるとともに configuration registerの
status registerがセットされます．

1. Clock Rule (Time up) 初めのデータについては 255clock(仕様では 16clock)，2つ目以降では
8clock 経過した場合に disconnetします．この場合は PCI仕様に従ってただちに転送を再開し
てください．

2. Local Bus Error Local Bus側の転送で Errorが起きた場合 (Addressが間違っているなど)に
target abortが発生します．masterへの通知は PCI仕様に従って起こるため，master側で対処
を行なってください．ただし，teをセットし，PCI Busに割り込みをかけてブリッジ側で対処
することも可能です．

19.4.2 Master Transaction(Local → PCI)

CPU Busから PCI Busにアクセスする場合は Local Busの DMAを使用します (しなくても可)．PCI
DMAのレジスタの設定の前には pci req と dreq にマスクをかけます．かならず動作停止時にレジスタの
変更を行なってください．設定するのは PCI Bus上での相手アドレス (BAR)，転送データ数 (BDCR), 転
送モード (DMR)が必須です．レジスタ設定後にmaskを解除してMaster転送を開始します．

• Write
BDCRが 1以上で，FIFOに 1つでも空きがあると dreq がアサートされます．dreq がアサートさ
れている状態で，PCI Bus Access Portへ dataが書込まれると FIFOに格納されます．

FIFOのデータ数が wqprで設定された閾値を上回ると pci req がアサートされます．PCI Busの権
利を獲得するとPCI Masterとなり，転送を始めます．1回の転送はFIFOが空になるか，CDCRが 0
になるまで行なわれます．FIFOが空になって転送が中断した場合は再度 FIFOのデータ数が，wqpr
を越えるか CDCR と一致するまで pci req をアサートしません．

• Read
BDCRが 1以上で，FIFOの空き数が rqprで設定された閾値を上回ると pci req がアサートされま
す．PCI Busの権利を獲得すると PCI Masterになり転送を始めます．この転送は FIFOが一杯にな
るか，CDCRが 0になるまで行なわれます．FIFOが一杯になって転送が中断した場合は再び空き領
域が rqprの閾値を越すか，CDCRと一致するまで pci req をアサートしません．FIFOにデータが
1つでもあると dreq がアサートされ，dreq がアサートされている状態で，PCI Bus Access Portへ
read accessが来ると，FIFOから dataが読み込まれます．

• Master Initiated Termination
Master動作時の Terminationは通常終了以外はMaster Abortのみです．PCI仕様通りに Configu-
ration ReigsterのMaster Abort受信 bitがセットされます．Masterでの対処を行なう場合は，lme
をセットして Local Bus側へ割り込みがかかるようにしてください．

513

20
IEEE1394

20.1 概要

• IEEE1394-1995 及び P1394a に準じた送信時のパッキング，受信時のアンパッキング

• サイクルマスターのサポート

• 32-bitCRC によるパリティ生成とエラー検出

• PHY チップとの DC 接続のインターフェイスをサポート

• 100/200/400Mb/sec の 3 スピードのサポート

• Isochronous 転送時，各サイクルにおける転送数の制御

• Isochronous パケットの，送信時はヘッダー自動挿入，受信時はヘッダー自動分離及びルーティング

• バスタイムレジスタのサポート

• CycleSync 出力機能対応

• Isochronous パケットマルチスピードコンカチネーション機能対応

• Asynchronous Stream パケット（ IsochronousCycle 外の Isochronous パケット) のサポート

• Host I/F

– ホストインターフェースは，SPARC lite バスライクな同期バス

– バッファ状態に応じて DMA 転送要求を行い高速にデータ転送を行うこ

• Apri Block

– Contorl

– Internal Reg

– Buffer Manager

514 第 20章 IEEE1394

• Link Block

– LinkTx Asynchronous Isochronous の両送信バッファからデータを読出し IEEE1394 で定義さ
れる各パケッフォーマットにして PHY インターフェースへパケットを送出する．ノードがルー
トのときは，サイクルスタートパケットの送出も行う．

– Link Rx Phyインターフェースからのパケットを受信し，そのパケットが自ノード宛かどうか判
断する． Asnchronous パケットであれば， Asynchronous バッファへ書き込む． Isochronous
パケットであれば，Isochronous バッファへ書き込む．

– Cycle Timer アイソクロナスサイクルスタートパケットの送出管理を行う．

– Cycle Manager アイソクロナスサイクルスタートパケットの監視を行う．

– ＣＲＣ巡回冗長チェック用コードの生成とチェックを行う．

– Receive Acknowledge 受信パケットに対するアクノリッジを生成する．

– Phy Interface Phyチップを直接接続可能なインターフェースを有している．接続対象チップは，
100, 200, 400Mbpsのいずれのチップも可能である．本コアでは，DC接続をサポートする．

