
Motion Responsive Multithreaded

Processor 仕様書
第 0版

平成19 年 5 月 14 日
慶應義塾大学 理工学部 山崎研究室

— NY0020 —

http://www.ny.ics.keio.ac.jp/research/rmt/

1

目 次

第 1章 概要 9

1.1 Overview . 9
1.2 設計ポリシ . 9
1.3 全体構成 . 10
1.4 Responsive Multithreaded Processing Unit . 11

1.4.1 命令発行ユニット . 11
1.4.2 命令演算ユニット . 13
1.4.3 キャッシュユニット . 14

1.5 Responsive Link . 15

第 2章 PIN配置 17

第 3章 命令セット 69
3.1 MIPS互換の命令 . 69

3.1.1 Load / Store命令 . 69
3.1.2 演算命令 . 86
3.1.3 Jump / 分岐命令 . 98
3.1.4 浮動小数点命令 . 108
3.1.5 その他の命令 . 122

3.2 MIPS命令と動作の異なる命令 . 129
3.2.1 演算命令 . 129
3.2.2 浮動小数点命令 . 140
3.2.3 その他の命令 . 143
3.2.4 サポートしていないMIPS II命令 . 143

3.3 Responsive Multithreaded Processor固有の命令 . 144
3.3.1 Load / Store 命令 . 145
3.3.2 演算命令 . 148
3.3.3 転送命令 . 159
3.3.4 システム制御命令 . 160
3.3.5 スレッド制御命令 . 164
3.3.6 SIMD演算命令 . 181
3.3.7 同期命令 . 215
3.3.8 整数ベクトル命令 . 222
3.3.9 浮動小数点ベクトル命令 . 320

第 4章 アドレスデコーダ 375

4.1 レジスタインターフェース . 375
4.2 アドレスマップ . 377

2

第 5章 MMU 379
5.1 TLBエントリ . 379
5.2 MMUの制御 . 383
5.3 MMUが発生させる例外 . 388

第 6章 CACHE 389

6.1 キャッシュシステム . 389
6.1.1 概要 . 389
6.1.2 キャッシュ制御 . 390
6.1.3 victim buffer . 390
6.1.4 wait buffer . 390
6.1.5 キャッシュのコントロールレジスタ . 391

第 7章 システムレジスタ 395
7.1 レジスタマップ . 395

7.1.1 Status Register . 398
7.1.2 Thread Table Register . 399
7.1.3 Thread ID Register . 400
7.1.4 Instruction Counter Register . 400
7.1.5 Count Register . 401
7.1.6 Compare Register . 401
7.1.7 Floating-Point Control Register . 401
7.1.8 Issue Mode Register . 402
7.1.9 CPU Count Register . 403
7.1.10 MMU Register . 404
7.1.11 Exception PC Register . 404
7.1.12 Exception Cause Register . 404
7.1.13 Interruption Wait Register (スレッド毎) . 405
7.1.14 External Interruption Level Register (スレッド毎) 405
7.1.15 Interruption Pending Register . 406
7.1.16 Interruption Clear Register . 406
7.1.17 Exception Base Address Register . 406
7.1.18 Event Link In Register . 406
7.1.19 Event Link Out Register . 406
7.1.20 Instruction Cache Control Register . 406
7.1.21 Data Cache Control Register . 406
7.1.22 ROM Status . 407
7.1.23 EXT Status . 407
7.1.24 Multiplexer Arbitor Mode 256bit Bus . 407
7.1.25 Multiplexer Arbitor Mode 32bit Bus . 408
7.1.26 Multiplexer Watchdog Timer 256bit Bus Enable 408
7.1.27 Multiplexer Watchdog Timer 256bit Bus Mode . 408
7.1.28 Multiplexer Watchdog Timer 256bit Bus Reset . 408
7.1.29 Multiplexer Watchdog Timer 256bit Bus Count . 408
7.1.30 Multiplexer Error Handler State 256bit Bus . 408
7.1.31 Multiplexer Error Handler State 32bit Bus . 409

3

7.1.32 Multiplexer Error Handler Instruction Cache . 409
7.1.33 Multiplexer Error Handler Data Cache . 409
7.1.34 Multiplexer Error Handler DMAC0 . 409
7.1.35 Multiplexer Error Handler DMAC1 . 409
7.1.36 Multiplexer Error Handler DMAC2 . 409
7.1.37 Multiplexer Error Handler PCI . 409
7.1.38 Multiplexer Error Handler Bus Interface Unit . 409
7.1.39 Multiplexer Error Handler MDMAC256 . 409
7.1.40 Address Decoder Control Register . 409
7.1.41 Multiplexer Watchdog Timer 32bit Bus Enable . 409
7.1.42 Multiplexer Watchdog Timer 32bit Bus Mode . 410
7.1.43 Multiplexer Watchdog Timer 32bit Bus Reset . 410
7.1.44 Multiplexer Watchdog Timer 32bit Bus Count . 410
7.1.45 Multiplexer Error Handler MDMAC32 . 410
7.1.46 Own Status Register . 410
7.1.47 Own Thread Table Register . 410
7.1.48 Own Thread ID Register . 410
7.1.49 Own Instruction Count Register . 410
7.1.50 Own Count Register . 410
7.1.51 Own Compare Register . 410
7.1.52 Own Floating-Point Control Register . 410
7.1.53 Own Bad Virtual Address Register . 411
7.1.54 Own Exception PC Register . 411
7.1.55 Own Exception Cause Register . 411
7.1.56 Own Interruption Wait Register . 411
7.1.57 Own External Interruption Level Register . 411

第 8章 例外処理 413
8.1 割り込みコントローラ (IRC) . 413

8.1.1 レジスタマップ . 413
8.1.2 Trigger Mode Register . 413
8.1.3 Request Sense Register . 414
8.1.4 Request Clear Register . 414
8.1.5 Mask Register . 414
8.1.6 IRL Latch/Clear . 415
8.1.7 IRC Mode Register . 415

8.2 動作/使用方法 . 415
8.2.1 IRC . 415
8.2.2 RMT固有機能 . 416
8.2.3 例外処理プロセス . 417

第 9章 クロックジェネレータ 419
9.1 接続図 . 419
9.2 制御レジスタ . 420

9.2.1 Clock Enable . 420
9.2.2 Soft Reset . 420

4

9.2.3 Divider Ratio . 421
9.2.4 Clock Synchronization . 421
9.2.5 All Reset . 422

第 10章 スレッド制御 423

10.1 スレッドの種類 . 423
10.2 スレッド制御命令 . 423

10.2.1 作成・削除 . 423
10.2.2 状態制御 . 424
10.2.3 転送 . 424

10.3 状態遷移 . 425

第 11章 同期 427

11.1 共有レジスタ . 427
11.2 同期命令 . 427

第 12章 Vector Unit 431
12.1 概要 . 431

12.1.1 Vector Execution Unit . 432
12.1.2 命令フォーマット . 432

12.2 Reserve/Release命令 . 433
12.3 Status Register . 435
12.4 複合演算命令 . 435

第 13章 Responsive Link 441
13.1 概要 . 441
13.2 Responsive Linkのインタフェース . 442
13.3 パケットフォーマット . 443

13.3.1 固定長（64B）のデータパケット . 444
13.3.2 固定長（16B）のイベントパケット . 445
13.3.3 優先度による追い越し機構 . 445

13.4 フレームフォーマット . 447
13.5 ルーティング・テーブル . 448
13.6 パケットの加減速制御 . 449
13.7 優先度に従った経路制御 . 449
13.8 低レベル通信 . 451

13.8.1 CODEC . 451
13.8.2 巡回組織ハミング符号化 . 451
13.8.3 Bit Stuffing . 452
13.8.4 NRZI符合化 . 452
13.8.5 セットアップパターン . 452
13.8.6 DPLLを用いたビット同期 . 453
13.8.7 エラーの取扱い . 453
13.8.8 通信速度 . 453

13.9 メモリマップ . 454
13.10レジスタマップ . 454

5

13.10.1SDRAMモードレジスタ . 454
13.10.2レスポンシブリンク速度設定レジスタ . 455
13.10.3レスポンシブリンク初期化レジスタ . 455
13.10.4レスポンシブリンク割り込みクリアレジスタ . 456
13.10.5レスポンシブリンク送信停止割り込みクリアレジスタ 457
13.10.6レスポンシブリンク継続割り込みクリアレジスタ 458
13.10.7レスポンシブリンク致命的エラー割り込みクリアレジスタ 459
13.10.8レスポンシブリンクルーティングテーブル割り込みクリアレジスタ 460
13.10.9レスポンシブリンク SDRAMバスリクエストレジスタ 460
13.10.10レスポンシブリンク SDRAMバスグラントレジスタ 461
13.10.11レスポンシブリンクルーティングテーブルバスリクエストレジスタ 462
13.10.12レスポンシブリンクルーティングテーブルバスグラントレジスタ 463
13.10.13イベントリンク LRUアドレスレジスタ . 464
13.10.14データリンク LRUアドレスレジスタ . 464
13.10.15レスポンシブリンク用割り込みコントローライネーブルレジスタ 465
13.10.16イベントリンク用 SDRAMループカウントレジスタ 465
13.10.17データリンク用 SDRAMループカウントレジスタ 465
13.10.18レスポンシブリンクスイッチモードレジスタ . 466
13.10.19レスポンシブリンク用オフラインレジスタ . 466

13.11DPM (Dual Port Memory) . 467
13.11.1Event Output . 468
13.11.2Event Input . 470
13.11.3Data Output . 473
13.11.4Data Input . 475

13.12通信方法 . 477
13.12.1手順 . 477
13.12.2相互通信の際の注意点 . 478

第 14章 DMAC 479

14.1 レジスタマップ . 479
14.1.1 DMA制御レジスタ . 480
14.1.2 DMA割り込みクリアレジスタ . 480
14.1.3 ポート／ソースアドレスレジスタ . 480
14.1.4 メモリ／デスティネーションアドレスレジスタ . 481
14.1.5 転送レングスレジスタ . 481
14.1.6 データバッファレジスタ . 481
14.1.7 転送モード制御レジスタ . 482
14.1.8 ステータスレジスタ . 484

第 15章 バスサイジング機能付きDMA 485

15.1 本 DMAの特徴 . 485
15.2 制御レジスタ . 485
15.3 制御レジスタ詳細 . 485

15.3.1 PSAレジスタ . 485
15.3.2 MDAレジスタ . 486
15.3.3 LENGTHレジスタ . 486

6

15.3.4 MODEレジスタ . 486
15.4 注意事項 . 487

第 16章 パルスカウンタ 489
16.1 パルスカウンタ概要 . 489
16.2 レジスタインタフェース . 489

16.2.1 パルスカウンタ制御レジスタ . 489
16.2.2 コンペアデータレジスタ . 491
16.2.3 カウンタレジスタ . 491
16.2.4 タイマレジスタ . 492

第 17章 PWM発生器 493
17.1 PWM発生器概要 . 493
17.2 PWMコントロールレジスタ . 494
17.3 PWM周期制御レジスタ . 495
17.4 PWM反転制御レジスタ . 496
17.5 デッドタイムレジスタ . 496

第 18章 PWM入力器 499
18.1 PWM入力器概要 . 499
18.2 PWMINコントロールレジスタ . 499
18.3 PWMIN HIGHレジスタ . 500
18.4 PWMIN LOWレジスタ . 500

第 19章 PCI I/F 501
19.1 アドレスマップ . 501

19.1.1 Local Bus . 501
19.1.2 PCI Bus . 502

19.2 PCI I/F レジスタマップ . 504
19.2.1 割り込み制御レジスタ . 504
19.2.2 プログラム制御レジスタ . 506
19.2.3 MailboxA . 507
19.2.4 MailboxB . 507
19.2.5 Local AD . 508
19.2.6 Local Bus Access Port . 508
19.2.7 PCI Bus Access Port . 509
19.2.8 Current Local AD . 509

19.3 Master Transaction用 DMAレジスタマップ . 509
19.3.1 Address Register . 510
19.3.2 Data Count Register . 510
19.3.3 DMA Control Register . 511
19.3.4 DMA Stop/Reset Register . 512
19.3.5 FIFO Data Register . 513
19.3.6 FIFO Request Paremter Register . 513
19.3.7 FIFO Control Register . 514
19.3.8 FIFO Stop/Reset Register . 515

7

19.4 動作/使用方法 . 515
19.4.1 Target Transaction (PCI → Local) . 515
19.4.2 Master Transaction(Local → PCI) . 516

第 20章 IEEE1394 517

20.1 概要 . 517
20.1.1 特徴 . 517
20.1.2 関連資料 . 517

20.2 構成 . 518
20.2.1 全体構成 . 518
20.2.2 入出力端子説明 . 519
20.2.3 内部構成図 . 523
20.2.4 構成図説明 . 524

20.3 レジスタ . 525
20.3.1 レジスタ一覧 . 525
20.3.2 レジスタ内容 . 528

20.4 データフォーマット . 552
20.4.1 アシンクロナス データフォーマット . 552
20.4.2 アシンクロナス ストリーム データフォーマット . 560
20.4.3 アイソクロナス データフォーマット . 562
20.4.4 自己識別パケット送信 . 563
20.4.5 PHY コントロールパケット . 564
20.4.6 コード説明 . 564

20.5 機能 . 567
20.5.1 ホストインターフェース . 567
20.5.2 PHY インターフェース . 570
20.5.3 バッファのコントロール . 575
20.5.4 制御フロー . 578
20.5.5 Asynchronous パケット送信時の BusNumber . 583

第 21章 Universal Asynchronous Receiver/Transmitter 585
21.1 アドレスマップ . 585

21.1.1 Receiver Buffer (RB) / Transmitter Holding Register (THR) 585
21.1.2 Interrupt Enable Register (IER) . 586
21.1.3 Interrupt Identification Register (IIR) . 586
21.1.4 FIFO Control Register (FCR) . 587
21.1.5 Line Control Register (LCR) . 588
21.1.6 Modem Control Register (MCR) . 589
21.1.7 Line Status Register (LSR) . 590
21.1.8 Modem Status Register (MSR) . 592
21.1.9 Divisor Latches (DL) . 592

21.2 動作/使用方法 . 593
21.2.1 Initialization . 593

8

第 22章 DDR SDRAM I/F 595
22.1 レジスタマップ . 595

22.1.1 主記憶 I/F幅設定レジスタ . 596
22.1.2 I/F起動レジスタ . 596
22.1.3 メモリモジュール設定レジスタ . 596
22.1.4 EMRS設定レジスタ . 597
22.1.5 MRS設定レジスタ . 597
22.1.6 DDR設定レジスタ 1 . 598
22.1.7 DDR設定レジスタ 2 . 598
22.1.8 リフレッシュインターバル設定レジスタ . 598

第 23章 Serial Peripheral Interface Unit 601

23.1 Outline . 601
23.2 Interface . 601

23.2.1 Address Format . 601
23.2.2 Control Register . 601

23.3 Operation . 609
23.3.1 Manual Mode . 609
23.3.2 Auto Mode . 609

第 24章 Parallel I/O Unit 611

24.1 Outline . 611
24.2 Interface . 611

24.2.1 Address Format . 611
24.2.2 Control Register . 611

24.3 Operation . 614

第 25章 更新履歴 615

9

1
概要

1.1 Overview

RMT Processorは，分散リアルタイムシステムを実現するために，リアルタイム通信・処理・制御を同
時にハードウェアレベルで行うことを目的にして設計を行ったシステム LSIである．分散リアルタイムシ
ステムを容易かつ効率的に実現するには，リアルタイム通信及びリアルタイム処理を行なうための基本機

能を有した共通プラットホームを用意し，それらをブロックを組み立てるように組み合わせてシステムを

構築できるようにすれば良いと考えられる．プラットホームに必要な機能としては，リアルタイム処理機

能，リアルタイム通信機能，コンピュータ用周辺機能，各種周辺制御機能が考えられる．プラットホーム

として様々なシステムの中に容易に組み込んで使用できるようにするために，RMT Processorは以下の機
能を全て 1チップに集積 (System-on-a-chip)している．

• リアルタイム処理機能 (RMT Processing Unit)

• リアルタイム通信機能 (Responsive Link)

• コンピュータ用周辺機能 (PCI-X, IEEE1394, DDR SDRAM I/Fs, DMAC, etc.)

• 各種周辺制御機能 (PWM Generators，Pulse Counters, etc.)

システム設計者は本チップに必要な I/O（センサ，アクチュエータ，ディジタルカメラ等）を接続するだ
けで必要な機能を実現できる．それら I/Oを接続し固有の機能を有した RMT Processorをそのシステム
にふさわしいトポロジで Responsive Link を用いて複数個接続することによって，分散リアルタイムシス
テムを構築する．

1.2 設計ポリシ

RMT Processorはリアルタイム処理・通信の理論をそのまま実現できることを目標にして設計されてい
る．リアルタイムスケジューラには，動的スケジューリングとして EDF(Earliest Deadline First)等があ
り，静的スケジューリングとしてRM(Rate Monotonic) 等があるが，ほぼ全てのリアルタイムスケジュー
リングは，優先度に従ってプリエンプションを行いながら実行や通信を行うことを要求する．プリエンプ

ションは，演算（処理）の場合はコンテキストスイッチに相当し，通信の場合はパケットの追い越しに相

当する．

10 第 1章 概要

従って，処理の場合は優先度付きスレッドのハードウェアによる優先実行やコンテキストスイッチのオー

バヘッドの削減等を実現する．通信の場合は，従来までの通信では実現されていなかった，優先度付きパ

ケットの追い越し機構等を実現する．

RMT Processorはこれらの機能を実装することにより，リアルタイムスケジューリング理論を背景に設
計されたリアルタイムスケジューラ（ソフトウェア）により優先度付けされた処理や通信を，そのまま理

論通りにリアルタイム処理および通信を実現することのできるハードウェアを実現している．

1.3 全体構成

図 1.1 にRMT Processorのブロック図を示す．RMT PUは，256bitのバスを介してDDR SDRAM I/F
と接続している．バンド幅の広いバスを用いてプロセッシングコアとメインメモリを接続することにより，

命令フェッチや後に述べるベクトル演算において，メモリアクセスのスループットを改善している．

Responsive Link，各種 I/O は 32bitバスに接続されている．32bitバスと 256bitバスはゲートウェイ
（GW）を介して接続されている．それぞれのバスを流れるデータはゲートウェイにおいてバスサイジング
が行われ，もう片方のバスに送られる．また，Responsive Link のイベントリンクはRMT PUのメモリア
クセスユニットに直接接続され，プロセッシングコアからはバスを介さず，制御レジスタの一部としてア

クセスすることができる．これにより，高速にイベントリンクにアクセスすることが可能である．

図 1.1: RMT Processorのブロック図

以下に RMT Processorが持つ I/Oを示す．

• Responsive Link (4ch)

1.4. Responsive Multithreaded Processing Unit 11

• PCI-X : 64bit, 66MHz (1ch)

• Serial Peripheral Interface (3cs × 2ch)

• IEEE1394 (1ch)

• UART (2ch)

• Digital Port (15bit)

• PWM Encoder

– Input (3ch)

– Output (6ch)

– Pulse Counter (3ch)

• External Bus I/F (2cs, 2dreq, 2irq)

• Ethernet MAC (1ch)

• 32bit DMA Controller (4ch × 4)

• 256/32bit DMA Controller (1ch)

• 128bit DDR SDRAM I/F (1ch)

• SRAM (256kB)

1.4 Responsive Multithreaded Processing Unit

RMT PUは 8wayの細粒度マルチスレッディングに優先度を用いた制御を行うことにより，ハードウェ
アで様々なレベルのリアルタイム処理を支援する．マルチスレッドアーキテクチャでは複数のスレッドが

並列に実行されるため，スレッド間で演算器やキャッシュシステム等の計算資源の競合が起こる．競合が

起こった場合，RMT PUはスレッド毎に設定された優先度を基に，優先度のより高い命令に対して先に計
算資源を割り当てる．これにより並列に実行しているスレッドの中で，優先度の高いスレッドから優先的

に実行する．

図 1.2 にRMT PUのブロック図を示す．RMT PUは命令発行ユニット（Issue Unit），命令演算ユニッ
ト（Execution Unit），キャッシュユニット（Cache Unit）の大きく 3つに分かれる．命令発行ユニットは
各スレッドの実行を制御し，優先度に従って命令演算ユニットに対して各スレッドの命令を送る．命令演