20.2 レジスタ一覧

20.2.1 レジスタ内容

Version Register

初期値：0000 0001h

offset 31 24 23 16 15 8 7 0
00h Version Revision

本レジスタは，RTLのバージョン，レビジョンナンバーを示すリードオンリーレジスタである．

Control Register

初期値：0000 0000h

offset 31 24 23 16 15 8 7 0
04h - SRCMASTIM - RENTEN

本レジスタは，チップの各動作のコンフィグレーション，イネーブル等の設定を行う．通常，電源投入

直後にこのレジスタの設定を行い，本コアのコンフィグレーションを決めておく．

20.2. レジスタ一覧 515

bit名 機能

TEN<0> Transmitter Enable ビット（RW - 初期値：0b）

• 0 = トランスミッターをディスイネーブルにする

• 1 = トランスミッターをイネーブルにする

本レジスタのトランスミッターをイネーブルにするか否かを設定するイネーブル時は

以下の送信を行う．

• Asyncronous パケット

• CycleMaster ビットがイネーブル時でのサイクルスタートパケット

• サイクルスタート時での Isochronous パケット

REN<1> Receiver Enable ビット（RW - 初期値：0b）

• 0 = レシーバーをディスイネーブルにする 但し，Self ID パケットは受信する

• 1 = レシーバーをイネーブルにする

本コアのレシーバーをイネーブルにするか否かを設定する．イネーブル時は以下の受

信を行う．

• 他のノードからこのノードにアドレスされた Asynchronous パケット

• 指定したチャンネルの Isochronous パケット

TIMEN<16> Cycle Timer Enable ビット（RW - 初期値：0b）

• 0 = サイクルタイマーをディスイネーブルにする

• 1 = サイクルタイマーをイネーブルにする

本コア 内部のサイクルタイマーをイネーブルにするか否かを設定する．

MASTER<17> Cycle Master ビット（RW - 初期値：0b）

• 0 = 他のルートノードからのサイクルスタートパケットを受信し，サイクルタイ
マーの管理を行う．

• 1 = 自ノードがルートであり，かつこのビットが’1’ の時，本コアのサイクルタ
イマーがキャリーするたびに，サイクルスタートパケットを生成する．

SRC<18> Cycle Sourcer ビット（RW - 初期値：0b）

• 0 = PHY チップから供給されるクロックであるマスタークロックの 49.152MHz
を 2 分周して 24.576MHz でサイクルタイマーをカウントして Isochronous サイ
クルを管理する．

• 1 = CYCLEIN 端子から入力される信号の立ち上がりでサイクルタイマーを更
新して Isochronous サイクルを管理する．Isochronous の時間管理を行っている，
内部のサイクルタイマーの更新元を設定する．

516 第 20章 IEEE1394

Node Identification Register

offset 31 24 23 16 15 8 7 0
08h IDVAL - BUSID NODEID

bit名 機能

NODEID<5:0>Node Number ビット（RW - 初期値：3Fh）この値は IEEE1212 空間で定義される
6-bit のノードナンバーを設定する．送信時 IEEE 1394 パケットフォーマットのヘッ
ダー内のソース領域にこの値を使用する．また，受信時は受信するパケットのデスティ

ネーションのノードナンバーを見て，この値と一致する場合は受信，そうでない場合は

リジェクトする．通常はバスリセット後の Self Identificationフェイズの終了後，PHY
チップからノードナンバーを読み出し，このレジスタに設定する．

BUSID<15:6> Bus Number ビット（RW - 初期値：3FFh）この値は IEEE1212 空間で定義される
10-bit のバスナンバーを設定する．送信時 IEEE 1394 パケットフォーマットのヘッ
ダー領域のソース領域にこの値を使用する．また，受信時は受信するパケットのデス

ティネーションのバスナンバーを見て，この値と一致する場合は受信，そうでない場

合はリジェクトする．

IDVAL<31> ID Valid ビット（RW- 初期値：00b）0 = BusNumber の値が’3FFH’ でかつ Node-
Number の値が’3Fh’にアドレスされたパケットのみを受信する．それ以外のパケット
はリジェクトする．1 =以下の条件で上記レジスタで設定された，IEEE1212 アドレス
空間にアドレスされたパケットのみを受信します．ブロードキャストパケットもまた

受信する．

• BusNumber と NodeNumber の両方がレジスタ設定値と一致

• BusNumber がレジスタ設定と一致しかつ NodeNumber の値が’3FH’

• BusNumber の値が’3FFH’ でかつ NodeNumber がレジスタ設定と一致

• BusNumber の値が’3FFH’ でかつ NodeNumber の値が’3FH’

バスリセット状態が起こるとこのレジスタは自動的に’0’ にクリアされる．通常，バス
リセット後の Self Identification フェイズの終了後にノードナンバーが決定するため，
その値をホストが NodeNumber レジスタに設定後，このビットをセットする．

Reset Register

offset 31 24 23 16 15 8 7 0
0ch - DMALINK - IRFITFARFATF

20.2. レジスタ一覧 517

bit名 機能

ATF<0> Reset ATF ビット（RW - 初期値：0b）

• 0 = 通常状態

• 1 = Asynchronous 送信用バッファ領域を初期化

Asynchronous送信用バッファ領域のみを初期状態に戻す．この時，その領域にある
データはすべて失われる．また，このバッファのステータスフラグもすべて初期状態

に戻る．’1’ をセットすると，その後内部で初期化動作が完了すると自動的にこのビッ
トは’0’ にセットされる．

ARF<1> Reset ARF ビット（RW - 初期値：0b）

• 0 = 通常状態

• 1 = Asynchronous 受信用バッファ領域を初期化

Asynchronous 受信用バッファ領域のみを初期状態に戻す．この時，その領域にある
データはすべて失われる．また，このバッファのステータスフラグもすべて初期状態

に戻る．’1’ をセットすると，その後内部で初期状態が完了すると自動的にこのビット
は’0’ にセットされる．

ITF<2> Reset ARF ビット（RW - 初期値：0b）

• 0 = 通常状態

• 1 = Isochronous 送信用バッファ領域を初期化

Isochronous 送信用バッファ領域のみを初期状態に戻す．この時，その領域にあるデー
タはすべて失われる．また，このバッファのステータスフラグもすべて初期状態に戻

る．’1’ をセットすると，その後内部で初期状態が完了すると自動的にこのビットは’0’
にセットされる．

IRF<3> Reset IRF ビット（RW - 初期値：0b）

• 0 = 通常状態

• 1 = Isochronous 受信用バッファ領域を初期化

Isochronous Configuration レジスタで指定された Isochronous のチャンネルの受信用
バッファ領域のみを初期状態に戻す．この時，その領域にあるデータはすべて失われ

る．また，このバッファのステータスフラグもすべて初期状態に戻る．’1’ をセットす
ると，その後内部で初期状態が完了すると自動的にこのビットは’0’ にセットされる．

LINK<6> Reset Link Core ビット（RW - 初期値：0b）

• 0 = 通常状態

• 1 = Link Core をリセットする．

Link Core をリセットする．すべての動作をアボートする．’1’ をセットすると，その
後内部で初期状態が完了すると自動的にこのビットは’0’ にセットされる．

DMA<7> Reset DMA ビット（RW - 初期値：0b）
• 0 = 通常状態

• 1 = DMA 制御をリセットする．

DMA 制御をリセットし，DMA転送可能な状態に設定する．DMA は Quadlet 単位で転送を
完了しなければならない．その Quadlet 単位の DMA 転送ポインタをこのビットでクリアし，
Quadlet 単位での先頭位置にポインタをセットする．’1’ をセットすると，その後内部で初期状
態が完了すると自動的にこのビットは’0’ にセットされる．

518 第 20章 IEEE1394

Packet Control Register

offset 31 24 23 16 15 8 7 0
18h - WPEN - PHYSID - MULTI -

bit名 機能

MULTI<2> Multi Speed Concatination On ビット（RW - 初期値：0b）

• 0 =Isochronous パケットのマルチスピードコンカチネーション送信を禁止する．

• 1 =Isochronous パケットのマルチスピードコンカチネーション送信を許可する．

Isochronous パケットのマルチスピードコンカチネーション送信を可能にするか否かを
設定する．

SID<5> Recive Self ID ビット（RW - 初期値：0b）

• 0 = SelfID パケットをバッファへ挿入しない．

• 1 = SiefID パケットをバッファへ入力する．

バスリセット後の Self ID フェイズ中に受信される Self ID パケットを，受信Async 用
のバッファ領域に入れるか入れないかを，このビットで設定する．

PHY<6> Recive Phy Packet ビット（RW - 初期値：0b）

• 0 = Phy Packet をバッファへ挿入しない．

• 1 = PhyPacket をバッファへ入力する．

受信した PHY コントロールパケットを，受信 Async 用のバッファ領域に入れるか入
れないかを，このビットで設定する．PingPacket を受信した PHY が 4 ポート以上
を有する場合，その Self ID Packet は，本デバイスの ARF バッファには，格納され
ない．また，PHY Control Packet の反転データが異なっていた場合でも，その PHY
Controll Packet は，ARF バッファには，格納されない．

WPEN<12> Write Request Ack-Pending ビット（RW - 初期値：0b）

• 0 = Write Requst Packetに対するAck コードで正常受信の場合Ack-Complete
を返します．

• 1 = Write Requst Packet に対する Ack コードで正常受信の場合 Ack-Pending
を返します．

通常，Write Request Packetを受信した場合，正常に受信したら，AckコードはACK-
Completeを返し，バッファーの容量不足等で正常に受信できなかった場合はACK-Busy
を返す．このビットを’1’ にセットすることで正常に受信したら，Ack コードはACK-
Pendig を返す．つまり，Write Request の Split Transaction を実行することになる．
ホストはWrite Requst の処理が完了したら，Write Responce Packet を送信しなけれ
ばならない．

20.2. レジスタ一覧 519

Diagnostic Status Register

offset 31 24 23 16 15 8 7 0
1ch - ITBATB - RXAS TXAC - TXB -

bit名 機能

TXB<2> Busy State ビット（R - 初期値：0b）

TXAC<11:8> AT Ack ビット（R - 初期値：0000b）
• 0000 = No Ack

• 0001 = ack complete

• 0010 = ack pending

• 0011 = リザーブ

• 0100 = ack busy X

• 0101 = ack busy A

• 0110 = ack busy B

• 0111～1100= リザーブ

• 1101 = ack data error

• 1110 = ack type error

• 1111 = 予約

送信時，トランスミッターから送信されたパケットに対してのデスティネーションノードから
返送されたアクノリッジ（Ack コード）の内容がこのレジスタに反映される．反映されるタイ
ミングは送信したい Asynchronous バッファ内のパケットの処理中を示す，ビジーフラグがネ
ゲートされたときである．次のパケット送信でそのビジーがネゲートされるまで，この値は保持
される．