算ユニットは命令発行ユニットから送られてきた命令を演算する．キャッシュユニットは命令発行ユニット

からの命令フェッチ要求，命令演算ユニットからのデータアクセス要求を処理する．

1.4.1 命令発行ユニット

命令発行ユニットの役割は各スレッドの実行を制御し，命令演算ユニットに対して命令を発行すること

である．表 1.1 に命令発行ユニットの概要を示す．
アクティブスレッドとはプロセッサ内に保持されているスレッドで，すぐに実行を開始することができ

る．キャッシュスレッドとは後で述べるコンテキストキャッシュ内に保持されているスレッドを示す．優先

度は 8bitを用いて 256levelで表し，値が大きいほど優先度は高くなる．

12 第 1章 概要

Instruction
Cache

Instruction
Unit

Thread Control
Unit

Register
File

Context
Cache

Reservation
Station

Reservation
Station

Reservation
Station

Common Data Bus Arbitor

Instruction
MMU

Memory
Read / Write

Buffer

Data
MMU

Data
Cache

Cache Unit

Issue Unit

Reservation
Station

Reservation
Station

VINT

VFPBranch

FPUINT
Memory
Access

Execution Unit

図 1.2: RMT PUのブロック図

ENABLE

13

STATE KEEP PRIORITY

12:9 8 7:0

図 1.3: スレッドテーブルのフォーマット

各スレッドの制御はスレッド制御ユニットで行う．アクティブスレッドはスレッド制御ユニット内にあ

るスレッドテーブルによって管理される．スレッドテーブルのフォーマットを 図 1.3 に示す．ENABLE
フィールドはアクティブスレッドが有効であるかどうかを示す．STATEフィールドはアクティブスレッドの
状態を示し，実行中，停止中，後述するコンテキストキャッシュへの退避中等といった状態を示す．KEEP
フィールドはアクティブスレッドをプロセッサ内に保持しつづけるかどうかを示す．PRIORITYフィール
ドはスレッドの優先度を示し，この値が RMT PU全体で使用される．

RMT PUではスレッドの生成，削除，実行，停止，優先度の設定等のために新たに命令を追加した．ス
レッド制御ユニットはこれらの命令が発行されると，命令に応じてスレッドテーブルを書き換え，アクティ

ブスレッドの制御を行う．

先に述べた通り，RMT PUでは 8つのコンテキストをプロセッサ内に保持して実行することができる．
しかしそれ以上のスレッドを実行する場合，コンテキストスイッチが発生する．コンテキストスイッチは

現在実行しているスレッドのコンテキストをメモリに退避し，新しく実行するスレッドのコンテキストを

メモリから復帰しなければならないため，オーバヘッドが大きくなる．

RMT PUではコンテキストを格納するための専用キャッシュをオンチップに用意し，レジスタファイル

1.4. Responsive Multithreaded Processing Unit 13

表 1.1: 命令発行ユニットの概要

アクティブスレッド数 8
キャッシュスレッド数 32
優先度の指定 256level
命令フェッチ数 8
同時命令発行数 4
同時命令完了数 4
整数レジスタ数 32bit × 32entry × 8set
整数リネームレジスタ数 32bit × 64entry
浮動小数点レジスタ数 64bit × 8entry × 8set
浮動小数点リネームレジスタ数 64bit × 64entry

表 1.2: 命令演算ユニットの概要

整数演算器 4 + 1（Divider）
浮動小数点演算器 2 + 1（Divider）
64bit整数演算器 1
整数ベクトル演算器 1（8IU × 2 line）
浮動小数点ベクトル演算器 1（4FPU × 2 line）
分岐ユニット 2
メモリアクセスユニット 1
同期ユニット 1

との間を広いバス（GPR:256bit，FPR:128bit）で接続している．コンテキストキャッシュは 32個のコン
テキストを格納することができ，コンテキストスイッチをハードウェアにより 4クロックサイクルで行う．
これによりコンテキストスイッチにかかるオーバヘッドを大幅に削減する．

アクティブスレッドのコンテキストキャッシュへの退避，キャッシュスレッドのプロセッサ内への復帰，

アクティブスレッドとキャッシュスレッドの入れ替えは新たに追加した命令により，スレッド制御ユニット

が行う．スレッド制御ユニットはスレッドの退避命令や復帰命令，入れ替え命令を受け取ると，内部に保

持しているキャッシュスレッドのテーブルを検索し，コンテキストキャッシュをアクセスするためのアドレ

スを生成して，コンテキストキャッシュをアクセスする．

命令発行ユニットは命令キャッシュアクセスと命令演算ユニットへの命令発行スロットで，優先度を用

いた調停を行う．

1.4.2 命令演算ユニット

命令演算ユニットの役割は命令発行ユニットから送られてくる命令を演算することである．表 1.2 に命
令演算ユニットの概要を示す．

RMT PUはリザベーションステーションとリオーダバッファを用いて，アウトオブオーダ実行を行う．
RMT PUでは複数のスレッドが並列に実行されているため，各演算器においてスレッド間で競合が起こる．
命令演算ユニットではリザベーションステーションにおいて，優先度による制御を行う．リザベーション

ステーションでは演算に必要なオペランドがそろうまで命令は保持される．演算に必要なオペランドがそ

14 第 1章 概要

表 1.3: キャッシュユニットの概要

TLBエントリ （命令，データ） 64 entry
キャッシュサイズ （命令，データ） 32K byte
victim cache （命令，データ） 512 byte

ろい命令の実行が可能になると，各演算器に対して命令が発行される．RMT PUでは複数の命令が実行可
能になった場合，リザベーションステーションは，各命令の優先度を調べ，優先度の高い命令から先に演

算器に発行する．これにより優先度の高いスレッドの命令に対して，先に演算器を割り当てる．

一方，マルチメディア処理のようなソフトリアルタイム処理では多くのデータを繰り返し演算しなけれ

ばならないため，高い演算性能が要求される．このような処理ではデータの並列性を利用して演算性能を

高めることができる．

RMT PUではベクトル演算機構を用いている．ベクトル演算により，少ない命令スロットを有効に活用
し，ソフトリアルタイム処理に要求される高い演算性能を実現する．また，ベクトル演算を行うスレッド

の数やプログラムによって必要とされるベクトルレジスタの構成は異なってくる．そこで RMT PUでは
整数，浮動小数点共に 512セットあるベクトルレジスタを，ベクトル長やレジスタの個数等の構成を動的
に変更してスレッド間で共有することにより，複数のスレッドで柔軟なベクトル演算を可能としている．

ベクトル演算は整数演算，浮動小数点演算共に 2つの演算パイプラインが並列に動作することにより，複
数のスレッドで並列してベクトル演算を行うことができる．各演算パイプラインは，整数演算パイプライ

ンで 8個，浮動小数点演算パイプラインで 4個の演算器を持つことにより，複数のベクトル要素を並列に
演算する．また，プログラマが複合演算を定義し，定義した命令を 1 命令で実行することにより，ベクト
ル演算器の使用率を向上させ，ベクトル演算の性能を向上させている．

1.4.3 キャッシュユニット

キャッシュユニットの役割は命令発行ユニットから送られてくる命令フェッチ要求と，命令実行ユニット

から送られてくるデータアクセス要求を処理することである．表 1.3 にキャッシュユニットの概要を示す．
キャッシュユニットはMMU（Memory Management Unit）を持ち，ハードウェアでアドレス変換を行

うため，各スレッドは仮想アドレスを用いてプログラミングを行うことができる．

MMUが置かれる場所により，仮想アドレスでキャッシュをアクセスするか物理アドレスでキャッシュ
をアクセスするかが決まる．図 1.2 に示した通り，RMT PUではMMUはキャッシュよりも前に置かれ，
キャッシュアクセスを行う前にアドレス変換を行う．よってキャッシュは物理アドレスを用いてアクセスさ

れる．キャッシュアクセスの前にアドレス変換を行うため，キャッシュアクセスにかかるレイテンシが増加

するが，実行するスレッドがコンテキストスイッチにより切り替わった場合でもキャッシュをフラッシュす

る必要がなくなる．また，複数のスレッドでメモリ領域を共有する場合，仮想アドレスでキャッシュをア

クセスすると同一の物理メモリのデータが複数キャッシュされる問題（synonym）が起こるが，物理アド
レスを用いてキャッシュをアクセスすることによりその問題を回避することができる．

MMUにおける TLBエントリには仮想ページ番号，物理ベージ番号の他に，複数スレッドで共有する
ための共有情報，コンテキストグループ番号を指定する．RMT PUは最大 8つのスレッドが動作するた
め，TLBエントリのミス率が高くなることが考えられる．共有情報を用いることにより，複数のスレッド
で TLBエントリを共有し，使用する TLBのエントリ数を削減することができる．
共有情報を設定した後に，新しいスレッドを共有情報に追加する場合はコンテキストグループ番号を用

いる．TLBを設定する場合，コンテキストグループ番号を指定することにより，コンテキストグループ番

1.5. Responsive Link 15

号の一致するエントリの共有情報に自身のスレッドを追加する．これにより，使用するTLBのエントリ数
を増やすことなく TLBを有効化することができる．
キャッシュは命令キャッシュ，データキャッシュ共に 8wayの set-associative方式，ブロックサイズは 32byte

で，キャッシュアクセスはパイプライン化されている．キャッシュミスが起こった場合，入れ換えるブロッ

クの選択方法は LRUと優先度がある．優先度を基に入れ換えるブロックを選択する場合，より優先度の
低いスレッドが使用しているブロックから先にキャッシュを追い出される．これにより，優先度の高いス

レッドのキャッシュブロックが追い出されることを防ぐ．

victim cache は，キャッシュブロックの入れ換えに伴ないキャッシュを追い出されたブロックを，full
associative方式で保持する．キャッシュミスを起した場合，victim cacheにデータが残っていれば，その
ブロックをキャッシュに戻すことにより．キャッシュミスによる内部バスへの要求を減らし，メモリアクセ

スの遅延を減少させる．

キャッスミス等によりバスを介して下位メモリをアクセスする場合にも優先度を用いた制御を行う．メ

モリアクセスはキャッシュよりも低速なため，待ち行列が発生する．この場合，より優先度の高いスレッド

からバスを使用して下位メモリにアクセスする．

1.5 Responsive Link

Responsive Link は，柔軟なリアルタイム通信を実現するために，ソフトリアルタイム通信（データリン
ク）とハードリアルタイム通信（イベントリンク）の分離，パケットに優先度を付加しノード毎に高優先度

パケットが低優先度パケットの追い越し，パケットの優先度が異なると優先度毎に別経路を設定して専用回

線や迂回路を実現可能，ノード毎に優先度を付け替えることができ分散管理型でパケットの加減速を制御

可能，ハードウェアによるエラー訂正，通信速度を動的に変更可能，トポロジーフリー，Hot-Plug&Play
等の様々な機能を実現する．

Responsive Link は国内では情報処理学会試行標準 (IPSJ-TS 2003:0006)として標準化されており，国
際的にはでは ISO/IEC JTC1 SC25 WG4において標準化作業が行われている．