RXAS<13:12> Ack Status ビット（R - 初期値：00b）
• 00 = 正常に受信

• 01 = パリティーエラー

• 10 = パケットロスト（規定時間内でのアクノリッジパケットがこなかった）

• 11 = 予約

送信した Asynchronous パケットに対してデスティネーションノードから返送されてきたアク
ノリッジパケットのステータス状態を示す．

ATB<24> AT Busy ビット（R - 初期値：0b）
• 0 = ATGo の発行可能を示す．

• 1 = ATGo が発行できない状態を示す．現在直前に発行された ATGo によるパケット処
理中を示す．

Asynchronous 送信時，ATGo の発行でアサートし，そのアクノリッジの返送をATAck レジス
タに設定したらネゲートする．ホストはこのビットがアサート中は次のATGo を発行できない．
また発行しても無視される．あるパケット送信がリトライ動作になった場合，そのリトライが終
了するまで，このビットはネゲートされない．

ITB<25> IT Busy ビット（R - 初期値：0b）
• 0 = ITGo の発行可能を示します．

• 1 = ITGo が発行できない状態を示します．現在直前に発行された ITGo によるパケット
処理中を示します．

Isochronous 送信でかつ IsoMode がノーマル時，ITGo の発行でアサートし，パケットの送信
終了でネゲートする．ホストはこのビットがアサート中は次の ITGo を発行できない．また発
行しても無視される．

520 第 20章 IEEE1394

Phy Control Register

offset 31 24 23 16 15 8 7 0
20h PDRTXLPS PC ISOX - RVFPRRPWR PADR PWDT

bit名 機能

PWDT<7:0> Register Data ビット（RW - 初期値：00h）ライト要求で PHY へ転送されるデータ
を格納する．また，リード要求で PHY から転送されたデータが格納される．このレ
ジスタの内容を読み出す場合，RegData の内容は直前のリード要求にて PHY から読
み出された値が読み込まれる．つまり，ホストから書き込んだ値をこのレジスタから

直接読み出すことはできない．読み出したい場合は PHY にリード要求して読み出す
必要がある．

PADR<11:8> Register Address ビット（RW - 初期値：00h）ライト要求でアクセスしたい PHY の
レジスタのアドレス値を設定する．リード要求で PHY から転送されたレジスタアド
レスが格納される．

PWR<12> Write Register ビット（RW - 初期値：0b）

• 0 = 通常状態

• 1 = ライト要求発行

PHY のレジスタへのライト要求を発行します．そのライト要求を行った後このビット
をクリアする．

PRR<13> Read Register ビット（RW - 初期値：0b）

• 0 = 通常状態

• 1 = リード要求発行

PHY のレジスタへのリード要求を発行する．そのリード要求を行った後このビットを
クリアする．

RVF<14> Register Data Received ビット（R - 初期値：0b）

• 0 = 通常状態

• 1 = リード要求発行後，RegData に Phyからのデータが格納されたことを示す．

PHY のレジスタへのリード要求を発行後，RegData に Phy からのデータが格納され
ると’1’ が設定される．その後に一度このレジスタを読み出すと’0’ にクリアされる．

AT Rretries Register

offset 31 24 23 16 15 8 7 0
24h - RTS RTC MRC

20.2. レジスタ一覧 521

bit名 機能

MRC<3:0> Maxmum Retry Count ビット（RW - 初期値：01h）デスティネーションノードから
のビジーのアクノリッジに対して，最大リトライを何回おこなうかを，このレジスタ

で設定する．このカウント値を参照するリトライフェイズはシングルフェイズの時で

である．この設定値内にリトライフェイズが終了しない場合は，本コア が施行するリ

トライフェイズを終了する．その後，ATF バッファ内のパケットデータはフラッシュ
される．設定できる最大値は 15 回である．また”0000” を設定すると本コア は自動的
にシングルリトライフェイズを行う．この場合，ビジーアクノリッジに対してパケット

データをフラッシュする．また，リトライフェイズ中にエラーのアックコードが返送さ

れたとき，その時点でリトライを中断しバッファ内をフラッシュしてフラグ（AckErr）
を立てて終了する．

RTC<7:4> Retry Count ビット（R - 初期値：00h）本コアがリトライ中に，その現在のリトライ
回数を示しす．

RTS<8> Retry Stop ビット（RW - 初期値：0b）本コア が自動的にリトライフェイズに入り，
そのリミット値にまだ到達せずリトライ中のときにそのリトライの強制終了を行うビッ

トである．’1’ を設定すると，リトライフェイズが完了後，自動でクリアされる．

• 0：通常状態

• 1：強制終了

Cycle Timeer Register

offset 31 24 23 16 15 8 7 0
28h SECOND CPOUNT OFFSET

bit名 機能

OFFSET<12:0> Cycle Offset ビット（RW - 初期値：00h）この領域は 24.576MHz のクロックでカウ
ントアップする．Modulo3072 で動作する．

COUNT<24:13> Cycle Count ビット（RW - 初期値：00h）この領域はCycleField レジスタがキャリー
したときにカウントアップし，Isochronous サイクルをカウントする．Modulo8000 で
動作する．