17

2
PIN配置

チップのピン配置の一覧を以下に示す．

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

1 LEFT ext iopad0 data24 pnl tf12it0nn8
INOUT 外部バスデータ [24]

2 LEFT ext iopad0 data23 pnl tf12it0nn8
INOUT 外部バスデータ [23]

3 LEFT vss go l16 pnl go 135
IO digital VSS(0V)

4 LEFT ext iopad0 data22 pnl tf12it0nn8
INOUT 外部バスデータ [22]

5 LEFT vdd vop l15 pnl vop 135
IO digital VDD(3.3V)

6 LEFT ext iopad0 data21 pnl tf12it0nn8
INOUT 外部バスデータ [21]

7 LEFT ext iopad0 data20 pnl tf12it0nn8
INOUT 外部バスデータ [20]

8 LEFT ext iopad0 data19 pnl tf12it0nn8
INOUT 外部バスデータ [19]

9 LEFT ext iopad0 data18 pnl tf12it0nn8
INOUT 外部バスデータ [18]

10 LEFT ext iopad0 data17 pnl tf12it0nn8
INOUT 外部バスデータ [17]

11 LEFT vdd vc l27 pnl vc 135
Core digital VDD(1.0V)

18 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

12 LEFT ext iopad0 data16 pnl tf12it0nn8
INOUT 外部バスデータ [16]

13 LEFT vss gcs l39 pnl gcs 135
Core digital VSS(0V)

14 LEFT ext iopad0 data15 pnl tf12it0nn8
INOUT 外部バスデータ [15]

15 LEFT vss go l15 pnl go 135
IO digital VSS(0V)

16 LEFT ext iopad0 data14 pnl tf12it0nn8
INOUT 外部バスデータ [14]

17 LEFT vdd vop l14 pnl vop 135
IO digital VDD(3.3V)

18 LEFT ext iopad0 data13 pnl tf12it0nn8
INOUT 外部バスデータ [13]

19 LEFT ext iopad0 data12 pnl tf12it0nn8
INOUT 外部バスデータ [12]

20 LEFT ext iopad0 data11 pnl tf12it0nn8
INOUT 外部バスデータ [11]

21 LEFT vss gcs l38 pnl gcs 135
Core digital VSS(0V)

22 LEFT ext iopad0 data10 pnl tf12it0nn8
INOUT 外部バスデータ [10]

23 LEFT vdd vc l26 pnl vc 135
Core digital VDD(1.0V)

24 LEFT ext iopad0 data9 pnl tf12it0nn8
INOUT 外部バスデータ [9]

25 LEFT vss go l14 pnl go 135
IO digital VSS(0V)

26 LEFT ext iopad0 data8 pnl tf12it0nn8
INOUT 外部バスデータ [8]

27 LEFT vdd vop l13 pnl vop 135
IO digital VDD(3.3V)

28 LEFT ext iopad0 data7 pnl tf12it0nn8
INOUT 外部バスデータ [7]

29 LEFT vss gcs l37 pnl gcs 135
Core digital VSS(0V)

30 LEFT ext iopad0 data6 pnl tf12it0nn8
INOUT 外部バスデータ [6]

31 LEFT ext iopad0 data5 pnl tf12it0nn8
INOUT 外部バスデータ [5]

19

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

32 LEFT ext iopad0 data4 pnl tf12it0nn8
INOUT 外部バスデータ [4]

33 LEFT vdd vc l25 pnl vc 135
Core digital VDD(1.0V)

34 LEFT ext iopad0 data3 pnl tf12it0nn8
INOUT 外部バスデータ [3]

35 LEFT vss gcs l36 pnl gcs 135
Core digital VSS(0V)

36 LEFT ext iopad0 data2 pnl tf12it0nn8
INOUT 外部バスデータ [2]

37 LEFT vss go l13 pnl go 135
IO digital VSS(0V)

38 LEFT ext iopad0 data1 pnl tf12it0nn8
INOUT 外部バスデータ [1]

39 LEFT vdd vop l12 pnl vop 135
IO digital VDD(3.3V)

40 LEFT ext iopad0 data0 pnl tf12it0nn8
INOUT 外部バスデータ [0]

41 LEFT ext iopad0 err pnl tf12it0nn8
INOUT 外部バスエラー (外部バス)

42 LEFT ext iopad0 ready pnl tf12it0nn8
INOUT 外部バスレディ(外部バス)

43 LEFT vss gcs l35 pnl gcs 135
Core digital VSS(0V)

44 LEFT ext iopad0 br ack1 pnl tf12it0nn8
INOUT 外部バスバーストリクエスト Acknowledge[1] (外部バス)

45 LEFT vdd vc l24 pnl vc 135
Core digital VDD(1.0V)

46 LEFT ext iopad0 br ack0 pnl tf12it0nn8
INOUT 外部バスバーストリクエスト Acknowledge[0] (外部バス)

47 LEFT ext iopad0 be3 pnl tf12it0nn8
INOUT 外部バスバイトイネーブル [3](外部バス)

48 LEFT ext iopad0 be2 pnl tf12it0nn8
INOUT 外部バスバイトイネーブル [2](外部バス)

49 LEFT vss gcs l34 pnl gcs 135
Core digital VSS(0V)

50 LEFT ext iopad0 be1 pnl tf12it0nn8
INOUT 外部バスバイトイネーブル [1](外部バス)

51 LEFT vss go l12 pnl go 135
IO digital VSS(0V)

20 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

52 LEFT ext iopad0 be0 pnl tf12it0nn8
INOUT 外部バスバイトイネーブル [0](外部バス)

53 LEFT vdd vop l11 pnl vop 135
IO digital VDD(3.3V)

54 LEFT ext iopad0 burst1 pnl tf12it0nn8
INOUT 外部バスバーストモード [1](外部バス)

55 LEFT ext iopad0 burst0 pnl tf12it0nn8
INOUT 外部バスバーストモード [0](外部バス)

56 LEFT ext iopad0 rw pnl tf12it0nn8
INOUT 外部バス Read/Write(外部バス)

57 LEFT vdd vc l23 pnl vc 135
Core digital VDD(1.0V)

58 LEFT ext iopad0 as pnl tf12it0nn8
INOUT 外部バスアドレスストローブ (外部バス)

59 LEFT vss gcs l33 pnl gcs 135
Core digital VSS(0V)

60 LEFT ext iopad0 addr31 pnl tf12it0nn8
INOUT 外部バスアドレス [31](外部バス)

61 LEFT vss go l11 pnl go 135
IO digital VSS(0V)

62 LEFT ext iopad0 addr30 pnl tf12it0nn8
INOUT 外部バスアドレス [30](外部バス)

63 LEFT vdd vop l10 pnl vop 135
IO digital VDD(3.3V)

64 LEFT ext iopad0 addr29 pnl tf12it0nn8
INOUT 外部バスアドレス [29](外部バス)

65 LEFT vss gcs l32 pnl gcs 135
Core digital VSS(0V)

66 LEFT ext iopad0 addr28 pnl tf12it0nn8
INOUT 外部バスアドレス [28](外部バス)

67 LEFT ext iopad0 addr27 pnl tf12it0nn8
INOUT 外部バスアドレス [27](外部バス)

68 LEFT ext iopad0 addr26 pnl tf12it0nn8
INOUT 外部バスアドレス [26](外部バス)

69 LEFT vdd vc l22 pnl vc 135
Core digital VDD(1.0V)

70 LEFT ext iopad0 addr25 pnl tf12it0nn8
INOUT 外部バスアドレス [25](外部バス)

71 LEFT vss gcs l31 pnl gcs 135
Core digital VSS(0V)

21

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

72 LEFT ext iopad0 addr24 pnl tf12it0nn8
INOUT 外部バスアドレス [24](外部バス)

73 LEFT vss go l10 pnl go 135
IO digital VSS(0V)

74 LEFT ext iopad0 addr23 pnl tf12it0nn8
INOUT 外部バスアドレス [23](外部バス)

75 LEFT vdd vop l9 pnl vop 135
IO digital VDD(3.3V)

76 LEFT ext iopad0 addr22 pnl tf12it0nn8
INOUT 外部バスアドレス [22](外部バス)

77 LEFT vss gcs l30 pnl gcs 135
Core digital VSS(0V)

78 LEFT ext iopad0 addr21 pnl tf12it0nn8
INOUT 外部バスアドレス [21](外部バス)

79 LEFT ext iopad0 addr20 pnl tf12it0nn8
INOUT 外部バスアドレス [20](外部バス)

80 LEFT ext iopad0 addr19 pnl tf12it0nn8
INOUT 外部バスアドレス [19](外部バス)

81 LEFT vdd vc l21 pnl vc 135
Core digital VDD(1.0V)

82 LEFT ext iopad0 addr18 pnl tf12it0nn8
INOUT 外部バスアドレス [18](外部バス)

83 LEFT vss gcs l29 pnl gcs 135
Core digital VSS(0V)

84 LEFT ext iopad0 addr17 pnl tf12it0nn8
INOUT 外部バスアドレス [17](外部バス)

85 LEFT vss go l9 pnl go 135
IO digital VSS(0V)

86 LEFT ext iopad0 addr16 pnl tf12it0nn8
INOUT 外部バスアドレス [16](外部バス)

87 LEFT vdd vop l8 pnl vop 135
IO digital VDD(3.3V)

88 LEFT ext iopad0 addr15 pnl tf12it0nn8
INOUT 外部バスアドレス [15](外部バス)

89 LEFT ext iopad0 addr14 pnl tf12it0nn8
INOUT 外部バスアドレス [14](外部バス)

90 LEFT ext iopad0 addr13 pnl tf12it0nn8
INOUT 外部バスアドレス [13](外部バス)

91 LEFT vss gcs l28 pnl gcs 135
Core digital VSS(0V)

22 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

92 LEFT ext iopad0 addr12 pnl tf12it0nn8
INOUT 外部バスアドレス [12](外部バス)

93 LEFT vdd vc l20 pnl vc 135
Core digital VDD(1.0V)

94 LEFT ext iopad0 addr11 pnl tf12it0nn8
INOUT 外部バスアドレス [11](外部バス)

95 LEFT vss go l8 pnl go 135
IO digital VSS(0V)

96 LEFT ext iopad0 addr10 pnl tf12it0nn8
INOUT 外部バスアドレス [10](外部バス)

97 LEFT vdd vop l7 pnl vop 135
IO digital VDD(3.3V)

98 LEFT ext iopad0 addr9 pnl tf12it0nn8
INOUT 外部バスアドレス [9](外部バス)

99 LEFT vss gcs l27 pnl gcs 135
Core digital VSS(0V)

100 LEFT ext iopad0 addr8 pnl tf12it0nn8
INOUT 外部バスアドレス [8](外部バス)

101 LEFT ext iopad0 addr7 pnl tf12it0nn8
INOUT 外部バスアドレス [7](外部バス)

102 LEFT ext iopad0 addr6 pnl tf12it0nn8
INOUT 外部バスアドレス [6](外部バス)

103 LEFT vdd vc l19 pnl vc 135
Core digital VDD(1.0V)

104 LEFT ext iopad0 addr5 pnl tf12it0nn8
INOUT 外部バスアドレス [5](外部バス)

105 LEFT ext iopad0 addr4 pnl tf12it0nn8
INOUT 外部バスアドレス [4](外部バス)

106 LEFT ext iopad0 addr3 pnl tf12it0nn8
INOUT 外部バスアドレス [3](外部バス)

107 LEFT vss gcs l26 pnl gcs 135
Core digital VSS(0V)

108 LEFT ext iopad0 addr2 pnl tf12it0nn8
INOUT 外部バスアドレス [2](外部バス)

109 LEFT ext iopad0 grant pnl tf12it0nn8
OUTPUT 外部バスグラント (外部バス)

110 LEFT ext iopad0 cs1 pnl tf12it0nn8
OUTPUT 外部バスチップセレクト 1(外部バス)

111 LEFT vdd vc l18 pnl vc 135
Core digital VDD(1.0V)

23

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

112 LEFT ext iopad0 cs0 pnl tf12it0nn8
OUTPUT 外部バスチップセレクト 0(外部バス)

113 LEFT vss go l7 pnl go 135
IO digital VSS(0V)

114 LEFT ext iopad0 dack1 pnl tf12it0nn8
OUTPUT 外部バス DMA Acknowledge1 (外部バス)

115 LEFT vdd vop l6 pnl vop 135
IO digital VDD(3.3V)

116 LEFT ext iopad0 dack0 pnl tf12it0nn8
OUTPUT 外部バス DMA Acknowledge0 (外部バス)

117 LEFT vss gcs l25 pnl gcs 135
Core digital VSS(0V)

118 LEFT ext iopad0 data dir pnl tf12it0nn8
OUTPUT 外部バス Data Direction (外部バス)

119 LEFT vdd vc l17 pnl vc 135
Core digital VDD(1.0V)

120 LEFT ext iopad0 ie pnl tf12it0nn8
OUTPUT 外部バス Input Enable (外部バス)

121 LEFT vss go l6 pnl go 135
IO digital VSS(0V)

122 LEFT ext iopad0 oe pnl tf12it0nn8
OUTPUT 外部バス Output Enable (外部バス)

123 LEFT vdd vop l5 pnl vop 135
IO digital VDD(3.3V)

124 LEFT ext iopad0 irq1 pnl it2nn8
INPUT 外部割込み 1 (外部バス)

125 LEFT vss gcs l24 pnl gcs 135
Core digital VSS(0V)

126 LEFT ext iopad0 irq0 pnl it2nn8
INPUT 外部割込み 0 (外部バス)

127 LEFT ext iopad0 req pnl it2nn8
INPUT 外部バスリクエスト (外部バス)

128 LEFT ext iopad0 dreq1 pnl it2nn8
INPUT 外部バス DMAリクエスト 2(外部バス)

129 LEFT vdd vc l16 pnl vc 135
Core digital VDD(1.0V)

130 LEFT ext iopad0 auto rdy en pnl it2pd2
INPUT 外部バスレディ(外部バス)

131 LEFT vss gcs l23 pnl gcs 135
Core digital VSS(0V)

24 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

132 LEFT ext iopad0 dreq0 pnl it2nn8
INPUT 外部バス DMAリクエスト 1(外部バス)

133 LEFT vss go l5 pnl go 135
IO digital VSS(0V)

134 LEFT ext iopad0 bit16 pnl it2nn8
INPUT 外部バスサイズの指定: 16bit(外部バス)

135 LEFT vdd vop l4 pnl vop 135
IO digital VDD(3.3V)

136 LEFT ext iopad0 bit8 pnl it2nn8
INPUT 外部バスサイズの指定: 8bit(外部バス)

137 LEFT vss gcs l22 pnl gcs 135
Core digital VSS(0V)

138 LEFT pp iopad0 pp pwm in pad1 pnl it2nn8
INPUT PWM入力 channel1 (PWMジェネレータ)

139 LEFT vdd vc l15 pnl vc 135
Core digital VDD(1.0V)

140 LEFT pp iopad0 pp pwm in pad0 pnl it2nn8
INPUT PWM入力 channel0 (PWMジェネレータ)

141 LEFT vss go l4 pnl go 135
IO digital VSS(0V)

142 LEFT pp iopad0 pp pwm out pad8 pnl tf04it0nn2
OUTPUT PWM出力 channel8 (PWMジェネレータ)

143 LEFT vss gcs l21 pnl gcs 135
Core digital VSS(0V)

144 LEFT pp iopad0 pp pwm out pad7 pnl tf04it0nn2
OUTPUT PWM出力 channel7 (PWMジェネレータ)

145 LEFT pp iopad0 pp pwm out pad6 pnl tf04it0nn2
OUTPUT PWM出力 channel6 (PWMジェネレータ)

146 LEFT pp iopad0 pp pwm out pad5 pnl tf04it0nn2
OUTPUT PWM出力 channel5 (PWMジェネレータ)

147 LEFT vss gcs l20 pnl gcs 135
Core digital VSS(0V)

148 LEFT pp iopad0 pp pwm out pad4 pnl tf04it0nn2
OUTPUT PWM出力 channel4 (PWMジェネレータ)

149 LEFT vdd vc l14 pnl vc 135
Core digital VDD(1.0V)

150 LEFT pp iopad0 pp pwm out pad3 pnl tf04it0nn2
OUTPUT PWM出力 channel3 (PWMジェネレータ)

151 LEFT vss gcs l19 pnl gcs 135
Core digital VSS(0V)

25

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

152 LEFT pp iopad0 pp pwm out pad2 pnl tf04it0nn2
OUTPUT PWM出力 channel2 (PWMジェネレータ)

153 LEFT vss go l3 pnl go 135
IO digital VSS(0V)

154 LEFT pp iopad0 pp pwm out pad1 pnl tf04it0nn2
OUTPUT PWM出力 channel1 (PWMジェネレータ)

155 LEFT vdd vop l3 pnl vop 135
IO digital VDD(3.3V)

156 LEFT pp iopad0 pp pwm out pad0 pnl tf04it0nn2
OUTPUT PWM出力 channel0 (PWMジェネレータ)

157 LEFT vss gcs l18 pnl gcs 135
Core digital VSS(0V)

158 LEFT pp iopad0 pp pz pad8 pnl it2nn8
INPUT エンコーダ Zフェーズ入力 channel8 (パルスカウンタ)

159 LEFT pp iopad0 pp pz pad7 pnl it2nn8
INPUT エンコーダ Zフェーズ入力 channel7 (パルスカウンタ)

160 LEFT pp iopad0 pp pz pad6 pnl it2nn8
INPUT エンコーダ Zフェーズ入力 channel6 (パルスカウンタ)

161 LEFT vss gcs l17 pnl gcs 135
Core digital VSS(0V)

162 LEFT pp iopad0 pp pz pad5 pnl it2nn8
INPUT エンコーダ Zフェーズ入力 channel5 (パルスカウンタ)

163 LEFT vdd vc l13 pnl vc 135
Core digital VDD(1.0V)

164 LEFT pp iopad0 pp pz pad4 pnl it2nn8
INPUT エンコーダ Zフェーズ入力 channel4 (パルスカウンタ)

165 LEFT pp iopad0 pp pz pad3 pnl it2nn8
INPUT エンコーダ Zフェーズ入力 channel3 (パルスカウンタ)

166 LEFT pp iopad0 pp pz pad2 pnl it2nn8
INPUT エンコーダ Zフェーズ入力 channel2 (パルスカウンタ)

167 LEFT vss gcs l16 pnl gcs 135
Core digital VSS(0V)

168 LEFT pp iopad0 pp pz pad1 pnl it2nn8
INPUT エンコーダ Zフェーズ入力 channel1 (パルスカウンタ)

169 LEFT pp iopad0 pp pz pad0 pnl it2nn8
INPUT エンコーダ Zフェーズ入力 channel0 (パルスカウンタ)

170 LEFT pp iopad0 pp pb pad8 pnl it2nn8
INPUT エンコーダ Bフェーズ入力 channel8 (パルスカウンタ)

171 LEFT vss gcs l15 pnl gcs 135
Core digital VSS(0V)

26 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

172 LEFT pp iopad0 pp pb pad7 pnl it2nn8
INPUT エンコーダ Bフェーズ入力 channel7 (パルスカウンタ)

173 LEFT vdd vc l12 pnl vc 135
Core digital VDD(1.0V)

174 LEFT pp iopad0 pp pb pad6 pnl it2nn8
INPUT エンコーダ Bフェーズ入力 channel6 (パルスカウンタ)

175 LEFT pp iopad0 pp pb pad5 pnl it2nn8
INPUT エンコーダ Bフェーズ入力 channel5 (パルスカウンタ)

176 LEFT pp iopad0 pp pb pad4 pnl it2nn8
INPUT エンコーダ Bフェーズ入力 channel4 (パルスカウンタ)

177 LEFT vss gcs l14 pnl gcs 135
Core digital VSS(0V)

178 LEFT pp iopad0 pp pb pad3 pnl it2nn8
INPUT エンコーダ Bフェーズ入力 channel3 (パルスカウンタ)

179 LEFT vdd vop l2 pnl vop 135
IO digital VDD(3.3V)

180 LEFT pp iopad0 pp pb pad2 pnl it2nn8
INPUT エンコーダ Bフェーズ入力 channel2 (パルスカウンタ)

181 LEFT vss gcs l13 pnl gcs 135
Core digital VSS(0V)

182 LEFT pp iopad0 pp pb pad1 pnl it2nn8
INPUT エンコーダ Bフェーズ入力 channel1 (パルスカウンタ)

183 LEFT vdd vc l11 pnl vc 135
Core digital VDD(1.0V)

184 LEFT pp iopad0 pp pb pad0 pnl it2nn8
INPUT エンコーダ Bフェーズ入力 channel0 (パルスカウンタ)

185 LEFT pp iopad0 pp pa pad8 pnl it2nn8
INPUT エンコーダ Aフェーズ入力 channel8 (パルスカウンタ)

186 LEFT pp iopad0 pp pa pad7 pnl it2nn8
INPUT エンコーダ Aフェーズ入力 channel7 (パルスカウンタ)

187 LEFT vss gcs l12 pnl gcs 135
Core digital VSS(0V)

188 LEFT pp iopad0 pp pa pad6 pnl it2nn8
INPUT エンコーダ Aフェーズ入力 channel6 (パルスカウンタ)

189 LEFT pp iopad0 pp pa pad5 pnl it2nn8
INPUT エンコーダ Aフェーズ入力 channel5 (パルスカウンタ)

190 LEFT pp iopad0 pp pa pad4 pnl it2nn8
INPUT エンコーダ Aフェーズ入力 channel4 (パルスカウンタ)

191 LEFT vss gcs l11 pnl gcs 135
Core digital VSS(0V)

27

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

192 LEFT pp iopad0 pp pa pad3 pnl it2nn8
INPUT エンコーダ Aフェーズ入力 channel3 (パルスカウンタ)

193 LEFT vdd vc l10 pnl vc 135
Core digital VDD(1.0V)

194 LEFT pp iopad0 pp pa pad2 pnl it2nn8
INPUT エンコーダ Aフェーズ入力 channel2 (パルスカウンタ)

195 LEFT vss go l2 pnl go 135
IO digital VSS(0V)

196 LEFT pp iopad0 pp pa pad1 pnl it2nn8
INPUT エンコーダ Aフェーズ入力 channel1 (パルスカウンタ)

197 LEFT vss gcs l10 pnl gcs 135
Core digital VSS(0V)

198 LEFT pp iopad0 pp pa pad0 pnl it2nn8
INPUT エンコーダ Aフェーズ入力 channel0 (パルスカウンタ)

199 LEFT vdd vc l9 pnl vc 135
Core digital VDD(1.0V)

200 LEFT vdd vc l8 pnl vc 135
Core digital VDD(1.0V)

201 LEFT vss gcs l9 pnl gcs 135
Core digital VSS(0V)

202 LEFT clk iopad0 reset outer pnl tf12it0nn8
OUTPUT 外部ユニット用リセット

203 LEFT vdd vc l7 pnl vc 135
Core digital VDD(1.0V)

204 LEFT vss gcs l8 pnl gcs 135
Core digital VSS(0V)

205 LEFT vss gcs l7 pnl gcs 135
Core digital VSS(0V)

206 LEFT vdd vc l6 pnl vc 135
Core digital VDD(1.0V)

207 LEFT vss gcs l6 pnl gcs 135
Core digital VSS(0V)

208 LEFT vdd vc l5 pnl vc 135
Core digital VDD(1.0V)

209 LEFT vss gcs l5 pnl gcs 135
Core digital VSS(0V)

210 LEFT vss gcs l4 pnl gcs 135
Core digital VSS(0V)

211 LEFT clk iopad0 fout a pnl tf12it0nn8
OUTPUT PLLクロック出力

28 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

212 LEFT vdd vop l1 pnl vop 135
IO digital VDD(3.3V)

213 LEFT vdd vc l4 pnl vc 135
Core digital VDD(1.0V)

214 LEFT vdd vc l3 pnl vc 135
Core digital VDD(1.0V)

215 LEFT vss gcs l3 pnl gcs 135
Core digital VSS(0V)

216 LEFT vdd vc l2 pnl vc 135
Core digital VDD(1.0V)

217 LEFT vss go l1 pnl go 135
IO digital VSS(0V)

218 LEFT vss gcs l2 pnl gcs 135
Core digital VSS(0V)

219 LEFT vdd vc l1 pnl vc 135
Core digital VDD(1.0V)

220 LEFT vss gcs l1 pnl gcs 135
Core digital VSS(0V)

221 LEFT vss gcs l0 pnl gcs 135
Core digital VSS(0V)

222 LEFT vdd vc l0 pnl vc 135
Core digital VDD(1.0V)

223 LEFT clk iopad0 clk outer pnl tf12it0nn8
OUTPUT 外部ユニット用クロック

224 LEFT clk iopad0 reset in pnl it2pu8
INPUT リセット入力

225 LEFT clk iopad0 f a0 pnl it2pd8
INPUT PLL設定 Feedback Divider[0]

226 LEFT clk iopad0 f a1 pnl it2pu8
INPUT PLL設定 Feedback Divider[1]

227 LEFT clk iopad0 f a2 pnl it2pu8
INPUT PLL設定 Feedback Divider[2]

228 LEFT clk iopad0 f a3 pnl it2pu8
INPUT PLL設定 Feedback Divider[3]

229 LEFT clk iopad0 f a4 pnl it2pd8
INPUT PLL設定 Feedback Divider[4]

230 LEFT clk iopad0 f a5 pnl it2pd8
INPUT PLL設定 Feedback Divider[5]

231 LEFT vdd vop l0 pnl vop 135
IO digital VDD(3.3V)

29

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

232 LEFT clk iopad0 fin a pnl it2nn8
INPUT PLL設定 リファレンスクロック入力

233 LEFT clk iopad0 bp a pnl it2pd8
INPUT PLL設定 バイパス信号

234 LEFT clk iopad0 r a0 pnl it2pd8
INPUT PLL設定 Input Divider[0]

235 LEFT clk iopad0 r a1 pnl it2pu8
INPUT PLL設定 Input Divider[1]

236 LEFT clk iopad0 r a2 pnl it2pd8
INPUT PLL設定 Input Divider[2]

237 LEFT clk iopad0 r a3 pnl it2pd8
INPUT PLL設定 Input Divider[3]

238 LEFT vss go l0 pnl go 135
IO digital VSS(0V)

239 LEFT clk iopad0 oeb a pnl it2pd8
INPUT PLL設定 FOUT Enable

240 LEFT clk iopad0 od a pnl it2pd8
INPUT PLL設定 Output Divider

241 LEFT clk iopad0 pd a pnl it2pd8
INPUT PLL設定 Power Down

242 LEFT clk iopad0 prcut2p1 PRCUT2P
Power cut cell

243 LEFT clk iopad0 pvss2p PVSS2P
IO analog VSS

244 LEFT clk iopad0 pvdd2p PVDD2P
IO analog VDD(3.3V)

245 LEFT clk iopad0 pvdd1p1 PVDD1P
PLL analog VDD(3.3V)

246 LEFT clk iopad0 pvdd1p0 PVDD1P
PLL analog VDD(3.3V)

247 LEFT clk iopad0 pvss1pc0 PVSS1PC
PLL digital VSS

248 LEFT clk iopad0 pvss1p1 PVSS1P
PLL analog VSS

249 LEFT clk iopad0 pvss1p0 PVSS1P
PLL analog VSS

250 LEFT clk iopad0 pvdd1pc0 PVDD1PC
PLL digital VDD(1.0V)

251 LEFT clk iopad0 prcut2p0 PRCUT2P
Power cut cell

30 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

252 BOTTOM pci poc0 PVDD2POC 45
POC power rail

253 BOTTOM pci iopad0 uiov hi 0 PCI66SDGZ
INOUT AD[32] (PCIバス)

254 BOTTOM pci iopad0 uiov hi 1 PCI66SDGZ
INOUT AD[33] (PCIバス)

255 BOTTOM pci iopad0 uiov hi 2 PCI66SDGZ
INOUT AD[34] (PCIバス)

256 BOTTOM pci iopad0 uiov hi 3 PCI66SDGZ
INOUT AD[35] (PCIバス)

257 BOTTOM pci iopad0 uiov hi 4 PCI66SDGZ
INOUT AD[36] (PCIバス)

258 BOTTOM pci iopad0 uiov hi 5 PCI66SDGZ
INOUT AD[37] (PCIバス)

259 BOTTOM pci iopad0 uiov hi 6 PCI66SDGZ
INOUT AD[38] (PCIバス)

260 BOTTOM pci iopad0 uiov hi 7 PCI66SDGZ
INOUT AD[39] (PCIバス)

261 BOTTOM pci iopad0 uiov hi 8 PCI66SDGZ
INOUT AD[40] (PCIバス)

262 BOTTOM pci iopad0 uiov hi 9 PCI66SDGZ
INOUT AD[41] (PCIバス)

263 BOTTOM pci iopad0 uiov hi 10 PCI66SDGZ
INOUT AD[42] (PCIバス)

264 BOTTOM vss io b15 PVSS2DGZ 170
IO digital VSS(0V)

265 BOTTOM pci iopad0 uiov hi 11 PCI66SDGZ
INOUT AD[43] (PCIバス)

266 BOTTOM pci iopad0 uiov hi 12 PCI66SDGZ
INOUT AD[44] (PCIバス)

267 BOTTOM pci iopad0 uiov hi 13 PCI66SDGZ
INOUT AD[45] (PCIバス)

268 BOTTOM pci iopad0 uiov hi 14 PCI66SDGZ
INOUT AD[46] (PCIバス)

269 BOTTOM pci iopad0 uiov hi 15 PCI66SDGZ
INOUT AD[47] (PCIバス)

270 BOTTOM pci iopad0 uiov hi 16 PCI66SDGZ
INOUT AD[48] (PCIバス)

271 BOTTOM pci iopad0 uiov hi 17 PCI66SDGZ
INOUT AD[49] (PCIバス)

31

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

272 BOTTOM pci iopad0 uiov hi 18 PCI66SDGZ
INOUT AD[50] (PCIバス)

273 BOTTOM pci iopad0 uiov hi 19 PCI66SDGZ
INOUT AD[51] (PCIバス)

274 BOTTOM pci iopad0 uiov hi 20 PCI66SDGZ
INOUT AD[52] (PCIバス)

275 BOTTOM pci iopad0 uiov hi 21 PCI66SDGZ
INOUT AD[53] (PCIバス)

276 BOTTOM pci iopad0 uiov hi 22 PCI66SDGZ
INOUT AD[54] (PCIバス)

277 BOTTOM pci iopad0 uiov hi 23 PCI66SDGZ
INOUT AD[55] (PCIバス)

278 BOTTOM vdd io b16 PVDD2DGZ 45
IO digital VDD(3.3V)

279 BOTTOM pci iopad0 uiov hi 24 PCI66SDGZ
INOUT AD[56] (PCIバス)

280 BOTTOM vss io b14 PVSS2DGZ 170
IO digital VSS(0V)

281 BOTTOM pci iopad0 uiov hi 25 PCI66SDGZ
INOUT AD[57] (PCIバス)

282 BOTTOM vss core b35 PVSS1DGZ 40
Core digital VSS(0V)

283 BOTTOM pci iopad0 uiov hi 26 PCI66SDGZ
INOUT AD[58] (PCIバス)

284 BOTTOM vdd core b20 PVDD1DGZ 45
Core digital VDD(1.0V)

285 BOTTOM pci iopad0 uiov hi 27 PCI66SDGZ
INOUT AD[59] (PCIバス)

286 BOTTOM vss core b34 PVSS1DGZ 40
Core digital VSS(0V)

287 BOTTOM pci iopad0 uiov hi 28 PCI66SDGZ
INOUT AD[60] (PCIバス)

288 BOTTOM pci iopad0 uiov hi 29 PCI66SDGZ
INOUT AD[61] (PCIバス)

289 BOTTOM pci iopad0 uiov hi 30 PCI66SDGZ
INOUT AD[62] (PCIバス)

290 BOTTOM vss core b33 PVSS1DGZ 40
Core digital VSS(0V)

291 BOTTOM pci iopad0 uiov hi 31 PCI66SDGZ
INOUT AD[63] (PCIバス)

32 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

292 BOTTOM vss io b13 PVSS2DGZ 170
IO digital VSS(0V)

293 BOTTOM pci iopad0 uio2 PCI66SDGZ
INOUT PAR64 (PCIバス)

294 BOTTOM vdd io b15 PVDD2DGZ 45
IO digital VDD(3.3V)

295 BOTTOM pci iopad0 uiov2 hi 0 PCI66SDGZ
INOUT C/BE[4] (PCIバス)

296 BOTTOM vdd core b19 PVDD1DGZ 45
Core digital VDD(1.0V)

297 BOTTOM pci iopad0 uiov2 hi 1 PCI66SDGZ
INOUT C/BE[5] (PCIバス)

298 BOTTOM vss core b32 PVSS1DGZ 40
Core digital VSS(0V)

299 BOTTOM pci iopad0 uiov2 hi 2 PCI66SDGZ
INOUT C/BE[6] (PCIバス)

300 BOTTOM pci iopad0 uiov2 hi 3 PCI66SDGZ
INOUT C/BE[7] (PCIバス)

301 BOTTOM pci iopad0 uio9 PCI66SDGZ
INOUT REQ64# (PCIバス)

302 BOTTOM vss core b31 PVSS1DGZ 40
Core digital VSS(0V)

303 BOTTOM pci iopad0 uio8 PCI66SDGZ
INOUT ACK64# (PCIバス)

304 BOTTOM vss io b12 PVSS2DGZ 170
IO digital VSS(0V)

305 BOTTOM pci iopad0 uiov lo 0 PCI66SDGZ
INOUT AD[0] (PCIバス)

306 BOTTOM vdd io b14 PVDD2DGZ 45
IO digital VDD(3.3V)

307 BOTTOM pci iopad0 uiov lo 1 PCI66SDGZ
INOUT AD[1] (PCIバス)

308 BOTTOM vdd core b18 PVDD1DGZ 45
Core digital VDD(1.0V)

309 BOTTOM pci iopad0 uiov lo 2 PCI66SDGZ
INOUT AD[2] (PCIバス)

310 BOTTOM vss core b30 PVSS1DGZ 40
Core digital VSS(0V)

311 BOTTOM pci iopad0 uiov lo 3 PCI66SDGZ
INOUT AD[3] (PCIバス)

33

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

312 BOTTOM pci iopad0 uiov lo 4 PCI66SDGZ
INOUT AD[4] (PCIバス)

313 BOTTOM pci iopad0 uiov lo 5 PCI66SDGZ
INOUT AD[5] (PCIバス)

314 BOTTOM vss core b29 PVSS1DGZ 40
Core digital VSS(0V)

315 BOTTOM pci iopad0 uiov lo 6 PCI66SDGZ
INOUT AD[6] (PCIバス)

316 BOTTOM vdd core b17 PVDD1DGZ 45
Core digital VDD(1.0V)

317 BOTTOM pci iopad0 uiov lo 7 PCI66SDGZ
INOUT AD[7] (PCIバス)

318 BOTTOM vss core b28 PVSS1DGZ 40
Core digital VSS(0V)

319 BOTTOM pci iopad0 uiov2 lo 0 PCI66SDGZ
INOUT C/BE[0](PCIバス)

320 BOTTOM pci iopad0 uiov lo 8 PCI66SDGZ
INOUT AD[8] (PCIバス)

321 BOTTOM pci iopad0 uiov lo 9 PCI66SDGZ
INOUT AD[9] (PCIバス)

322 BOTTOM vss core b27 PVSS1DGZ 40
Core digital VSS(0V)

323 BOTTOM pci iopad0 uin4 PCI66SDGZ
INOUT M66EN (PCIバス)

324 BOTTOM vdd core b16 PVDD1DGZ 45
Core digital VDD(1.0V)

325 BOTTOM pci iopad0 uiov lo 10 PCI66SDGZ
INOUT AD[10] (PCIバス)

326 BOTTOM vss core b26 PVSS1DGZ 40
Core digital VSS(0V)

327 BOTTOM pci iopad0 uiov lo 11 PCI66SDGZ
INOUT AD[11] (PCIバス)

328 BOTTOM vss io b11 PVSS2DGZ 170
IO digital VSS(0V)

329 BOTTOM pci iopad0 uiov lo 12 PCI66SDGZ
INOUT AD[12] (PCIバス)

330 BOTTOM vdd io b13 PVDD2DGZ 45
IO digital VDD(3.3V)

331 BOTTOM pci iopad0 uiov lo 13 PCI66SDGZ
INOUT AD[13] (PCIバス)

34 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

332 BOTTOM vss core b25 PVSS1DGZ 40
Core digital VSS(0V)

333 BOTTOM pci iopad0 uiov lo 14 PCI66SDGZ
INOUT AD[14] (PCIバス)

334 BOTTOM vdd core b15 PVDD1DGZ 45
Core digital VDD(1.0V)

335 BOTTOM pci iopad0 uiov lo 15 PCI66SDGZ
INOUT AD[15] (PCIバス)

336 BOTTOM vss core b24 PVSS1DGZ 40
Core digital VSS(0V)

337 BOTTOM pci iopad0 uiov2 lo 1 PCI66SDGZ
INOUT C/BE[1](PCIバス)

338 BOTTOM pci iopad0 uio1 PCI66SDGZ
INOUT PAR (PCIバス)

339 BOTTOM pci iopad0 uout2 PCI66SDGZ
INOUT SERR# (PCIバス)

340 BOTTOM vss core b23 PVSS1DGZ 40
Core digital VSS(0V)

341 BOTTOM pci iopad0 uio10 PCI66SDGZ
INOUT PERR# (PCIバス)

342 BOTTOM vdd core b14 PVDD1DGZ 45
Core digital VDD(1.0V)

343 BOTTOM pci iopad0 uin3 PCI66SDGZ
INOUT LOCK# (PCIバス)

344 BOTTOM vss io b10 PVSS2DGZ 170
IO digital VSS(0V)

345 BOTTOM pci iopad0 uio6 PCI66SDGZ
INOUT STOP# (PCIバス)

346 BOTTOM vdd io b12 PVDD2DGZ 45
IO digital VDD(3.3V)

347 BOTTOM pci iopad0 uio7 PCI66SDGZ
INOUT DEVSEL# (PCIバス)

348 BOTTOM vss core b22 PVSS1DGZ 40
Core digital VSS(0V)

349 BOTTOM pci iopad0 uio5 PCI66SDGZ
INOUT TRDY# (PCIバス)

350 BOTTOM vdd core b13 PVDD1DGZ 45
Core digital VDD(1.0V)

351 BOTTOM pci iopad0 uio4 PCI66SDGZ
INOUT IRDY# (PCIバス)

35

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

352 BOTTOM pci iopad0 uio3 PCI66SDGZ
INOUT FRAME# (PCIバス)

353 BOTTOM pci iopad0 uiov2 lo 2 PCI66SDGZ
INOUT C/BE[2] (PCIバス)

354 BOTTOM vss core b21 PVSS1DGZ 40
Core digital VSS(0V)

355 BOTTOM pci iopad0 uiov lo 16 PCI66SDGZ
INOUT AD[16] (PCIバス)

356 BOTTOM vss io b9 PVSS2DGZ 170
IO digital VSS(0V)

357 BOTTOM pci iopad0 uiov lo 17 PCI66SDGZ
INOUT AD[17] (PCIバス)

358 BOTTOM vdd io b11 PVDD2DGZ 45
IO digital VDD(3.3V)

359 BOTTOM pci iopad0 uiov lo 18 PCI66SDGZ
INOUT AD[18] (PCIバス)

360 BOTTOM vdd core b12 PVDD1DGZ 45
Core digital VDD(1.0V)

361 BOTTOM pci iopad0 uiov lo 19 PCI66SDGZ
INOUT AD[19] (PCIバス)

362 BOTTOM vss core b20 PVSS1DGZ 40
Core digital VSS(0V)

363 BOTTOM pci iopad0 uiov lo 20 PCI66SDGZ
INOUT AD[20] (PCIバス)

364 BOTTOM pci iopad0 uiov lo 21 PCI66SDGZ
INOUT AD[21] (PCIバス)

365 BOTTOM pci iopad0 uiov lo 22 PCI66SDGZ
INOUT AD[22] (PCIバス)

366 BOTTOM pci iopad0 uiov lo 23 PCI66SDGZ
INOUT AD[23] (PCIバス)

367 BOTTOM pci iopad0 uin1 PCI66SDGZ
INOUT IDSEL(PCIバス)

368 BOTTOM vss core b19 PVSS1DGZ 40
Core digital VSS(0V)

369 BOTTOM pci iopad0 uiov2 lo 3 PCI66SDGZ
INOUT C/BE[3](PCIバス)

370 BOTTOM pci iopad0 uiov lo 24 PCI66SDGZ
INOUT AD[24] (PCIバス)

371 BOTTOM pci iopad0 uiov lo 25 PCI66SDGZ
INOUT AD[25] (PCIバス)

36 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

372 BOTTOM vdd core b11 PVDD1DGZ 45
Core digital VDD(1.0V)

373 BOTTOM pci iopad0 uiov lo 26 PCI66SDGZ
INOUT AD[26] (PCIバス)

374 BOTTOM vss io b8 PVSS2DGZ 170
IO digital VSS(0V)

375 BOTTOM pci iopad0 uiov lo 27 PCI66SDGZ
INOUT AD[27] (PCIバス)

376 BOTTOM vdd io b10 PVDD2DGZ 45
IO digital VDD(3.3V)

377 BOTTOM pci iopad0 uiov lo 28 PCI66SDGZ
INOUT AD[28] (PCIバス)

378 BOTTOM vss core b18 PVSS1DGZ 40
Core digital VSS(0V)

379 BOTTOM pci iopad0 uiov lo 29 PCI66SDGZ
INOUT AD[29] (PCIバス)

380 BOTTOM pci iopad0 uiov lo 30 PCI66SDGZ
INOUT AD[30] (PCIバス)

381 BOTTOM pci iopad0 uiov lo 31 PCI66SDGZ
INOUT AD[31] (PCIバス)

382 BOTTOM vdd core b10 PVDD1DGZ 45
Core digital VDD(1.0V)

383 BOTTOM pci iopad0 uout1 PCI66SDGZ
INOUT REQ# (PCIバス)

384 BOTTOM vss core b17 PVSS1DGZ 40
Core digital VSS(0V)

385 BOTTOM pci iopad0 uin2 PCI66SDGZ
INOUT GNT# (PCIバス)

386 BOTTOM vss io b7 PVSS2DGZ 170
IO digital VSS(0V)

387 BOTTOM pci iopad0 upclk PCI66SDGZ
INOUT CLK (PCIバス)

388 BOTTOM vdd io b9 PVDD2DGZ 45
IO digital VDD(3.3V)

389 BOTTOM pci iopad0 uprst PCI66SDGZ
INOUT RST# (PCIバス)

390 BOTTOM vss core b16 PVSS1DGZ 40
Core digital VSS(0V)

391 BOTTOM pci iopad0 pinta PCI66SDGZ
INOUT INTA# (PCIバス)

37

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

392 BOTTOM vdd core b9 PVDD1DGZ 45
Core digital VDD(1.0V)

393 BOTTOM pci prcut0 PRCUT2P
Power cut cell

394 BOTTOM sdram iopad0 oe pnl sstl 2classi
OUTPUT Output Enable ≺ action:0 stop:1 � (SDRAM)

395 BOTTOM sdram iopad0 dir pnl sstl 2classi
OUTPUT Direction ≺ read:1 write:0 � (SDRAM)

396 BOTTOM sdram iopad0 dq127 pnl sstl 2classi
INOUT Dq[127] (SDRAM)

397 BOTTOM sdram iopad0 dq063 pnl sstl 2classi
INOUT Dq[63] (SDRAM)

398 BOTTOM vss gcs b15 pnl sstl gcs
Core digital VSS(0V)

399 BOTTOM sdram iopad0 dq123 pnl sstl 2classi
INOUT Dq[123] (SDRAM)

400 BOTTOM sdram iopad0 dq059 pnl sstl 2classi
INOUT Dq[59] (SDRAM)

401 BOTTOM sdram iopad0 dq126 pnl sstl 2classi
INOUT Dq[126] (SDRAM)

402 BOTTOM vdd vc b8 pnl sstl vc
Core digital VDD(1.0V)

403 BOTTOM sdram iopad0 dq062 pnl sstl 2classi
INOUT Dq[62] (SDRAM)

404 BOTTOM vss gcs b14 pnl sstl gcs
Core digital VSS(0V)

405 BOTTOM sdram iopad0 dq122 pnl sstl 2classi
INOUT Dq[122] (SDRAM)

406 BOTTOM vss go b6 pnl sstl go
IO digital VSS(0V)

407 BOTTOM sdram iopad0 dq058 pnl sstl 2classi
INOUT Dq[58] (SDRAM)

408 BOTTOM vdd vq b8 pnl sstl vq
SSTL IO digital VDD(2.5V)

409 BOTTOM sdram iopad0 dqm15 pnl sstl 2classi
OUTPUT Dm[15] (SDRAM)

410 BOTTOM vss gcs b13 pnl sstl gcs
Core digital VSS(0V)

411 BOTTOM sdram iopad0 dqm07 pnl sstl 2classi
OUTPUT Dm[7] (SDRAM)

38 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

412 BOTTOM sdram iopad0 dqs015 pnl sstl 2classi
INOUT Dqs[15] (SDRAM)

413 BOTTOM sdram iopad0 dqs007 pnl sstl 2classi
INOUT Dqs[7] (SDRAM)

414 BOTTOM vdd vc b7 pnl sstl vc
Core digital VDD(1.0V)

415 BOTTOM sdram iopad0 dq125 pnl sstl 2classi
INOUT Dq[125] (SDRAM)

416 BOTTOM vss gcs b12 pnl sstl gcs
Core digital VSS(0V)

417 BOTTOM sdram iopad0 dq061 pnl sstl 2classi
INOUT Dq[61] (SDRAM)

418 BOTTOM sdram iopad0 dq121 pnl sstl 2classi
INOUT Dq[121] (SDRAM)

419 BOTTOM vdd vp b7 pnl sstl vp
SSTL IO digital VDD(2.5V)

420 BOTTOM sdram iopad0 dq057 pnl sstl 2classi
INOUT Dq[57] (SDRAM)

421 BOTTOM sdram iopad0 dq124 pnl sstl 2classi
INOUT Dq[124] (SDRAM)

422 BOTTOM vss gcs b11 pnl sstl gcs
Core digital VSS(0V)