SECOND<31:25> Cycle Seconds ビット（RW - 初期値：00h）この領域は CycleCount レジスタがキャ
リーしたときにカウントアップし，秒をカウントする．Modulo128 で動作する．

Isochrounous Configuration Register

offset 31 24 23 16 15 8 7 0
30h IRTAG IRCHN -

522 第 20章 IEEE1394

bit名 機能

IRCHN<29:24> Channel ビット（RW - 初期値：00h）オートでの送信モードの場合，Isochronous パ
ケットのチャンネルを指定する．ここで設定されたチャンネルナンバーをパケットヘッ

ダー内に挿入して送信する．受信モードでは両モードとも受信したい Isochronousチャ
ンネルを設定する．設定範囲は 0 から 63 である．

IRTAG<31:30> Tag ビット（RW - 初期値：00h）オートモードでの送信の場合，Isochronous パケッ
トの Tag を指定する．設定範囲は 0 から 3 である．ノーマル及びオートモードでの受
信では，受信したいTag を設定する．以下に IsoMode レジスタの内容とこのコンフィ
ギュレーションレジスタ群との関係を示す．

ATF Data Register

offset 31 24 23 16 15 8 7 0
40h ATF data

bit名 機能

ATF
Data<31:0>

ATF Data ビット（W - 初期値：xxxx xxxxh）Asynchronous パケット送信データ書
き込み用レジスタ．内部の Asynchronous 送信用バッファ内にデータが書かれる．

ARF Data Register

offset 31 24 23 16 15 8 7 0
44h ARF data

bit名 機能

ARF
Data<31:0>

ARF Data ビット（R - 初期値：xxxx xxxxh）Asynchronous パケット受信データ読
みだし用レジスタ．内部のAsynchronous受信用バッファからデータが読み出される．

ITF Data Register

offset 31 24 23 16 15 8 7 0
48h ITF data

20.2. レジスタ一覧 523

bit名 機能

ITF
Data<31:0>

ITF Data ビット（W - 初期値：xxxx xxxxh）Isochronous パケット送信データ書き
込み用レジスタ．内部の Isochronous 送信用バッファ内にデータが書かれる．

IRF Data Register

offset 31 24 23 16 15 8 7 0
4ch IRF data

bit名 機能

IRF
Data<31:0>

IRF Data ビット（R - 初期値：xxxx xxxxh）Isochronous パケット受信データ読みだ
し用レジスタ．内部の Isochronous 受信用バッファからデータが読み出される．