423 BOTTOM sdram iopad0 dq060 pnl sstl 2classi
INOUT Dq[60] (SDRAM)

424 BOTTOM vdd vc b6 pnl sstl vc
Core digital VDD(1.0V)

425 BOTTOM sdram iopad0 dq120 pnl sstl 2classi
INOUT Dq[120] (SDRAM)

426 BOTTOM vss go b5 pnl sstl go
IO digital VSS(0V)

427 BOTTOM sdram iopad0 dq056 pnl sstl 2classi
INOUT Dq[56] (SDRAM)

428 BOTTOM vdd vq b6 pnl sstl vq
SSTL IO digital VDD(2.5V)

429 BOTTOM sdram iopad0 dq119 pnl sstl 2classi
INOUT Dq[119] (SDRAM)

430 BOTTOM vss gcs b10 pnl sstl gcs
Core digital VSS(0V)

431 BOTTOM sdram iopad0 dq055 pnl sstl 2classi
INOUT Dq[55] (SDRAM)

39

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

432 BOTTOM sdram iopad0 dq115 pnl sstl 2classi
INOUT Dq[115] (SDRAM)

433 BOTTOM sdram iopad0 dq051 pnl sstl 2classi
INOUT Dq[51] (SDRAM)

434 BOTTOM vss gcs b9 pnl sstl gcs
Core digital VSS(0V)

435 BOTTOM sdram iopad0 dq118 pnl sstl 2classi
INOUT Dq[118] (SDRAM)

436 BOTTOM vdd vc b5 pnl sstl vc
Core digital VDD(1.0V)

437 BOTTOM sdram iopad0 dq054 pnl sstl 2classi
INOUT Dq[54] (SDRAM)

438 BOTTOM vss go b4 pnl sstl go
IO digital VSS(0V)

439 BOTTOM sdram iopad0 dq114 pnl sstl 2classi
INOUT Dq[114] (SDRAM)

440 BOTTOM vdd vq b5 pnl sstl vq
SSTL IO digital VDD(2.5V)

441 BOTTOM sdram iopad0 dq050 pnl sstl 2classi
INOUT Dq[50] (SDRAM)

442 BOTTOM vss gcs b8 pnl sstl gcs
Core digital VSS(0V)

443 BOTTOM sdram iopad0 dqm14 pnl sstl 2classi
OUTPUT Dm[14] (SDRAM)

444 BOTTOM sstl vref b0 pnl sstl vref
SSTL VREF(1.25V)

445 BOTTOM sdram iopad0 dqm06 pnl sstl 2classi
OUTPUT Dm[6] (SDRAM)

446 BOTTOM vdd vc b4 pnl sstl vc
Core digital VDD(1.0V)

447 BOTTOM sdram iopad0 dqs014 pnl sstl 2classi
INOUT Dqs[14] (SDRAM)

448 BOTTOM vss gcs b7 pnl sstl gcs
Core digital VSS(0V)

449 BOTTOM sdram iopad0 dqs006 pnl sstl 2classi
INOUT Dqs[6] (SDRAM)

450 BOTTOM sdram iopad0 dq117 pnl sstl 2classi
INOUT Dq[117] (SDRAM)

451 BOTTOM sdram iopad0 dq053 pnl sstl 2classi
INOUT Dq[53] (SDRAM)

40 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

452 BOTTOM vss go b3 pnl sstl go
IO digital VSS(0V)

453 BOTTOM sdram iopad0 dq113 pnl sstl 2classi
INOUT Dq[113] (SDRAM)

454 BOTTOM vdd vq b4 pnl sstl vq
SSTL IO digital VDD(2.5V)

455 BOTTOM sdram iopad0 dq049 pnl sstl 2classi
INOUT Dq[49] (SDRAM)

456 BOTTOM vss gcs b6 pnl sstl gcs
Core digital VSS(0V)

457 BOTTOM sdram iopad0 dq116 pnl sstl 2classi
INOUT Dq[116] (SDRAM)

458 BOTTOM vdd vc b3 pnl sstl vc
Core digital VDD(1.0V)

459 BOTTOM sdram iopad0 dq052 pnl sstl 2classi
INOUT Dq[52] (SDRAM)

460 BOTTOM sdram iopad0 dq112 pnl sstl 2classi
INOUT Dq[112] (SDRAM)

461 BOTTOM vdd vp b3 pnl sstl vp
SSTL IO digital VDD(2.5V)

462 BOTTOM sdram iopad0 dq048 pnl sstl 2classi
INOUT Dq[48] (SDRAM)

463 BOTTOM sdram iopad0 dq111 pnl sstl 2classi
INOUT Dq[111] (SDRAM)

464 BOTTOM vss gcs b5 pnl sstl gcs
Core digital VSS(0V)

465 BOTTOM sdram iopad0 dq047 pnl sstl 2classi
INOUT Dq[47] (SDRAM)

466 BOTTOM sdram iopad0 dq107 pnl sstl 2classi
INOUT Dq[107] (SDRAM)

467 BOTTOM sdram iopad0 dq043 pnl sstl 2classi
INOUT Dq[43] (SDRAM)

468 BOTTOM vdd vc b2 pnl sstl vc
Core digital VDD(1.0V)

469 BOTTOM sdram iopad0 dq110 pnl sstl 2classi
INOUT Dq[110] (SDRAM)

470 BOTTOM vss gcs b4 pnl sstl gcs
Core digital VSS(0V)

471 BOTTOM sdram iopad0 dq046 pnl sstl 2classi
INOUT Dq[46] (SDRAM)

41

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

472 BOTTOM vss go b2 pnl sstl go
IO digital VSS(0V)

473 BOTTOM sdram iopad0 dq106 pnl sstl 2classi
INOUT Dq[106] (SDRAM)

474 BOTTOM vdd vq b2 pnl sstl vq
SSTL IO digital VDD(2.5V)

475 BOTTOM sdram iopad0 dq042 pnl sstl 2classi
INOUT Dq[42] (SDRAM)

476 BOTTOM vss gcs b3 pnl sstl gcs
Core digital VSS(0V)

477 BOTTOM sdram iopad0 dqm13 pnl sstl 2classi
OUTPUT Dm[13] (SDRAM)

478 BOTTOM sdram iopad0 dqm05 pnl sstl 2classi
OUTPUT Dm[5] (SDRAM)

479 BOTTOM sdram iopad0 dqs013 pnl sstl 2classi
INOUT Dqs[13] (SDRAM)

480 BOTTOM vdd vc b1 pnl sstl vc
Core digital VDD(1.0V)

481 BOTTOM sdram iopad0 dqs005 pnl sstl 2classi
INOUT Dqs[5] (SDRAM)

482 BOTTOM vss gcs b2 pnl sstl gcs
Core digital VSS(0V)

483 BOTTOM sdram iopad0 dq109 pnl sstl 2classi
INOUT Dq[42] (SDRAM)

484 BOTTOM vss go b1 pnl sstl go
IO digital VSS(0V)

485 BOTTOM sdram iopad0 dq045 pnl sstl 2classi
INOUT Dq[45] (SDRAM)

486 BOTTOM vdd vq b1 pnl sstl vq
SSTL IO digital VDD(2.5V)

487 BOTTOM sdram iopad0 dq105 pnl sstl 2classi
INOUT Dq[105] (SDRAM)

488 BOTTOM vss gcs b1 pnl sstl gcs
Core digital VSS(0V)

489 BOTTOM sdram iopad0 dq041 pnl sstl 2classi
INOUT Dq[41] (SDRAM)

490 BOTTOM sdram iopad0 dq108 pnl sstl 2classi
INOUT Dq[108] (SDRAM)

491 BOTTOM sdram iopad0 dq044 pnl sstl 2classi
INOUT Dq[44] (SDRAM)

42 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

492 BOTTOM vdd vc b0 pnl sstl vc
Core digital VDD(1.0V)

493 BOTTOM sdram iopad0 dq104 pnl sstl 2classi
INOUT Dq[104] (SDRAM)

494 BOTTOM vss gcs b0 pnl sstl gcs
Core digital VSS(0V)

495 BOTTOM sdram iopad0 dq040 pnl sstl 2classi
INOUT Dq[40] (SDRAM)

496 BOTTOM sdram iopad0 dq103 pnl sstl 2classi
INOUT Dq[103] (SDRAM)

497 BOTTOM sdram iopad0 dq039 pnl sstl 2classi
INOUT Dq[39] (SDRAM)

498 BOTTOM vss go b0 pnl sstl go
IO digital VSS(0V)

499 BOTTOM sdram iopad0 dq099 pnl sstl 2classi
INOUT Dq[99] (SDRAM)

500 BOTTOM vdd vq b0 pnl sstl vq
SSTL IO digital VDD(2.5V)

501 BOTTOM sdram iopad0 dq035 pnl sstl 2classi
INOUT Dq[35] (SDRAM)

502 BOTTOM sdram iopad0 dq102 pnl sstl 2classi
INOUT Dq[102] (SDRAM)

503 RIGHT sdram iopad0 dq038 pnl sstl 2classi
INOUT Dq[38] (SDRAM)

504 RIGHT sdram iopad0 dq098 pnl sstl 2classi
INOUT Dq[98] (SDRAM)

505 RIGHT sdram iopad0 dq034 pnl sstl 2classi
INOUT Dq[34] (SDRAM)

506 RIGHT sdram iopad0 dqm12 pnl sstl 2classi
OUTPUT Dm[12] (SDRAM)

507 RIGHT sdram iopad0 dqm04 pnl sstl 2classi
OUTPUT Dm[4] (SDRAM)

508 RIGHT vdd vp r19 pnl sstll vp
SSTL IO digital VDD(2.5V)

509 RIGHT sdram iopad0 dqs012 pnl sstl 2classi
INOUT Dqs[12] (SDRAM)

510 RIGHT sdram iopad0 dqs004 pnl sstl 2classi
INOUT Dqs[14] (SDRAM)

511 RIGHT sdram iopad0 dq101 pnl sstl 2classi
INOUT Dq[101] (SDRAM)

43

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

512 RIGHT sdram iopad0 dq037 pnl sstl 2classi
INOUT Dq[37] (SDRAM)

513 RIGHT vss go r15 pnl sstl go
IO digital VSS(0V)

514 RIGHT sdram iopad0 dq097 pnl sstl 2classi
INOUT Dq[97] (SDRAM)

515 RIGHT vdd vq r18 pnl sstl vq
SSTL IO digital VDD(2.5V)

516 RIGHT sdram iopad0 dq033 pnl sstl 2classi
INOUT Dq[33] (SDRAM)

517 RIGHT vdd sstl r19 pnl sstl vc
Core digital VDD(1.0V)

518 RIGHT sdram iopad0 dq100 pnl sstl 2classi
INOUT Dq[100] (SDRAM)

519 RIGHT vss gcs r32 pnl sstl gcs
Core digital VSS(0V)

520 RIGHT sdram iopad0 dq036 pnl sstl 2classi
INOUT Dq[36] (SDRAM)

521 RIGHT sdram iopad0 dq096 pnl sstl 2classi
INOUT Dq[96] (SDRAM)

522 RIGHT sdram iopad0 dq032 pnl sstl 2classi
INOUT Dq[32] (SDRAM)

523 RIGHT sdram iopad0 cs1 pnl sstl 2classi
OUTPUT CS[1] (SDRAM)

524 RIGHT sdram iopad0 cs0 pnl sstl 2classi
OUTPUT CS[0] (SDRAM)

525 RIGHT vss gcs r31 pnl sstl gcs
Core digital VSS(0V)

526 RIGHT sdram iopad0 cas pnl sstl 2classi
OUTPUT CAS (SDRAM)

527 RIGHT vdd sstl r18 pnl sstl vc
Core digital VDD(1.0V)

528 RIGHT sdram iopad0 we pnl sstl 2classi
OUTPUT WE (SDRAM)

529 RIGHT vss go r14 pnl sstl go
IO digital VSS(0V)

530 RIGHT sdram iopad0 ras pnl sstl 2classi
OUTPUT RAS (SDRAM)

531 RIGHT vdd vq r17 pnl sstl vq
SSTL IO digital VDD(2.5V)

44 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

532 RIGHT sdram iopad0 bank0 pnl sstl 2classi
OUTPUT Ba[0] (SDRAM)

533 RIGHT vss gcs r30 pnl sstl gcs
Core digital VSS(0V)

534 RIGHT sdram iopad0 bank1 pnl sstl 2classi
OUTPUT Ba[1] (SDRAM)

535 RIGHT sdram iopad0 addr10 pnl sstl 2classi
OUTPUT A[10] (SDRAM)

536 RIGHT vdd vp r16 pnl sstll vp
SSTL IO digital VDD(2.5V)

537 RIGHT sdram iopad0 addr00 pnl sstl 2classi
OUTPUT A[0] (SDRAM)

538 RIGHT sdram iopad0 addr01 pnl sstl 2classi
OUTPUT A[1] (SDRAM)

539 RIGHT vss gcs r29 pnl sstl gcs
Core digital VSS(0V)

540 RIGHT sdram iopad0 addr02 pnl sstl 2classi
OUTPUT A[2] (SDRAM)

541 RIGHT vdd sstl r17 pnl sstl vc
Core digital VDD(1.0V)

542 RIGHT sdram iopad0 addr03 pnl sstl 2classi
OUTPUT A[3] (SDRAM)

543 RIGHT vss go r13 pnl sstl go
IO digital VSS(0V)

544 RIGHT sdram iopad0 addr04 pnl sstl 2classi
OUTPUT A[4] (SDRAM)

545 RIGHT vdd vq r15 pnl sstl vq
SSTL IO digital VDD(2.5V)

546 RIGHT sdram iopad0 addr05 pnl sstl 2classi
OUTPUT A[5] (SDRAM)

547 RIGHT vss gcs r28 pnl sstl gcs
Core digital VSS(0V)

548 RIGHT sdram iopad0 addr06 pnl sstl 2classi
OUTPUT A[6] (SDRAM)

549 RIGHT sdram iopad0 addr07 pnl sstl 2classi
OUTPUT A[7] (SDRAM)

550 RIGHT sdram iopad0 addr08 pnl sstl 2classi
OUTPUT A[8] (SDRAM)

551 RIGHT vdd sstl r16 pnl sstl vc
Core digital VDD(1.0V)

45

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

552 RIGHT sdram iopad0 addr09 pnl sstl 2classi
OUTPUT A[9] (SDRAM)

553 RIGHT sdram iopad0 addr11 pnl sstl 2classi
OUTPUT A[11] (SDRAM)

554 RIGHT sdram iopad0 addr12 pnl sstl 2classi
OUTPUT A[12] (SDRAM)

555 RIGHT vdd vq r14 pnl sstl vq
SSTL IO digital VDD(2.5V)

556 RIGHT sdram iopad0 cke pnl sstl 2classi
OUTPUT CKE (SDRAM)

557 RIGHT vss go r12 pnl sstl go
IO digital VSS(0V)

558 RIGHT sdram iopad0 dq095 pnl sstl 2classi
INOUT Dq[95] (SDRAM)

559 RIGHT vss gcs r27 pnl sstl gcs
Core digital VSS(0V)

560 RIGHT sdram iopad0 dq031 pnl sstl 2classi
INOUT Dq[31] (SDRAM)

561 RIGHT vdd sstl r15 pnl sstl vc
Core digital VDD(1.0V)

562 RIGHT sdram iopad0 dq091 pnl sstl 2classi
INOUT Dq[91] (SDRAM)

563 RIGHT sdram iopad0 dq027 pnl sstl 2classi
INOUT Dq[27] (SDRAM)

564 RIGHT sdram iopad0 dq094 pnl sstl 2classi
INOUT Dq[94] (SDRAM)

565 RIGHT vss gcs r26 pnl sstl gcs
Core digital VSS(0V)

566 RIGHT sdram iopad0 dq030 pnl sstl 2classi
INOUT Dq[30] (SDRAM)

567 RIGHT vss go r11 pnl sstl go
IO digital VSS(0V)

568 RIGHT sdram iopad0 dq090 pnl sstl 2classi
INOUT Dq[90] (SDRAM)

569 RIGHT vdd vq r13 pnl sstl vq
SSTL IO digital VDD(2.5V)

570 RIGHT sdram iopad0 dq026 pnl sstl 2classi
INOUT Dq[26] (SDRAM)

571 RIGHT vss gcs r25 pnl sstl gcs
Core digital VSS(0V)

46 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

572 RIGHT sdram iopad0 dqm11 pnl sstl 2classi
OUTPUT Dm[11] (SDRAM)

573 RIGHT vdd sstl r14 pnl sstl vc
Core digital VDD(1.0V)

574 RIGHT sdram iopad0 dqm03 pnl sstl 2classi
OUTPUT Dm[3] (SDRAM)

575 RIGHT sdram iopad0 dqs011 pnl sstl 2classi
INOUT Dqs[11] (SDRAM)

576 RIGHT sdram iopad0 dqs003 pnl sstl 2classi
INOUT Dqs[3] (SDRAM)

577 RIGHT vss gcs r24 pnl sstl gcs
Core digital VSS(0V)

578 RIGHT sdram iopad0 dq093 pnl sstl 2classi
INOUT Dq[93] (SDRAM)

579 RIGHT sdram iopad0 dq029 pnl sstl 2classi
INOUT Dq[29] (SDRAM)

580 RIGHT sstl vref r0 pnl sstl vref
SSTL VREF(1.25V)

581 RIGHT sdram iopad0 dq089 pnl sstl 2classi
INOUT Dq[89] (SDRAM)

582 RIGHT sdram iopad0 dq025 pnl sstl 2classi
INOUT Dq[25] (SDRAM)

583 RIGHT vdd sstl r13 pnl sstl vc
Core digital VDD(1.0V)

584 RIGHT sdram iopad0 dq092 pnl sstl 2classi
INOUT Dq[92] (SDRAM)

585 RIGHT vss gcs r23 pnl sstl gcs
Core digital VSS(0V)

586 RIGHT sdram iopad0 dq028 pnl sstl 2classi
INOUT Dq[28] (SDRAM)

587 RIGHT sdram iopad0 dq088 pnl sstl 2classi
INOUT Dq[88] (SDRAM)

588 RIGHT vdd vp r12 pnl sstll vp
SSTL IO digital VDD(2.5V)

589 RIGHT sdram iopad0 dq024 pnl sstl 2classi
INOUT Dq[24] (SDRAM)

590 RIGHT sdram iopad0 dq087 pnl sstl 2classi
INOUT Dq[87] (SDRAM)

591 RIGHT vss gcs r22 pnl sstl gcs
Core digital VSS(0V)

47

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

592 RIGHT sdram iopad0 dq023 pnl sstl 2classi
INOUT Dq[23] (SDRAM)

593 RIGHT vdd sstl r12 pnl sstl vc
Core digital VDD(1.0V)

594 RIGHT sdram iopad0 dq083 pnl sstl 2classi
INOUT Dq[83] (SDRAM)

595 RIGHT sdram iopad0 dq019 pnl sstl 2classi
INOUT Dq[19] (SDRAM)

596 RIGHT sdram iopad0 dq086 pnl sstl 2classi
INOUT Dq[86] (SDRAM)

597 RIGHT vss gcs r21 pnl sstl gcs
Core digital VSS(0V)

598 RIGHT sdram iopad0 dq022 pnl sstl 2classi
INOUT Dq[22] (SDRAM)

599 RIGHT vdd vq r11 pnl sstl vq
SSTL IO digital VDD(2.5V)

600 RIGHT sdram iopad0 dq082 pnl sstl 2classi
INOUT Dq[82] (SDRAM)

601 RIGHT vss go r10 pnl sstl go
IO digital VSS(0V)

602 RIGHT sdram iopad0 dq018 pnl sstl 2classi
INOUT Dq[18] (SDRAM)

603 RIGHT vdd sstl r11 pnl sstl vc
Core digital VDD(1.0V)

604 RIGHT sdram iopad0 dqm10 pnl sstl 2classi
OUTPUT Dm[10] (SDRAM)

605 RIGHT vss gcs r20 pnl sstl gcs
Core digital VSS(0V)

606 RIGHT sdram iopad0 dqm02 pnl sstl 2classi
OUTPUT Dm[2] (SDRAM)

607 RIGHT sdram iopad0 dqs010 pnl sstl 2classi
INOUT Dqs[10] (SDRAM)

608 RIGHT vdd vq r10 pnl sstll vq
SSTL IO digital VDD(2.5V)

609 RIGHT sdram iopad0 dqs002 pnl sstl 2classi
INOUT Dqs[2] (SDRAM)

610 RIGHT sdram iopad0 dq085 pnl sstl 2classi
INOUT Dq[85] (SDRAM)

611 RIGHT vss gcs r19 pnl sstl gcs
Core digital VSS(0V)

48 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

612 RIGHT sdram iopad0 dq021 pnl sstl 2classi
INOUT Dq[21] (SDRAM)

613 RIGHT vdd sstl r10 pnl sstl vc
Core digital VDD(1.0V)

614 RIGHT sdram iopad0 clk0 pnl sstl 2classi
OUTPUT Clk0 (SDRAM)

615 RIGHT vdd vq r9 pnl sstl vq
SSTL IO digital VDD(2.5V)

616 RIGHT sdram iopad0 dq081 pnl sstl 2classi
INOUT Dq[81] (SDRAM)

617 RIGHT vss go r9 pnl sstl go
IO digital VSS(0V)

618 RIGHT sdram iopad0 clk0 pnl sstl 2classi
OUTPUT Clk0 (SDRAM)

619 RIGHT vss gcs r18 pnl sstl gcs
Core digital VSS(0V)

620 RIGHT sdram iopad0 dq017 pnl sstl 2classi
INOUT Dq[17] (SDRAM)

621 RIGHT sdram iopad0 dq084 pnl sstl 2classi
INOUT Dq[84] (SDRAM)

622 RIGHT sdram iopad0 dq020 pnl sstl 2classi
INOUT Dq[20] (SDRAM)

623 RIGHT vss gcs r17 pnl sstl gcs
Core digital VSS(0V)

624 RIGHT sdram iopad0 dq080 pnl sstl 2classi
INOUT Dq[80] (SDRAM)

625 RIGHT sdram iopad0 dq016 pnl sstl 2classi
INOUT Dq[16] (SDRAM)

626 RIGHT sdram iopad0 dq079 pnl sstl 2classi
INOUT Dq[79] (SDRAM)

627 RIGHT vdd sstl r9 pnl sstl vc
Core digital VDD(1.0V)

628 RIGHT sdram iopad0 clk1 pnl sstl 2classi
OUTPUT Clk1 (SDRAM)

629 RIGHT vss gcs r16 pnl sstl gcs
Core digital VSS(0V)

630 RIGHT sdram iopad0 dq015 pnl sstl 2classi
INOUT Dq[15] (SDRAM)

631 RIGHT vdd vq r8 pnl sstl vq
SSTL IO digital VDD(2.5V)

49

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

632 RIGHT sdram iopad0 clk1 pnl sstl 2classi
OUTPUT Clk1 (SDRAM)

633 RIGHT vss go r8 pnl sstl go
IO digital VSS(0V)

634 RIGHT sdram iopad0 dq075 pnl sstl 2classi
INOUT Dq[75] (SDRAM)

635 RIGHT sdram iopad0 dq011 pnl sstl 2classi
INOUT Dq[11] (SDRAM)

636 RIGHT sdram iopad0 dq078 pnl sstl 2classi
INOUT Dq[78] (SDRAM)

637 RIGHT vss gcs r15 pnl sstl gcs
Core digital VSS(0V)

638 RIGHT sdram iopad0 dq014 pnl sstl 2classi
INOUT Dq[14] (SDRAM)

639 RIGHT vdd sstl r8 pnl sstl vc
Core digital VDD(1.0V)

640 RIGHT sdram iopad0 dq074 pnl sstl 2classi
INOUT Dq[74] (SDRAM)

641 RIGHT sdram iopad0 dq010 pnl sstl 2classi
INOUT Dq[10] (SDRAM)

642 RIGHT sdram iopad0 dqm09 pnl sstl 2classi
OUTPUT Dm[9] (SDRAM)

643 RIGHT vss gcs r14 pnl sstl gcs
Core digital VSS(0V)

644 RIGHT sdram iopad0 dqm01 pnl sstl 2classi
OUTPUT Dm[1] (SDRAM)

645 RIGHT vdd vq r7 pnl sstl vq
SSTL IO digital VDD(2.5V)

646 RIGHT sdram iopad0 dqs009 pnl sstl 2classi
INOUT Dqs[9] (SDRAM)

647 RIGHT vss go r7 pnl sstl go
IO digital VSS(0V)

648 RIGHT sdram iopad0 dqs001 pnl sstl 2classi
INOUT Dqs[1] (SDRAM)

649 RIGHT vdd sstl r7 pnl sstl vc
Core digital VDD(1.0V)

650 RIGHT sdram iopad0 dq077 pnl sstl 2classi
INOUT Dq[77] (SDRAM)

651 RIGHT vss gcs r13 pnl sstl gcs
Core digital VSS(0V)

50 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

652 RIGHT sdram iopad0 dq013 pnl sstl 2classi
INOUT Dq[13] (SDRAM)

653 RIGHT sdram iopad0 dq073 pnl sstl 2classi
INOUT Dq[73] (SDRAM)

654 RIGHT sstl vref r1 pnl sstl vref
SSTL VREF(1.25V)

655 RIGHT sdram iopad0 dq009 pnl sstl 2classi
INOUT Dq[9] (SDRAM)

656 RIGHT sdram iopad0 dq076 pnl sstl 2classi
INOUT Dq[76] (SDRAM)

657 RIGHT vss gcs r12 pnl sstl gcs
Core digital VSS(0V)

658 RIGHT sdram iopad0 dq012 pnl sstl 2classi
INOUT Dq[12] (SDRAM)

659 RIGHT vdd sstl r6 pnl sstl vc
Core digital VDD(1.0V)

660 RIGHT sdram iopad0 dq072 pnl sstl 2classi
INOUT Dq[72] (SDRAM)

661 RIGHT vdd vq r6 pnl sstl vq
SSTL IO digital VDD(2.5V)

662 RIGHT sdram iopad0 dq008 pnl sstl 2classi
INOUT Dq[8] (SDRAM)

663 RIGHT vss go r6 pnl sstl go
IO digital VSS(0V)

664 RIGHT sdram iopad0 dq071 pnl sstl 2classi
INOUT Dq[71] (SDRAM)

665 RIGHT vss gcs r11 pnl sstl gcs
Core digital VSS(0V)

666 RIGHT sdram iopad0 dq007 pnl sstl 2classi
INOUT Dq[7] (SDRAM)

667 RIGHT sdram iopad0 dq067 pnl sstl 2classi
INOUT Dq[67] (SDRAM)

668 RIGHT sdram iopad0 dq003 pnl sstl 2classi
INOUT Dq[3] (SDRAM)

669 RIGHT vss gcs r10 pnl sstl gcs
Core digital VSS(0V)

670 RIGHT sdram iopad0 dq070 pnl sstl 2classi
INOUT Dq[70] (SDRAM)

671 RIGHT vdd sstl r5 pnl sstl vc
Core digital VDD(1.0V)

51

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

672 RIGHT sdram iopad0 dq006 pnl sstl 2classi
INOUT Dq[6] (SDRAM)

673 RIGHT sdram iopad0 dq066 pnl sstl 2classi
INOUT Dq[66] (SDRAM)

674 RIGHT sdram iopad0 dq002 pnl sstl 2classi
INOUT Dq[2] (SDRAM)

675 RIGHT vss gcs r9 pnl sstl gcs
Core digital VSS(0V)

676 RIGHT sdram iopad0 dqm08 pnl sstl 2classi
OUTPUT Dm[8] (SDRAM)

677 RIGHT vdd vq r5 pnl sstl vq
SSTL IO digital VDD(2.5V)

678 RIGHT sdram iopad0 dqm00 pnl sstl 2classi
OUTPUT Dm[0] (SDRAM)

679 RIGHT vss go r5 pnl sstl go
IO digital VSS(0V)

680 RIGHT sdram iopad0 dqs008 pnl sstl 2classi
INOUT Dqs[8] (SDRAM)

681 RIGHT vdd sstl r4 pnl sstl vc
Core digital VDD(1.0V)

682 RIGHT sdram iopad0 dqs000 pnl sstl 2classi
INOUT Dqs[0] (SDRAM)

683 RIGHT vss gcs r8 pnl sstl gcs
Core digital VSS(0V)

684 RIGHT sdram iopad0 dq069 pnl sstl 2classi
INOUT Dq[69] (SDRAM)

685 RIGHT sdram iopad0 dq005 pnl sstl 2classi
INOUT Dq[5] (SDRAM)

686 RIGHT sdram iopad0 dq065 pnl sstl 2classi
INOUT Dq[65] (SDRAM)

687 RIGHT vss go r4 pnl sstl go
IO digital VSS(0V)

688 RIGHT sdram iopad0 dq001 pnl sstl 2classi
INOUT Dq[1] (SDRAM)

689 RIGHT vss gcs r7 pnl sstl gcs
Core digital VSS(0V)

690 RIGHT sdram iopad0 dq068 pnl sstl 2classi
INOUT Dq[68] (SDRAM)

691 RIGHT vdd sstl r3 pnl sstl vc
Core digital VDD(1.0V)

52 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

692 RIGHT sdram iopad0 dq004 pnl sstl 2classi
INOUT Dq[4] (SDRAM)

693 RIGHT vss go r3 pnl sstl go
IO digital VSS(0V)

694 RIGHT sdram iopad0 dq064 pnl sstl 2classi
INOUT Dq[64] (SDRAM)

695 RIGHT vdd vq r4 pnl sstl vq
SSTL IO digital VDD(2.5V)

696 RIGHT sdram iopad0 dq000 pnl sstl 2classi
INOUT Dq[0] (SDRAM)

697 RIGHT vss gcs r6 pnl sstl gcs
Core digital VSS(0V)

698 RIGHT link sdram iopad0 oe pnl sstl 2classi
OUTPUT Output Enable ¡action:0 stop:1¿ (LINK SDRAM)

699 RIGHT link sdram iopad0 dir pnl sstl 2classi
OUTPUT Direction ¡read:1 write:0¿ (LINK SDRAM)

700 RIGHT link sdram iopad0 addr04 pnl sstl 2classi
OUTPUT A[4] (LINK SDRAM)

701 RIGHT link sdram iopad0 addr03 pnl sstl 2classi
OUTPUT A[3] (LINK SDRAM)

702 RIGHT link sdram iopad0 addr05 pnl sstl 2classi
OUTPUT A[5] (LINK SDRAM)

703 RIGHT vss gcs r5 pnl sstl gcs
Core digital VSS(0V)

704 RIGHT link sdram iopad0 addr02 pnl sstl 2classi
OUTPUT A[2] (LINK SDRAM)

705 RIGHT vdd sstl r2 pnl sstl vc
Core digital VDD(1.0V)

706 RIGHT link sdram iopad0 addr06 pnl sstl 2classi
OUTPUT A[6] (LINK SDRAM)

707 RIGHT vss go r2 pnl sstl go
IO digital VSS(0V)

708 RIGHT link sdram iopad0 addr01 pnl sstl 2classi
OUTPUT A[1] (LINK SDRAM)

709 RIGHT vdd vq r2 pnl sstl vq
SSTL IO digital VDD(2.5V)

710 RIGHT link sdram iopad0 addr07 pnl sstl 2classi
OUTPUT A[7] (LINK SDRAM)

711 RIGHT vss gcs r4 pnl sstl gcs
Core digital VSS(0V)

53

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

712 RIGHT link sdram iopad0 addr00 pnl sstl 2classi
OUTPUT A[0] (LINK SDRAM)

713 RIGHT link sdram iopad0 addr08 pnl sstl 2classi
OUTPUT A[8] (LINK SDRAM)

714 RIGHT link sdram iopad0 addr10 pnl sstl 2classi
OUTPUT A[10] (LINK SDRAM)

715 RIGHT vdd sstl r1 pnl sstl vc
Core digital VDD(1.0V)

716 RIGHT link sdram iopad0 addr09 pnl sstl 2classi
OUTPUT A[9] (LINK SDRAM)

717 RIGHT vss gcs r3 pnl sstl gcs
Core digital VSS(0V)

718 RIGHT link sdram iopad0 bank1 pnl sstl 2classi
OUTPUT Ba[1] (LINK SDRAM)

719 RIGHT vss go r1 pnl sstl go
IO digital VSS(0V)

720 RIGHT link sdram iopad0 addr11 pnl sstl 2classi
OUTPUT A[11] (LINK SDRAM)

721 RIGHT vdd vq r1 pnl sstl vq
SSTL IO digital VDD(2.5V)

722 RIGHT link sdram iopad0 bank0 pnl sstl 2classi
OUTPUT Ba[0] (LINK SDRAM)

723 RIGHT vss gcs r2 pnl sstl gcs
Core digital VSS(0V)

724 RIGHT link sdram iopad0 addr12 pnl sstl 2classi
OUTPUT A[12] (LINK SDRAM)

725 RIGHT link sdram iopad0 cs1 pnl sstl 2classi
OUTPUT CS[1] (LINK SDRAM)

726 RIGHT link sdram iopad0 cs0 pnl sstl 2classi
OUTPUT CS[0] (LINK SDRAM)

727 RIGHT link sdram iopad0 cke pnl sstl 2classi
OUTPUT CKE (LINK SDRAM)

728 RIGHT lvds vref r0 pnl vref lvds
LVDS VREF(1.2V)

729 RIGHT vdd vc r0 pnl vc lvds
Core digital VDD(1.0V)

730 RIGHT link iopad0 data s out iopad1 p pnl lvds85 out gcs
OUTPUT Serial data output1+ (LINK)

731 RIGHT link iopad0 data s out iopad1 pnl lvds85 out gcs
Core digital VSS(0V)

54 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

732 RIGHT link iopad0 data s out iopad1 n pnl lvds85 out gcs
OUTPUT Serial data output1- (LINK)

733 RIGHT vss go r0 pnl go lvds
IO digital VSS(0V)

734 RIGHT link iopad0 data s out iopad2 p pnl lvds85 out vop
OUTPUT Serial data output2+ (LINK)

735 RIGHT link iopad0 data s out iopad2 pnl lvds85 out vop
LVDS IO digital VDD(3.3V)

736 RIGHT link iopad0 data s out iopad2 n pnl lvds85 out vop
OUTPUT Serial data output2- (LINK)

737 RIGHT vss gcs r1 pnl gcs lvds
Core digital VSS(0V)

738 RIGHT link iopad0 data s in iopad1 p pnl lvds85 se in
INPUT Serial data input1+ (LINK)

739 RIGHT link iopad0 data s in iopad1 n pnl lvds85 se in
INPUT Serial data input1- (LINK)

740 RIGHT link iopad0 data s out iopad3 p pnl lvds85 out vc
OUTPUT Serial data output3+ (LINK)

741 RIGHT link iopad0 data s out iopad3 pnl lvds85 out vc
Core digital VDD(1.0V)

742 RIGHT link iopad0 data s out iopad3 n pnl lvds85 out vc
OUTPUT Serial data output3- (LINK)

743 RIGHT vss gcs r0 pnl gcs lvds
Core digital VSS(0V)

744 RIGHT link iopad0 data s out iopad4 p pnl lvds85 out go
OUTPUT Serial data output4+ (LINK)

745 RIGHT link iopad0 data s out iopad4 pnl lvds85 out go
IO digital VSS(0V)

746 RIGHT link iopad0 data s out iopad4 n pnl lvds85 out go
OUTPUT Serial data output4- (LINK)

747 RIGHT vdd vop r0 pnl vop lvds
LVDS IO digital VDD(3.3V)

748 RIGHT link iopad0 data s in iopad2 p pnl lvds85 se in
INPUT Serial data input2+ (LINK)

749 RIGHT link iopad0 data s in iopad2 n pnl lvds85 se in
INPUT Serial data input2- (LINK)

750 RIGHT link iopad0 data s in iopad3 p pnl lvds85 se in
INPUT Serial data input3+ (LINK)

751 RIGHT link iopad0 data s in iopad3 n pnl lvds85 se in
INPUT Serial data input3- (LINK)

55

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

752 RIGHT link iopad0 data s in iopad4 p pnl lvds85 se in
INPUT Serial data input4+ (LINK)

753 RIGHT link iopad0 data s in iopad4 n pnl lvds85 se in
INPUT Serial data input4- (LINK)

754 TOP link iopad0 event s in iopad4 p pnl lvds85 se in
INPUT Serial event input4+ (LINK)

755 TOP link iopad0 event s in iopad4 n pnl lvds85 se in
INPUT Serial event input4- (LINK)

756 TOP vss go t13 pnl go lvds
IO digital VSS(0V)

757 TOP link iopad0 event s out pad4 p pnl lvds85 out vop p
OUTPUT Serial event output4+ (LINK)

758 TOP link iopad0 event s out pad4 pnl lvds85 out vop
LVDS IO digital VDD(3.3V)

759 TOP link iopad0 event s out pad4 n pnl lvds85 out vop n
OUTPUT Serial event output4- (LINK)

760 TOP link iopad0 event s in iopad3 p pnl lvds85 se in p
INPUT Serial event input3+ (LINK)

761 TOP link iopad0 event s in iopad3 n pnl lvds85 se in n
INPUT Serial event input3- (LINK)

762 TOP vss gcs t44 pnl gcs lvds
Core digital VSS(0V)

763 TOP link iopad0 event s in iopad2 p pnl lvds85 se in p
INPUT Serial event input2+ (LINK)

764 TOP link iopad0 event s in iopad2 n pnl lvds85 se in n
INPUT Serial event input2- (LINK)

765 TOP link iopad0 event s out pad3 p pnl lvds85 out vc p
OUTPUT Serial event output3+ (LINK)

766 TOP link iopad0 event s out pad3 pnl lvds85 out vc
Core digital VDD(1.0V)

767 TOP link iopad0 event s out pad3 n pnl lvds85 out vc n
OUTPUT Serial event output3- (LINK)

768 TOP vss gcs t43 pnl gcs lvds
Core digital VSS(0V)

769 TOP link iopad0 event s out pad2 p pnl lvds85 out go p
OUTPUT Serial event output2+ (LINK)

770 TOP link iopad0 event s out pad2 pnl lvds85 out go
IO digital VSS(0V)

771 TOP link iopad0 event s out pad2 n pnl lvds85 out go n
OUTPUT Serial event output2- (LINK)

56 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

772 TOP vdd vop t14 pnl vop lvds
LVDS IO digital VDD(3.3V)

773 TOP link iopad0 event s in iopad1 p pnl lvds85 se in p
INPUT Serial event input1+ (LINK)

774 TOP link iopad0 event s in iopad1 n pnl lvds85 se in n
INPUT Serial event input1- (LINK)

775 TOP link iopad0 event s out pad1 p pnl lvds85 out gcs p
OUTPUT Serial event output1+ (LINK)

776 TOP link iopad0 event s out pad1 pnl lvds85 out gcs
Core digital VSS(0V)

777 TOP link iopad0 event s out pad1 n pnl lvds85 out gcs n
OUTPUT Serial event output1- (LINK)

778 TOP vdd sstl vc t25 pnl vc lvds
Core digital VDD(1.0V)

779 TOP link sdram iopad0 ras pnl sstl 2classi
OUTPUT RAS (LINK SDRAM)

780 TOP vss go t12 pnl sstl go
IO digital VSS(0V)

781 TOP link sdram iopad0 cas pnl sstl 2classi
OUTPUT CAS (LINK SDRAM)

782 TOP vdd vq t13 pnl sstl vq
SSTL IO digital VDD(2.5V)

783 TOP link sdram iopad0 we pnl sstl 2classi
OUTPUT WE (LINK SDRAM)

784 TOP vss gcs t42 pnl sstl gcs
Core digital VSS(0V)

785 TOP link sdram iopad0 dqm3 pnl sstl 2classi
OUTPUT Dm[3] (LINK SDRAM)

786 TOP link sdram iopad0 dqm1 pnl sstl 2classi
OUTPUT Dm[1] (LINK SDRAM)

787 TOP link sdram iopad0 dqm2 pnl sstl 2classi
OUTPUT Dm[2] (LINK SDRAM)

788 TOP vdd vc t24 pnl sstl vc
Core digital VDD(1.0V)

789 TOP link sdram iopad0 dqm0 pnl sstl 2classi
OUTPUT Dm[0] (LINK SDRAM)

790 TOP vss gcs t41 pnl sstl gcs
Core digital VSS(0V)

791 TOP link sdram iopad0 clk pnl sstl 2classi
OUTPUT Clk (LINK SDRAM)

57

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

792 TOP vss go t11 pnl sstl go
IO digital VSS(0V)

793 TOP link sdram iopad0 dqs3 pnl sstl 2classi
INOUT Dqs[3] (LINK SDRAM)

794 TOP vdd vp t12 pnl sstl vp
SSTL IO digital VDD(2.5V)

795 TOP link sdram iopad0 dqs1 pnl sstl 2classi
INOUT Dqs[1] (LINK SDRAM)

796 TOP link sdram iopad0 dqs2 pnl sstl 2classi
INOUT Dqs[2] (LINK SDRAM)

797 TOP link sdram iopad0 dqs0 pnl sstl 2classi
INOUT Dqs[0] (LINK SDRAM)

798 TOP vss gcs t40 pnl sstl gcs
Core digital VSS(0V)

799 TOP link sdram iopad0 dq24 pnl sstl 2classi
INOUT Dq[24] (LINK SDRAM)

800 TOP vdd vc t23 pnl sstl vc
Core digital VDD(1.0V)

801 TOP link sdram iopad0 dq08 pnl sstl 2classi
INOUT Dq[8] (LINK SDRAM)

802 TOP link sdram iopad0 dq23 pnl sstl 2classi
INOUT Dq[23] (LINK SDRAM)

803 TOP link sdram iopad0 dq07 pnl sstl 2classi
INOUT Dq[7] (LINK SDRAM)

804 TOP vss gcs t39 pnl sstl gcs
Core digital VSS(0V)

805 TOP link sdram iopad0 clk pnl sstl 2classi
OUTPUT Clk (LINK SDRAM)

806 TOP vss go t10 pnl sstl go
IO digital VSS(0V)

807 TOP link sdram iopad0 dq25 pnl sstl 2classi
INOUT Dq[25] (LINK SDRAM)

808 TOP vdd vq t11 pnl sstl vq
SSTL IO digital VDD(2.5V)

809 TOP link sdram iopad0 dq09 pnl sstl 2classi
INOUT Dq[9] (LINK SDRAM)

810 TOP vss gcs t38 pnl sstl gcs
Core digital VSS(0V)

811 TOP link sdram iopad0 dq22 pnl sstl 2classi
INOUT Dq[22] (LINK SDRAM)

58 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

812 TOP vdd vc t22 pnl sstl vc
Core digital VDD(1.0V)

813 TOP link sdram iopad0 dq06 pnl sstl 2classi
INOUT Dq[6] (LINK SDRAM)

814 TOP sstl vref t0 pnl sstl vref
SSTL VREF(1.25V)

815 TOP link sdram iopad0 dq26 pnl sstl 2classi
INOUT Dq[26] (LINK SDRAM)