Buffer Status and Control Register

offset 31 24 23 16 15 8 7 0
50h - FFCNT - BSD BDEBME - IRFIREITFITEARFAREATFATE

524 第 20章 IEEE1394

bit名 機能

ATE<0> ATF Empty ビット（R - 初期値：1b）

• 0 = バッファが空ではない状態を示す．

• 1 = バッファが空の状態を示す．

ATF Data レジスタからアクセスする Asynchronous 送信バッファが空であることを
示す．

ATF<1> ATF Full ビット（R - 初期値：0b）

• 0 = バッファが一杯ではない状態を示す．

• 1 = バッファが一杯の状態を示す．

ATF Data レジスタからアクセスする Asynchronous 送信バッファが一杯であること
を示す．

ARE<2> ARF Empty ビット（R - 初期値：1b）

• 0 = バッファが空ではない状態を示します．

• 1 = バッファが空の状態を示します．

ARF Data レジスタからアクセスする Asynchronous 受信バッファが空であることを
示す．

ARF<3> ARF Full ビット（R - 初期値：0b）

• 0 = バッファが空ではない状態を示す．

• 1 = バッファが空の状態を示す．

ARF Data レジスタからアクセスする Asynchronous 受信バッファが一杯であること
を示す．

ITE<4> ITF/IRF Empty ビット（R - 初期値：1b）

• 0 = バッファ内が全て空ではないことを示す．

• 1 = バッファ内がすべて空であることを示す．

ITF Data レジスタからアクセスする Isochronous 送信バッファが空であることを示
す．

ITF<5> ARF Full ビット（R - 初期値：0b）

• 0 = バッファが空ではない状態を示す．

• 1 = バッファが空の状態を示す．

ITF Data レジスタからアクセスする Isochronous 送信バッファが一杯であることを示
す．

20.2. レジスタ一覧 525

bit名 機能

IRE<6> ARF Empty ビット（R - 初期値：1b）

• 0 = バッファが空ではない状態を示す．

• 1 = バッファが空の状態を示す．

IRF Data レジスタからアクセスする Isochronous 受信バッファが空であることを示
す．

IRF<7> ARF Full ビット（R - 初期値：0b）

• 0 = バッファが空ではない状態を示す．

• 1 = バッファが空の状態を示す．

IRF Data レジスタからアクセスする Isochronous 受信バッファが一杯であることを示
す．

BME<11> Burst Mode Enable ビット（RW - 初期値：0b）

• 0 = BMACK 信号が随時ノンアクティブのままである．

• 1 = BMREQ 信号に対して BMACK を送出しバースト転送を行う．

BMACK 信号を有効にするためのビットである．

BDE<12> Dreq Enable ビット（RW - 初期値：0b）

• 0 = DREQ 信号が随時ノンアクティブのままである．

• 1 = DREQ 信号に SelectDreq で選ばれた内容のステータスとしてDREQ 信号
をアクティブにする．

DREQ 信号を有効にするためのビットである．

BSD<14:13> Select Dreq ビット（RW - 初期値：00b）

• 00 = ATF Data レジスタでアクセスするバッファの，ATFFull ビットと同等の
ステータスとして DREQ 信号に反映される．

• 01 = ARF Data レジスタでアクセスするバッファの，ARFEmpty ビットと同
等のステータスとして DREQ 信号に反映される．

• 10 = ITF Data レジスタでアクセスするバッファの，ITFFull ビットと同等の
ステータスとして DREQ 信号に反映される．

• 11 = IRF Data レジスタでアクセスするバッファの，IRFEmpty ビットと同等
のステータスとして DREQ 信号に反映される．

チップ内部のどのバッファの状態をDREQ 信号に反映させたいかを選択するレジスタ
である．

FFCNT<25:16> Fifo count ビット（R - 初期値：00b）BSC SELDREQ で選択された受信 Fifo のカウ
ント値を Quadlet 単位で示す．

526 第 20章 IEEE1394

Interrupt Register

bit名 機能

INTRTYEXP<0> （RW - 初期値：0b）

INTARFFLU<1> （RW - 初期値：0b）

INTIRFFLU<2> （RW - 初期値：0b）

INTARXEND<3> （RW - 初期値：0b）

INTIRXEND<4> （RW - 初期値：0b）

INTATXEND<5> （RW - 初期値：0b）

INTITXEND<6> （RW - 初期値：0b）

INTPHYINT<7> （RW - 初期値：0b）

INTBRSTF<8> （RW - 初期値：0b）

INTBUSRST<9> （RW - 初期値：0b）

INTPHYRCV<10> （RW - 初期値：0b）

INTACKERR<11> （RW - 初期値：0b）

INTTCERR<12> （RW - 初期値：0b）

INTHDERR<13> （RW - 初期値：0b）

INTSENTRJ<14> （RW - 初期値：0b）

INTCYSEC<15> （RW - 初期値：0b）

INTCYSTART<16>（RW - 初期値：0b）

INTCYDON<17> （RW - 初期値：0b）

INTCYLOS<18> （RW - 初期値：0b）

INTCYARBFL<19>（RW - 初期値：0b）

INTCMDRST<20> （RW - 初期値：0b）

PHY CNA<30> （RW - 初期値：0b）

PHY LKON<31> （RW - 初期値：0b）

Interrupt Mask Register

Interrupt レジスタ内の各割込発生要因を INT# 信号に反映させたくない場合，このレジスタでマスク
する．このレジスタの並びは Interrupt レジスタと同様である．各ビットとも’1’ の設定でマスクされる．
なお，Interrupt レジスタで未定義の部分に当たるMask ビットは必ずマスク（”1”を設定）すること．

TGo Register

offset 31 24 23 16 15 8 7 0
5ch - ITGATG

20.2. レジスタ一覧 527

bit名 機能

ATGo<0> AT Go ビット（RW - 初期値：0b）Asynchronous パケットの送信開始を，このレジ
スタへ’1’ を書くことにより本コア へ知らせる．

ITGo<1> IT Go ビット（RW - 初期値：0b）Isochronous パケットの送信開始を，このレジスタ
へ’1’ を書くことにより本コア へ知らせる．

529

21
Universal Asynchronous Receiver/Transmitter

初期アドレス: Channel0:0xffff6000 Channel1:0xffff6080

21.1 アドレスマップ
offset 31 24 23 16 15 8 7 0

0x0000 RB
0x0000 THR
0x0000 DL1
0x0004 IER
0x0004 DL2
0x0008 IIR
0x0008 FCR
0x000c LCR
0x00010 MCR
0x0014 LSR
0x0018 MSR

21.1.1 Receiver Buffer (RB) / Transmitter Holding Register (THR)

オフセット: 0x0000

7 0

bit名 機能

7-0 送信 FIFO の入力および受信 FIFO の出力．

530 第 21章 Universal Asynchronous Receiver/Transmitter

21.1.2 Interrupt Enable Register (IER)

オフセット: 0x0004

7 4 3 2 1 0

bit名 機能

0 Received Data availble interrupt.
‘ 0 ’- Disabled.
‘ 1 ’- Enabled.

1 Transmitter Holding Register empty interrupt.
‘ 0 ’- Disabled.
‘ 1 ’- Enabled.

2 Receiver Line Status Interrupt.
‘ 0 ’- Disabled.
‘ 1 ’- Enabled.

3 Modem Status Interrupt.
‘ 0 ’- Disabled.
‘ 1 ’- Enabled.

7-4 Reserved. Should be logic‘ 0 ’.

21.1.3 Interrupt Identification Register (IIR)

オフセット: 0x0008

7 6 5 4 3 1 0

21.1. アドレスマップ 531

bit名 機能

0 When this is‘0’, an interrupt is pending. When this is‘1’, no interrupt is pending.

3-1 The following table displays the list of possible interrupts along with the bits they
enable, priority, and their source and reset control.