816 TOP vss gcs t37 pnl sstl gcs
Core digital VSS(0V)

817 TOP link sdram iopad0 dq10 pnl sstl 2classi
INOUT Dq[10] (LINK SDRAM)

818 TOP vss go t9 pnl sstl go
IO digital VSS(0V)

819 TOP link sdram iopad0 dq21 pnl sstl 2classi
INOUT Dq[21] (LINK SDRAM)

820 TOP vdd vq t10 pnl sstl vq
SSTL IO digital VDD(2.5V)

821 TOP link sdram iopad0 dq05 pnl sstl 2classi
INOUT Dq[5] (LINK SDRAM)

822 TOP vss gcs t36 pnl sstl gcs
Core digital VSS(0V)

823 TOP link sdram iopad0 dq27 pnl sstl 2classi
INOUT Dq[27] (LINK SDRAM)

824 TOP vdd vc t21 pnl sstl vc
Core digital VDD(1.0V)

825 TOP link sdram iopad0 dq11 pnl sstl 2classi
INOUT Dq[11] (LINK SDRAM)

826 TOP link sdram iopad0 dq20 pnl sstl 2classi
INOUT Dq[20] (LINK SDRAM)

827 TOP link sdram iopad0 dq04 pnl sstl 2classi
INOUT Dq[4] (LINK SDRAM)

828 TOP vss gcs t35 pnl sstl gcs
Core digital VSS(0V)

829 TOP link sdram iopad0 dq28 pnl sstl 2classi
INOUT Dq[28] (LINK SDRAM)

830 TOP link sdram iopad0 dq12 pnl sstl 2classi
INOUT Dq[12] (LINK SDRAM)

831 TOP link sdram iopad0 dq19 pnl sstl 2classi
INOUT Dq[19] (LINK SDRAM)

59

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

832 TOP vddl vc t20 pnl sstl vc
Core digital VDD(1.0V)

833 TOP link sdram iopad0 dq03 pnl sstl 2classi
INOUT Dq[3] (LINK SDRAM)

834 TOP vss gcs t34 pnl sstl gcs
Core digital VSS(0V)

835 TOP link sdram iopad0 dq29 pnl sstl 2classi
INOUT Dq[29] (LINK SDRAM)

836 TOP vss go t8 pnl sstl go
IO digital VSS(0V)

837 TOP link sdram iopad0 dq13 pnl sstl 2classi
INOUT Dq[13] (LINK SDRAM)

838 TOP vdd vq t8 pnl sstl vq
SSTL IO digital VDD(2.5V)

839 TOP link sdram iopad0 dq18 pnl sstl 2classi
INOUT Dq[18] (LINK SDRAM)

840 TOP link sdram iopad0 dq02 pnl sstl 2classi
INOUT Dq[2] (LINK SDRAM)

841 TOP link sdram iopad0 dq30 pnl sstl 2classi
INOUT Dq[30] (LINK SDRAM)

842 TOP vss gcs t33 pnl sstl gcs
Core digital VSS(0V)

843 TOP link sdram iopad0 dq14 pnl sstl 2classi
INOUT Dq[14] (LINK SDRAM)

844 TOP vdd vc t19 pnl sstl vc
Core digital VDD(1.0V)

845 TOP link sdram iopad0 dq17 pnl sstl 2classi
INOUT Dq[17] (LINK SDRAM)

846 TOP vss go t7 pnl sstl go
IO digital VSS(0V)

847 TOP link sdram iopad0 dq01 pnl sstl 2classi
INOUT Dq[1] (LINK SDRAM)

848 TOP vdd vq t7 pnl sstl vq
SSTL IO digital VDD(2.5V)

849 TOP link sdram iopad0 dq31 pnl sstl 2classi
INOUT Dq[31] (LINK SDRAM)

850 TOP vss sstl gcs t32 pnl sstl gcs
Core digital VSS(0V)

851 TOP link sdram iopad0 dq15 pnl sstl 2classi
INOUT Dq[15] (LINK SDRAM)

60 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

852 TOP link sdram iopad0 dq16 pnl sstl 2classi
INOUT Dq[16] (LINK SDRAM)

853 TOP link sdram iopad0 dq00 pnl sstl 2classi
INOUT Dq[0] (LINK SDRAM)

854 TOP link iopad0 data p in4 iopad3 pnl it2nn8
INPUT Parallel data input4 3 (LINK)

855 TOP link iopad0 data p in4 iopad2 pnl it2nn8
INPUT Parallel data input4 2 (LINK)

856 TOP vss gcs t31 pnl gcs 135
Core digital VSS(0V)

857 TOP link iopad0 data p in4 iopad1 pnl it2nn8
INPUT Parallel data input4 1 (LINK)

858 TOP vss go t6 pnl go 135
IO digital VSS(0V)

859 TOP link iopad0 data p out4 iopad3 pnl tf12it0nn8
OUTPUT Parallel data output4 3 (LINK)

860 TOP vdd vop t6 pnl vop 135
IO digital VDD(3.3V)

861 TOP link iopad0 data p out4 iopad2 pnl tf12it0nn8
OUTPUT Parallel data output4 2 (LINK)

862 TOP vdd vc t18 pnl vc 135
Core digital VDD(1.0V)

863 TOP link iopad0 data p out4 iopad1 pnl tf12it0nn8
OUTPUT Parallel data output4 1 (LINK)

864 TOP vss gcs t30 pnl gcs 135
Core digital VSS(0V)

865 TOP link iopad0 data p in3 iopad3 pnl it2nn8
INPUT Parallel data input3 3 (LINK)

866 TOP link iopad0 data p in3 iopad2 pnl it2nn8
INPUT Parallel data input3 2 (LINK)

867 TOP link iopad0 data p in3 iopad1 pnl it2nn8
INPUT Parallel data input3 1 (LINK)

868 TOP vdd vc t17 pnl vc 135
Core digital VDD(1.0V)

869 TOP link iopad0 data p out3 iopad3 pnl tf12it0nn8
OUTPUT Parallel data output3 3 (LINK)

870 TOP vss gcs t29 pnl gcs 135
Core digital VSS(0V)

871 TOP link iopad0 data p out3 iopad2 pnl tf12it0nn8
OUTPUT Parallel data output3 2 (LINK)

61

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

872 TOP vss go t5 pnl go 135
IO digital VSS(0V)

873 TOP link iopad0 data p out3 iopad1 pnl tf12it0nn8
OUTPUT Parallel data output3 1 (LINK)

874 TOP vdd vop t5 pnl vop 135
IO digital VDD(3.3V)

875 TOP link iopad0 data p in2 iopad3 pnl it2nn8
INPUT Parallel data input2 3 (LINK)

876 TOP vss gcs t28 pnl gcs 135
Core digital VSS(0V)

877 TOP link iopad0 data p in2 iopad2 pnl it2nn8
INPUT Parallel data input2 2 (LINK)

878 TOP link iopad0 data p in2 iopad1 pnl it2nn8
INPUT Parallel data input2 1 (LINK)

879 TOP link iopad0 data p out2 iopad3 pnl tf12it0nn8
OUTPUT Parallel data output2 3 (LINK)

880 TOP vdd vc t16 pnl vc 135
Core digital VDD(1.0V)

881 TOP link iopad0 data p out2 iopad2 pnl tf12it0nn8
OUTPUT Parallel data output2 2 (LINK)

882 TOP vss gcs t27 pnl gcs 135
Core digital VSS(0V)

883 TOP link iopad0 data p out2 iopad1 pnl tf12it0nn8
OUTPUT Parallel data output2 1 (LINK)

884 TOP vss go t4 pnl go 135
IO digital VSS(0V)

885 TOP link iopad0 data p in1 iopad3 pnl it2nn8
INPUT Parallel data input1 3 (LINK)

886 TOP vdd vop t4 pnl vop 135
IO digital VDD(3.3V)

887 TOP link iopad0 data p in1 iopad2 pnl it2nn8
INPUT Parallel data input1 2 (LINK)

888 TOP link iopad0 data p in1 iopad1 pnl it2nn8
INPUT Parallel data input1 1 (LINK)

889 TOP link iopad0 data p out1 iopad3 pnl tf12it0nn8
OUTPUT Parallel data output1 3 (LINK)

890 TOP vss gcs t26 pnl gcs 135
Core digital VSS(0V)

891 TOP link iopad0 data p out1 iopad2 pnl tf12it0nn8
OUTPUT Parallel data output1 2 (LINK)

62 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

892 TOP vdd vc t15 pnl vc 135
Core digital VDD(1.0V)

893 TOP link iopad0 data p out1 iopad1 pnl tf12it0nn8
OUTPUT Parallel data output1 1 (LINK)

894 TOP link iopad0 event p in4 iopad3 pnl it2nn8
INPUT Parallel event input4 3 (LINK)

895 TOP link iopad0 event p in4 iopad2 pnl it2nn8
INPUT Parallel event input4 2 (LINK)

896 TOP vss gcs t25 pnl gcs 135
Core digital VSS(0V)

897 TOP link iopad0 event p in4 iopad1 pnl it2nn8
INPUT Parallel event input4 1 (LINK)

898 TOP link iopad0 event p out4 iopad3 pnl tf12it0nn8
OUTPUT Parallel event output4 3 (LINK)

899 TOP link iopad0 event p out4 iopad2 pnl tf12it0nn8
OUTPUT Parallel event output4 2 (LINK)

900 TOP vdd vc t14 pnl vc 135
Core digital VDD(1.0V)

901 TOP link iopad0 event p out4 iopad1 pnl tf12it0nn8
OUTPUT Parallel event output4 1 (LINK)

902 TOP vss gcs t24 pnl gcs 135
Core digital VSS(0V)

903 TOP link iopad0 event p in3 iopad3 pnl it2nn8
INPUT Parallel event input3 3 (LINK)

904 TOP vss go t3 pnl go 135
IO digital VSS(0V)

905 TOP link iopad0 event p in3 iopad2 pnl it2nn8
INPUT Parallel event input3 2 (LINK)

906 TOP vdd vop t3 pnl vop 135
IO digital VDD(3.3V)

907 TOP link iopad0 event p in3 iopad1 pnl it2nn8
INPUT Parallel event input3 1 (LINK)

908 TOP vss gcs t23 pnl gcs 135
Core digital VSS(0V)

909 TOP link iopad0 event p out3 iopad3 pnl tf12it0nn8
OUTPUT Parallel event output3 3 (LINK)

910 TOP vdd vc t13 pnl vc 135
Core digital VDD(1.0V)

911 TOP link iopad0 event p out3 iopad2 pnl tf12it0nn8
OUTPUT Parallel event output3 2 (LINK)

63

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

912 TOP vss gcs t22 pnl gcs 135
Core digital VSS(0V)

913 TOP link iopad0 event p out3 iopad1 pnl tf12it0nn8
OUTPUT Parallel event output3 1 (LINK)

914 TOP link iopad0 event p in2 iopad3 pnl it2nn8
INPUT Parallel event input2 3 (LINK)

915 TOP link iopad0 event p in2 iopad2 pnl it2nn8
INPUT Parallel event input2 2 (LINK)

916 TOP vss gcs t21 pnl gcs 135
Core digital VSS(0V)

917 TOP link iopad0 event p in2 iopad1 pnl it2nn8
INPUT Parallel event input2 1 (LINK)

918 TOP vdd vc t12 pnl vc 135
Core digital VDD(1.0V)

919 TOP link iopad0 event p out2 iopad3 pnl tf12it0nn8
OUTPUT Parallel event output2 3 (LINK)

920 TOP vss gcs t20 pnl gcs 135
Core digital VSS(0V)

921 TOP link iopad0 event p out2 iopad2 pnl tf12it0nn8
OUTPUT Parallel event output2 2 (LINK)

922 TOP vss gcs t19 pnl gcs 135
Core digital VSS(0V)

923 TOP link iopad0 event p out2 iopad1 pnl tf12it0nn8
OUTPUT Parallel event output2 1 (LINK)

924 TOP vdd vc t11 pnl vc 135
Core digital VDD(1.0V)

925 TOP link iopad0 event p in1 iopad3 pnl it2nn8
INPUT Parallel event input1 3 (LINK)

926 TOP vss gcs t18 pnl gcs 135
Core digital VSS(0V)

927 TOP link iopad0 event p in1 iopad2 pnl it2nn8
INPUT Parallel event input1 2 (LINK)

928 TOP vss gcs t17 pnl gcs 135
Core digital VSS(0V)

929 TOP link iopad0 event p in1 iopad1 pnl it2nn8
INPUT Parallel event input1 1 (LINK)

930 TOP vss go t2 pnl go 135
IO digital VSS(0V)

931 TOP link iopad0 event p out1 iopad3 pnl tf12it0nn8
OUTPUT Parallel event output1 3 (LINK)

64 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

932 TOP vdd vc t10 pnl vc 135
Core digital VDD(1.0V)

933 TOP vdd vop t2 pnl vop 135
IO digital VDD(3.3V)

934 TOP vss gcs t16 pnl gcs 135
Core digital VSS(0V)

935 TOP link iopad0 event p out1 iopad2 pnl tf12it0nn8
OUTPUT Parallel event output1 2 (LINK)

936 TOP link iopad0 event p out1 iopad1 pnl tf12it0nn8
OUTPUT Parallel event output1 1 (LINK)

937 TOP uart iopad0 uart1 stx pad pnl tf04it0nn2
OUTPUT TxD channel1 (UART)

938 TOP vdd vc t9 pnl vc 135
Core digital VDD(1.0V)

939 TOP uart iopad0 uart1 srx pad pnl it2nn8
INPUT RxD channel1 (UART)

940 TOP vss gcs t15 pnl gcs 135
Core digital VSS(0V)

941 TOP uart iopad0 uart0 dtr pad pnl tf04it0nn2
OUTPUT DTR channel1 (UART)

942 TOP vss gcs t14 pnl gcs 135
Core digital VSS(0V)

943 TOP uart iopad0 uart0 rts pad pnl tf04it0nn2
OUTPUT RTS channel1 (UART)

944 TOP vdd vc t8 pnl vc 135
Core digital VDD(1.0V)

945 TOP uart iopad0 uart0 stx pad pnl tf04it0nn2
OUTPUT TxD channel0 (UART)

946 TOP vss gcs t13 pnl gcs 135
Core digital VSS(0V)

947 TOP uart iopad0 uart0 dcd pad pnl it2nn8
INPUT DCD channel0 (UART)

948 TOP vss gcs t12 pnl gcs 135
Core digital VSS(0V)

949 TOP uart iopad0 uart0 ri pad pnl it2nn8
INPUT RI channel0 (UART)

950 TOP vdd vc t7 pnl vc 135
Core digital VDD(1.0V)

951 TOP uart iopad0 uart0 dsr pad pnl it2nn8
INPUT DSR channel0 (UART)

65

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

952 TOP vss gcs t11 pnl gcs 135
Core digital VSS(0V)

953 TOP uart iopad0 uart0 srx pad pnl it2nn8
INPUT RxD channel0 (UART)

954 TOP uart iopad0 uart0 cts pad pnl it2nn8
INPUT CTS channel0 (UART)

955 TOP ieee1394 iopad0 ieee d7 pnl tf04it0nn2
INOUT Data[7] (IEEE1394)

956 TOP vdd vc t6 pnl vc 135
Core digital VDD(1.0V)

957 TOP ieee1394 iopad0 ieee d6 pnl tf04it0nn2
INOUT Data[6] (IEEE1394)

958 TOP vss gcs t10 pnl gcs 135
Core digital VSS(0V)

959 TOP ieee1394 iopad0 ieee d5 pnl tf04it0nn2
INOUT Data[5] (IEEE1394)

960 TOP vss gcs t9 pnl gcs 135
Core digital VSS(0V)

961 TOP ieee1394 iopad0 ieee d4 pnl tf04it0nn2
INOUT Data[4] (IEEE1394)

962 TOP vdd vc t5 pnl vc 135
Core digital VDD(1.0V)

963 TOP ieee1394 iopad0 ieee d3 pnl tf04it0nn2
INOUT Data[3] (IEEE1394)

964 TOP vss gcs t8 pnl gcs 135
Core digital VSS(0V)

965 TOP ieee1394 iopad0 ieee d2 pnl tf04it0nn2
INOUT Data[2] (IEEE1394)

966 TOP vss gcs t7 pnl gcs 135
Core digital VSS(0V)

967 TOP ieee1394 iopad0 ieee d1 pnl tf04it0nn2
INOUT Data[1] (IEEE1394)

968 TOP vdd vc t4 pnl vc 135
Core digital VDD(1.0V)

969 TOP ieee1394 iopad0 ieee d0 pnl tf04it0nn2
INOUT Data[0] (IEEE1394)

970 TOP vss go t1 pnl go 135
IO digital VSS(0V)

971 TOP ieee1394 iopad0 ieee isox pnl tf04it0nn2
OUTPUT Isolation Control (IEEE1394)

66 第 2章 PIN配置

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

972 TOP vss gcs t6 pnl gcs 135
Core digital VSS(0V)

973 TOP ieee1394 iopad0 ieee pc2 pnl tf04it0nn2
OUTPUT Power Class[2] (IEEE1394)

974 TOP vdd vop t1 pnl vop 135
IO digital VDD(3.3V)

975 TOP ieee1394 iopad0 ieee pc1 pnl tf04it0nn2
OUTPUT Power Class[1] (IEEE1394)

976 TOP vss gcs t5 pnl gcs 135
Core digital VSS(0V)

977 TOP ieee1394 iopad0 ieee pc0 pnl tf04it0nn2
OUTPUT Power Class[0] (IEEE1394)

978 TOP vdd vc t3 pnl vc 135
Core digital VDD(1.0V)

979 TOP ieee1394 iopad0 ieee pd pnl tf04it0nn2
OUTPUT PD (IEEE1394)

980 TOP vss gcs t4 pnl gcs 135
Core digital VSS(0V)

981 TOP ieee1394 iopad0 ieee lps pnl tf04it0nn2
OUTPUT LPS (IEEE1394)

982 TOP ieee1394 iopad0 ieee lreq pnl tf04it0nn2
OUTPUT LREQ (IEEE1394)

983 TOP ieee1394 iopad0 ieee cna pnl it2nn8
INPUT Cable Not Active (IEEE1394)

984 TOP vdd vc t2 pnl vc 135
Core digital VDD(1.0V)

985 TOP ieee1394 iopad0 ieee lkon pnl it2nn8
INPUT Link On (IEEE1394)

986 TOP vss gcs t3 pnl gcs 135
Core digital VSS(0V)

987 TOP ieee1394 iopad0 ieee ctl1 pnl tf04it0nn2
INOUT CTL[1] (IEEE1394)

988 TOP vss gcs t2 pnl gcs 135
Core digital VSS(0V)

989 TOP ieee1394 iopad0 ieee ctl0 pnl tf04it0nn2
INOUT CTL[0] (IEEE1394)

990 TOP vdd vc t1 pnl vc 135
Core digital VDD(1.0V)

991 TOP ieee1394 iopad0 ieee sclk pnl it2nn8
INPUT Syclk (IEEE1394)

67

Pin No. Package 辺 名前 Master Cell mA
入出力 備考

992 TOP vss gcs t1 pnl gcs 135
Core digital VSS(0V)

993 TOP ieee1394 iopad0 ieee rstx pnl tf04it0nn2
OUTPUT RST (IEEE1394)

994 TOP vdd vc t0 pnl vc 135
Core digital VDD(1.0V)

995 TOP ext iopad0 data31 pnl tf12it0nn8
INOUT 外部バスデータ [31]

996 TOP vss gcs t0 pnl gcs 135
Core digital VSS(0V)

997 TOP ext iopad0 data30 pnl tf12it0nn8
INOUT 外部バスデータ [30]

998 TOP ext iopad0 data29 pnl tf12it0nn8
INOUT 外部バスデータ [29]

999 TOP ext iopad0 data28 pnl tf12it0nn8
INOUT 外部バスデータ [28]

1000 TOP vss go t0 pnl go 135
IO digital VSS(0V)

1001 TOP ext iopad0 data27 pnl tf12it0nn8
INOUT 外部バスデータ [27]

1002 TOP vdd vop t0 pnl vop 135
IO digital VDD(3.3V)

1003 TOP ext iopad0 data26 pnl tf12it0nn8
INOUT 外部バスデータ [26]

1004 TOP ext iopad0 data25 pnl tf12it0nn8
INOUT 外部バスデータ [25]

69

3
命令セット

3.1 MIPS互換の命令

Responsive Multithreaded ProcessorはMIPS互換の命令をサポートしている．以下にMIPS互換の命令
を示す．

3.1.1 Load / Store命令

LB Load Byte
8bitロード MIPS I

31 26
100000
LB

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LB rt, offset(base)