Prio- Interrupt Interrupt Source Interrupt Reset
rity Type Control

011 1th Receiver Parity, Overrun or Reading the Line
Line Framing errors or Status Register

Status Break Interrupt

010 2nd Receiver FIFO trigger level FIFO drops below
Data reached trigger level

available

110 2nd Timeout There’s at least 1 Reading from the
Indication character in the FIFO FIFO (Receiver

but no character has Buffer Register)
been input to the
FIFO or read from

it for the last 4
char times.

001 3rd Transmitter Transmitter Holding Writing to the
Holding Register Empty Transmitter Holding
Register Register or reading
empty the IIR

000 4th Modem CTS, DSR, RI or Reading the Modem
Status DCD Status Register

5-4 Reserved. Should be logic‘ 0 ’.

7-6 Reserved. Should be logic‘ 1 ’for compatibility reason.

21.1.4 FIFO Control Register (FCR)

オフセット: 0x0008

7 6 5 3 2 1 0

532 第 21章 Universal Asynchronous Receiver/Transmitter

bit名 機能

0 Ignored(Used to enable FIFOs in NS16550D). Since this UART only supports FIFO
mode, this bit is ignored.

1 Writing a‘ 1’to bit 1 clears the Receiver FIFO and resets its logic. But it doesn’
t clear the shift register, i.e. receiving of the current character continues.

2 Writing a‘ 1 ’to bit 2 clears the Transmitter FIFO and resets its logic. The shift
register is not clreared, i.e. transmitting of the current character continues.

5-3 Ignored.

7-6 7-6 Define the Receiver FIFO Interrupt trigger level.
‘ 00 ’- 1 bytes
‘ 01 ’- 4 bytes
‘ 10 ’- 8 bytes
‘ 11 ’- 16 bytes

21.1.5 Line Control Register (LCR)

オフセット: 0x000c

7 6 5 4 3 2 1 0

21.1. アドレスマップ 533

bit名 機能

1-0 Select number of bits in each character.
‘ 00 ’- 5 bits
‘ 01 ’- 6 bits
‘ 10 ’- 7 bits
‘ 11 ’- 8 bits

2 Specify the number of generated stop bits.
‘ 0 ’- 1 stop bit.
‘ 0’- 1.5 stop bits when 5-bit character length selected and 2 bits otherwise. Note
that the receiver always checks the first stop bit only.

3 Parity Enable.
‘ 0 ’- No parity
‘ 1 ’- Parity bit is generated on each outgoing character and is checked on each
incoming one.

4 Even Parity select.
‘ 0’- Odd number of‘ 1’is transmitted and checked in each word (data and parity
combined). In other words, if the data has an even number of‘ 1 ’in it, then the
parity bit is‘ 1 ’.
‘ 1 ’- Even number of‘ 1 ’is transmitted in each word.

5 Stick Parity bit.
‘ 0 ’- Stick Parity disabled.
‘ 1 ’- If bits 3 and 4 are logic‘ 1 ’, the parity bit is transmitted and checked as
logic‘ 0’. If bit 3 is‘ 1’and bit 4 is‘ 0’then the parity bit is transmitted and
checked as‘ 1 ’.

6 Break Control bit.
‘ 1 ’- The srial out is forced into logic‘ 0 ’(break state).
‘ 0 ’- Break is disabled.

7 Divisor Latch Access bit.
‘ 1 ’- The divisor latches can be accessed.
‘ 0 ’- The normal registers are accessed.

21.1.6 Modem Control Register (MCR)

オフセット: 0x0010

7 5 4 3 2 1 0

534 第 21章 Universal Asynchronous Receiver/Transmitter

bit名 機能

0 Data Terminal Ready (DTR) signal control.
‘ 0 ’- DTR is‘ 1 ’
‘ 1 ’- DTR is‘ 0 ’

1 Request To Send (RTS) signal control
‘ 0 ’- RTS is‘ 1 ’
‘ 1 ’- RTS is‘ 0 ’

2 Out1. In loopback mode, connected Ring Indicator (RI) signal input.

3 Out2. In loopback mode, connected to Data Carrier Detect (DCD) input.

4 Loopback mode.
‘ 0 ’- normal operation.
‘ 1 ’ - loopback mode. When in loopback mode, the Serial Output Signal
(STX PAD O) is set to logic‘ 1‘ . The signal of the transmitter shift register
is internally connected to the input of the receiver shift register.
The following connections are made:
DTR → DSR
RTS → CTS
Out1 → RI
Out2 → DCD

7-5 Ignored.

21.1.7 Line Status Register (LSR)

オフセット: 0x0014

7 6 5 4 3 2 1 0

21.1. アドレスマップ 535

bit名 機能

0 Data Ready (DR) indicator.
‘ 0 ’- No characters in the FIFO.
‘ 1 ’- At least one character has been received and is in the FIFO.

1 Overrun Error (OE) INDICATOR.
‘ 1 ’- If the FIFO is full and another character has been received in the receiver
shift register. If another character is starting to arrive, it will overwrite the data in
the shift register but the FIFO will remain intact. The bit is cleared upon reading
from the register. Generates Receiver Line Status interrupt.
‘ 0 ’- No overrun state.

2 Parity Error (PE) indicator.
‘ 1’- The character that is currently at the top of the FIFO has been received with
parity error. The bit is cleared upon reading from the register. Generate Receiver
Line Status interrupt.
‘ 0 ’- No parity error in the current character.

3 Framing Error (FE) indicator.
‘ 1 ’- The received character at the top of the FIFO did not have a valid stop bit.
The UART core tries re-synchronizing by assuming that the bit received was a start
bit. Of course, generally, it might be that all the following data is corrupt. The bit
is cleared upon reading from the register. Generates Receiver Line Status interrupt.
‘ 0 ’- No framing error in the current character.

4 Break Interrupt (BI) indicator.
‘1’- A break condition has been reached in the current character. The break occurs
when the line is held in logic 0 for a time of one character (start bit + data + parity
+ stop bit). In that case, one zero character enters the FIFO and the UART waits
for a valid start bit to receive next character. The bit is cleared upon reading from
the register. Generates Receiver Line Status interrupt.
‘ 0 ’- No break condition in the current character.

5 Transmit FIFO is empty.
‘ 1 ’ - The transmitter FIFO is empty. Generates Transmitter Holding Register
Empty interrupt. The bit is cleared in the following cases: The LSR has been read,
the IIR has been read or data has been written to the transmitter FIFO.
‘ 0 ’- Otherwise.

6 Transmitter Empty indicator.
‘ 1’- Both the transmitter FIFO and transmitter shift register are empty. The bit
is cleared upon reading from the register or upon writing data to the transmit FIFO.
‘ 0 ’- Otherwise.

7 ‘1’- At least one parity error, framing error or break indications have been received
and are inside the FIFO. The bit is cleared upon reading from the register.
‘ 0 ’- Otherwise.

536 第 21章 Universal Asynchronous Receiver/Transmitter

21.1.8 Modem Status Register (MSR)

オフセット: 0x0018

7 6 5 4 3 2 1 0

bit名 機能

0 Delta Clear To Send (DCTS) indicator.
‘ 1 ’- The CTS line has changed its state.

1 Delta Data Set Ready (DDSR) indicator.
‘ 1 ’- The DSR line has changed its state.

2 Trailing Edge of Ring Indicator (TERI) detector. The RI line has changed its state
from low to high state.

3 Delta Data Carrier Detect (DDCD) indicator.
‘ 1 ’- The DCD line has changed its state.

4 Complement of the CTS input or equals to RTS in loopback mode.

5 Complement of the DSR input or equals to DTR in loopback mode.

6 Complement of the RI input or equals to Out1 in loopback mode.

7 Complement of the DCD input or equals to Out2 in loopback mode.

21.1.9 Divisor Latches (DL)

オフセット: 0x0000(DL1), 0x0004(DL2)
The divisor latches can be accessed by setting the 7th bit of LCR to‘ 1 ’. You should restore this

bit to‘ 0 ’after setting the divisor latches in order to restore access to the other registers that occupy
the same addresses.

7 0
DL1

7 0
DL2

21.2. 動作/使用方法 537

bit名 機能

DL1, DL2 The 2 bytes form one 16-bit register, which is internally accessed as a single number.
You should therefore set all 2 bytes of the register to ensure normal operation. The
register is set to the default value of 0 on reset, which disables all serial I/O operations
in order to ensure explicit setup of the register in the software. The value set should
be equal to (system clock speed) / (16 times desired baud rate). The internal counter
starts to work when the LSB of DL is written, so when setting the divisor, write the
MSB first and the LSB last.

21.2 動作/使用方法

This UART core is very similar in operation to the standard 16550 UART chip with the main exception
being that only the FIFO mode is supported. The scratch register is removed, as it serves no purpose.

21.2.1 Initialization

Upon reset the core performs the following tasks:

• The receiver and transmitter FIFOs are cleared.

• The receiver and transmitter shift registers are cleared.

• The Divisor Latch register is set to 0.

• The Line Control Register is set to communication of 8 bits of data, no parity, 1 stop bit.

• All interrupts are disabled in the Interrupt Enable Register.

For proper operation, perform the following:

• Set the Line Control Register to the desired line control parameters. Set bit 7 to‘ 1 ’to allow
access to the Divisor Latches.

• Set the Divisor Latches, MSB first, LSB next.

• Set bit 7 of LCR to 0 to disable access to Divisor Latches. At this time the transmission engine
starts working and data can be sent and received.

• Set the FIFO trigger level. Generally, higher trigger level values produce less interrupt to the
system, so setting it to 14 bytes is recommended if the system responds fast enough.

• Enable desired interrupts by setting appropriate bits in the Interrupt Enable register.

Remember that (Input Clock Speed)/(Divisor Latch value) = 16 × the communication baud rate.
Since the protocol is asynchronous and the sampling of the bits is performed in the perceived middle of
the bit time, it is highly immune to small differences in the clocks of the sending and receiving sides, yet
no such assumption should be made calculating the Divisor Latch values.

539

22
更新履歴

2006年 3月 30日
PCIインターフェースのMailboxのアドレスマップ (ローカル側オフセット)を修正。

2006年 3月 30日
更新履歴の追加

2006年 6月 13日
ベクトル演算器の仕様を追加。

2006年 7月 11日
ベクトル命令のニーモニックを修正。

2006年 7月 13日
ベクトルシフト命令のオペランドの位置を修正。

2006年 7月 19日
ベクトル制御レジスタの説明を追加。

2006年 8月 25日
概要の I/O部分を修正。全体のプロック図を修正。

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