機能 :

GPR[rt] ← sign extend(MEM.BYTE[GPR[base] + sign extend(offset)])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

指定された番地から 1byteロードする．ロードされた値は 32bitに符号拡張される．

70 第 3章 命令セット

LBU Load Byte Unsigned

8bit符号なしロード MIPS I

31 26
100100
LBU

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LBU rt, offset(base)

機能 :

GPR[rt] ← zero extend(MEM.BYTE[GPR[base] + sign extend(offset)])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

指定された番地から 1byteをロードする．ロードされた値は 32bitにゼロ拡張される．

SB Store Byte
8bitストア MIPS I

31 26
101000

SB

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SB rt, offset(base)

機能 :

MEM.BYTE[GPR[base] + sign extend(offset)] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

指定されたアドレスに 1byteストアする．

3.1. MIPS互換の命令 71

LH Load Halfword

16bitロード MIPS I

31 26
100001
LH

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LH rt, offset(base)

機能 :

GPR[rt] ← sign extend(MEM.HWORD[GPR[base] + sign extend(offset)])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

指定されたアドレスから Half wordロードする．ロードされた値は 32bitに符号拡張される．

72 第 3章 命令セット

LHU Load Halfword Unsigned

16bit符号なしロード MIPS I

31 26
100101
LHU

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LHU rt, offset(base)

機能 :

GPR[rt] ← zero extend(MEM.HWORD[GPR[base] + sign extend(offset)])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

指定されたアドレスから Half wordロードする．ロードされた値は 32bitにゼロ拡張される．

3.1. MIPS互換の命令 73

SH Store Halfword

16bitストア MIPS I

31 26
101001
SH

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SH rt, offset(base)

機能 :

MEM.HWORD[GPR[base] + sign extend(offset)] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

指定されたアドレスに Half wordストアする．

74 第 3章 命令セット

LW Load Word

32bitロード MIPS I

31 26
100011
LW

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LW rt, offset(base)

機能 :

GPR[rt] ← MEM.WORD[GPR[base] + sign extend(offset)]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

指定されたアドレスから 1Wordロードする．

3.1. MIPS互換の命令 75

SW Store Word

32bitロード MIPS I

31 26
100011
LW

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SW rt, offset(base)

機能 :

MEM.WORD[GPR[base] + sign extend(offset)] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

指定されたアドレスに 1Wordストアする．

76 第 3章 命令セット

LWL Load Word Left

32bit unalignedロード MIPS I

31 26
100010
LWL

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LWL rt, offset(base)

機能 :

GPR[rt] ← merge(GPR[rt], MEM[GPR[base] + sign extend(offset)])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

アラインされていないアドレスに対してロードを行う．LWR命令との組み合わせにより，ア
ラインされていないアドレスから 1Wordロードすることができる．

3.1. MIPS互換の命令 77

LWR Load Word Right

32bit unalignedロード MIPS I

31 26
100110
LWR

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LWR rt, offset(base)

機能 :

GPR[rt] ← merge(MEM[GPR[base] + sign extend(offset)], GPR[rt])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

アラインされていないアドレスに対してロードを行う．LWL命令との組み合わせにより，ア
ラインされていないアドレスから 1Wordロードすることができる．

78 第 3章 命令セット

SWL Store Word Left

32bit unalignedストア MIPS I

31 26
101010
SWL

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SWL rt, offset(base)

機能 :

MEM[GPR[base] + sign extend(offset)] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

アラインされていないアドレスに対してストアを行う．SWR命令との組み合わせにより，ア
ラインされていないアドレスに 1Wordストアすることができる．

3.1. MIPS互換の命令 79

SWR Store Word Right

32bit unalignedストア MIPS I

31 26
101110
SWR

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SWR rt, offset(base)

機能 :

MEM[GPR[base] + sign extend(offset)] ← GPR[rt]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

アラインされていないアドレスに対してストアを行う．SWL命令との組み合わせにより，ア
ラインされていないアドレスに 1Wordストアすることができる．

80 第 3章 命令セット

LL Load Linked Word

atomic read-modify-write用 32bitロード MIPS II

31 26
110000

LL

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LL rt, offset(base)

機能 :

GPR[rt] ← MEM.WORD[GPR[base] + sign extend(offset)]
LL bit ← 1

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

Atomic Read-Modify-Writeのロードを行う．

3.1. MIPS互換の命令 81

SC Store Conditional Word

atomic read-modify-write用 32bitストア MIPS II

31 26
111000

SC

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SC rt, offset(base)

機能 :

if LL Bit = 1 then
MEM.WORD[GPR[base] + sign extend(offset)] ← GPR[rt]
GPR[rt] ← 1

else
GPR[rt] ← 0

endif

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

Atomic Read-Modify-Writeのストアを行う．Atomic Read-Modify-Writeが成功すると 1が返
り，失敗すると 0が返る．

82 第 3章 命令セット

LWC1 Load Word to Floating Point

浮動小数点レジスタ用 32bitロード MIPS I

31 26
110001
LWC1

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LWC1 ft, offset(base)

機能 :

FPR[ft] ← MEM.WORD[GPR[base] + sign extend(offset)]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

指定されたアドレスから浮動小数点レジスタへ 1Wordロードする．

3.1. MIPS互換の命令 83

SWC1 Store Word from Floating Point

浮動小数点レジスタ用 32bitストア MIPS I

31 26
111001
SWC1

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SWC1 ft, offset(base)

機能 :

MEM.WORD[GPR[base] + sign extend(offset)] ← FPR[ft]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

浮動小数点レジスタから指定されたアドレスへ 1Wordストアする．

84 第 3章 命令セット

LDC1 Load Doubleword to Floating Point

浮動小数点レジスタ用 64bitロード MIPS I

31 26
110101
LDC1

25 21
base

20 16
rt

15 0
offset

ニーモニック:

LDC1 ft, offset(base)

機能 :

FPR[ft] ← MEM.DWORD[GPR[base] + sign extend(offset)]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

指定されたアドレスから浮動小数点レジスタへ Double wordロードする．

3.1. MIPS互換の命令 85

SDC1 Store Doubleword from Floating Point

浮動小数点レジスタ用 64bitストア MIPS I

31 26
111101
SDC1

25 21
base

20 16
rt

15 0
offset

ニーモニック:

SDC1 ft, offset(base)

機能 :

MEM.DWORD[GPR[base] + sign extend(offset)] ← FPR[ft]

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

浮動小数点レジスタから指定されたアドレスへ Double wordストアする．

86 第 3章 命令セット

3.1.2 演算命令

ADDI Add Immediate Word
即値加算 MIPS I

31 26
001000
ADDI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

ADDI rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] + sign extend(immediate)

例外 :

Overflow :

概要 :

レジスタと即値を加算する．

ADDIU Add Immediate Unsigned Word

符号無し即値加算 MIPS I

31 26
001001

ADDIU

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

ADDIU rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] + sign extend(immediate)

例外 :

None

概要 :

レジスタと即値を加算する．オーバフローが発生しても例外を起さない．

3.1. MIPS互換の命令 87

SLTI Set on Less Than Immediate

符号付き即値比較 MIPS I

31 26
001010
SLTI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

SLTI rt, rs, immediate

機能 :

if GPR[rs] < sign extend(immediate) then
GPR[rt] ← 1

else
GPR[rt] ← 0

endif

例外 :

None

概要 :

レジスタと即値を比較する．

88 第 3章 命令セット

SLTIU Set on Less Than Immediate Unsigned

符号無し即値比較 MIPS I

31 26
001011
SLTIU

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

SLTIU rt, rs, immediate

機能 :

if GPR[rs] < sign extend(immediate) then
GPR[rt] ← 1

else
GPR[rt] ← 0

endif

例外 :

None

概要 :

レジスタと即値を符号無しの値として比較する．

ANDI And Immediate

即値論理積 MIPS I

31 26
001100
ANDI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

ANDI rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] and zero extend(immediate)

例外 :

None

概要 :

レジスタと即値の論理積をとる．

3.1. MIPS互換の命令 89

ORI Or Immediate

即値論理和 MIPS I

31 26
001101
ORI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

ORI rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] or zero extend(immediate)

例外 :

None

概要 :

レジスタと即値の論理和をとる．

XORI Exclusive Or Immediate

即値排他的論理和 MIPS I

31 26
001110
XORI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

XORI rt, rs, immediate

機能 :

GPR[rt] ← GPR[rs] xor zero extend(immediate)

例外 :

None

概要 :

レジスタと即値の排他的論理和をとる．

90 第 3章 命令セット

LUI Load Upper Immediate

上位即値ロード MIPS I

31 26
001111
LUI

25 21
00000

0

20 16
rt

15 0
immediate

ニーモニック:

LUI rt, immediate

機能 :

GPR[rt] ← { immediate, 0000000000000000 }

例外 :

None

概要 :

即値をレジスタの上位 16bitにロードする．

ADD Add Word

加算 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100000
ADD

ニーモニック:

ADD rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] + GPR[rt]

例外 :

Overflow :

概要 :

レジスタの値を加算する．

3.1. MIPS互換の命令 91

ADDU Add Unsigned Word

符号無し加算 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100001
ADDU

ニーモニック:

ADDU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] + GPR[rt]

例外 :

None

概要 :

レジスタの値を加算する．オーバフローを起しても例外を発生させない．

SUB Subtract Word

減算 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100010
SUB

ニーモニック:

SUB rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] − GPR[rt]

例外 :

Overflow :

概要 :

レジスタの値を減算する．

92 第 3章 命令セット

SUBU Subtract Unsigned Word

符号無し減算 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100011
SUBU

ニーモニック:

SUBU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] − GPR[rt]

例外 :

None

概要 :

レジスタの値を減算する．オーバフローを起しても例外を発生させない

SLT Set on Less Than

符号付き比較 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101010
SLT

ニーモニック:

SLT rd, rs, rt

機能 :

if GPR[rs] < GPR[rt] then
GPR[rd] ← 1

else
GPR[rd] ← 0

endif

例外 :

None

概要 :

レジスタの値を比較する．

3.1. MIPS互換の命令 93

SLTU Set on Less Than Unsigned

符号無し比較 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101011
SLTU

ニーモニック:

SLTU rd, rs, rt

機能 :

if GPR[rs] < GPR[rt] then
GPR[rd] ← 1

else
GPR[rd] ← 0

endif

例外 :

None

概要 :

レジスタの値を符号無しで比較する．

AND And

論理積 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100100
AND

ニーモニック:

AND rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] and GPR[rt]

例外 :

None

概要 :

レジスタの値の論理積をとる．

94 第 3章 命令セット

OR Or

論理和 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100101
OR

ニーモニック:

OR rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] or GPR[rt]

例外 :

None

概要 :

レジスタの値の論理和をとる．

XOR Exclusive Or

排他的論理和 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100110
XOR

ニーモニック:

XOR rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] xor GPR[rt]

例外 :

None

概要 :

レジスタの値の排他的論理和をとる．

3.1. MIPS互換の命令 95

NOR Not Or

否定論理和 MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
100111
NOR

ニーモニック:

NOR rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] nor GPR[rt]

例外 :

None

概要 :

レジスタの値の否定論理和をとる．

SLL Shift Word Left Logical

左論理シフト MIPS I

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
000000
SLL

ニーモニック:

SLL rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] << sa

例外 :

None

概要 :

レジスタの値を左論理シフトする．

96 第 3章 命令セット

SRL Shift Word Right Logical

右論理シフト MIPS I

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
000010
SRL

ニーモニック:

SRL rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] >> sa

例外 :

None

概要 :

レジスタの値を右論理シフトする．

SRA Shift Word Right Arithmetic

右算術シフト MIPS I

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
000011
SRA

ニーモニック:

SRA rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] >> sa

例外 :

None

概要 :

レジスタの値を右算術シフトする．

3.1. MIPS互換の命令 97

SLLV Shift Word Left Logical Variable

左論理シフト MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000100
SLLV

ニーモニック:

SLLV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] << GPR[rs]

例外 :

None

概要 :

レジスタの値を左論理シフトする．

SRLV Shift Word Right Logical Variable

右論理シフト MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000110
SRLV

ニーモニック:

SRLV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] >> GPR[rs]

例外 :

None

概要 :

レジスタの値を右論理シフトする．

98 第 3章 命令セット

SRAV Shift Word Right Arithmetic Variable

右算術シフト MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000111
SRAV

ニーモニック:

SRAV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] >> GPR[rs]

例外 :

None

概要 :

レジスタの値を右算術シフトする．

3.1.3 Jump / 分岐命令

J Jump
ジャンプ MIPS I

31 26
000010

J

25 0
instr index

ニーモニック:

J target

機能 :

pc ← { pc[31:28], instr index, 00 }

例外 :

None

概要 :

指定したアドレスに無条件ジャンプする．

3.1. MIPS互換の命令 99

JAL Jump and Link

プロシージャコール MIPS I

31 26
000011
JAL

25 0
instr index

ニーモニック:

JAL target

機能 :

pc ← { pc[31:28], instr index, 00 }
GPR[31] ← pc + 8

例外 :

None

概要 :

指定したアドレスに無条件ジャンプする．リターンアドレスを R31に保存する．

JR Jump Register
レジスタ間接ジャンプ MIPS I

31 26
000000

SPECIAL

25 21
rs

20 6
000000000000000

0

5 0
001000

JR

ニーモニック:

JR rs

機能 :

pc ← GPR[rs]

例外 :

None

概要 :

レジスタで指定したアドレスに無条件ジャンプする．

100 第 3章 命令セット

JALR Jump and Link Register

レジスタ間接プロシージャコール MIPS I

31 26
000000

SPECIAL

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
001001
JALR

ニーモニック:

JALR rs (rd = 31 implied)

JALR rd, rs

機能 :

pc ← GPR[rs]
GPR[rd] ← pc + 8

例外 :

None

概要 :

指定したアドレスに無条件ジャンプする．リターンアドレスを rdに保存する．

BEQ Branch on Equal
条件分岐 MIPS I

31 26
000100
BEQ

25 21
rs

20 16
rt

15 0
offset

ニーモニック:

BEQ rs, rt, offset

機能 :

if GPR[rs] = GPR[rt] then
branch

例外 :

None

概要 :

rsと rtが等しい場合，指定したアドレスに分岐する．

3.1. MIPS互換の命令 101

BNE Branch on Not Equal

条件分岐 MIPS I

31 26
000101
BNE

25 21
rs

20 16
rt

15 0
offset

ニーモニック:

BNE rs, rt, offset

機能 :

if GPR[rs] �= GPR[rt] then
branch

例外 :

None

概要 :

rsと rtが等しくない場合，指定したアドレスに分岐する．

BLEZ Branch on Less Than or Equal to Zero
条件分岐 MIPS I

31 26
000110
BLEZ

25 21
rs

20 16
00000

0

15 0
offset

ニーモニック:

BLEZ rs, offset

機能 :

if GPR[rs] ≤ 0 then
branch

例外 :

None

概要 :

rsが 0以下の場合，指定したアドレスに分岐する．

102 第 3章 命令セット

BGTZ Branch on Greater Than Zero

条件分岐 MIPS I

31 26
000111
BGTZ

25 21
rs

20 16
00000

0

15 0
offset

ニーモニック:

BGTZ rs, offset

機能 :

if GPR[rs] > 0 then
branch

例外 :

None

概要 :

rsが 0より大きい場合，指定したアドレスに分岐する．

BEQL Branch on Equal Likely
条件分岐 MIPS II

31 26
010100
BEQL

25 21
rs

20 16
rt

15 0
offset

ニーモニック:

BEQL rs, rt, offset

機能 :

if GPR[rs] = GPR[rt] then
branch likely

例外 :

None

概要 :

rsと rtが等しい場合，指定したアドレスに分岐する．

3.1. MIPS互換の命令 103

BNEL Branch on Not Equal Likely

条件分岐 MIPS II

31 26
010101
BNEL

25 21
rs

20 16
rt

15 0
offset

ニーモニック:

BNEL rs, rt, offset

機能 :

if GPR[rs] �= GPR[rt] then
branch likely

例外 :

None

概要 :

rsと rtが等しくない場合，指定したアドレスに分岐する．

BLEZL Branch on Less Than or Equal to Zero Likely
条件分岐 MIPS II

31 26
010110
BLEZL

25 21
rs

20 16
00000

0

15 0
offset

ニーモニック:

BLEZL rs, offset

機能 :

if GPR[rs] ≤ 0 then
branch likely

例外 :

None

概要 :

rsが 0以下の場合，指定したアドレスに分岐する．

104 第 3章 命令セット

BGTZL Branch on Greater Than to Zero Likely

条件分岐 MIPS II

31 26
010111

BGTZL

25 21
rs

20 16
00000

0

15 0
offset

ニーモニック:

BGTZL rs, offset

機能 :

if GPR[rs] > 0 then
branch likely

例外 :

None

概要 :

rs0が 0より大きい場合，指定したアドレスに分岐する．

BLTZ Branch on Less Than Zero
条件分岐 MIPS I

31 26
000001

REGIMM

25 21
rs

20 16
00000
BLTZ

15 0
offset

ニーモニック:

BLTZ rs, offset

機能 :

if GPR[rs] < 0 then
branch

例外 :

None

概要 :

rsが 0より小さい場合，指定したアドレスに分岐する．

3.1. MIPS互換の命令 105

BGEZ Branch on Greater Than or Equal to Zero

条件分岐 MIPS I

31 26
000001

REGIMM

25 21
rs

20 16
00001
BGEZ

15 0
offset

ニーモニック:

BGEZ rs, offset

機能 :

if GPR[rs] ≥ 0 then
branch

例外 :

None

概要 :

rsが 0以上の場合，指定したアドレスに分岐する．

BLTZAL Branch on Less Than Zero and Link
条件プロシージャコール MIPS I

31 26
000001

REGIMM

25 21
rs

20 16
10000

BLTZAL

15 0
offset

ニーモニック:

BGEZ rs, offset

機能 :

if GPR[rs] < 0 then
branch
GPR[31] ← pc + 8

例外 :

None

概要 :

rsが 0より小さい場合，指定したアドレスに分岐する．リターンアドレスをR31にセーブする．

106 第 3章 命令セット

BGEZAL Branch on Greater Than or Equal to Zero and Link

条件プロシージャコール MIPS I

31 26
000001

REGIMM

25 21
rs

20 16
10001

BGEZAL

15 0
offset

ニーモニック:

BGEZAL rs, offset

機能 :

if GPR[rs] ≥ 0 then
branch
GPR[31] ← pc + 8

例外 :

None

概要 :

rsが 0以上の場合，指定したアドレスに分岐する．リターンアドレスを R31にセーブする．

BLTZL Branch on Less Than Zero Likely

条件分岐 MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
00010

BLTZL

15 0
offset

ニーモニック:

BLTZL rs, offset

機能 :

if GPR[rs] < 0 then
branch likely

例外 :

None

概要 :

rsが 0より小さい場合，指定したアドレスに分岐する．

3.1. MIPS互換の命令 107

BGEZL Branch on Greater Than or Equal to Zero Likely

条件分岐 MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
00011

BGEZL

15 0
offset

ニーモニック:

BGEZL rs, offset

機能 :

if GPR[rs] ≥ 0 then
branch likely

例外 :

None

概要 :

rsが 0以上の場合，指定したアドレスに分岐する．

BLTZALL Branch on Less Than Zero and Link Likely
条件プロシージャコール MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
10010

BLTZALL

15 0
offset

ニーモニック:

BLTZALL rs, offset

機能 :

if GPR[rs] < 0 then
branch likely
GPR[31] ← pc + 8

例外 :

None

概要 :

rsが 0より小さい場合，指定したアドレスに分岐する．R31にリターンアドレスをセーブする．

108 第 3章 命令セット

BGEZALL Branch on Greater Than or Equal to Zero and Link Likely

条件プロシージャコール MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
10011

BGEZALL

15 0
offset

ニーモニック:

BGEZALL rs, offset

機能 :

if GPR[rs] ≥ 0 then
branch likely
GPR[31] ← pc + 8

例外 :

None

概要 :

rsが 0以上の場合，指定したアドレスに分岐する．リターンアドレスを R31にセーブする．

3.1.4 浮動小数点命令

MTC1 Move Word to Floating Point
レジスタ間転送 MIPS I

31 26
010001
COP1

25 21
00100
MT

20 16
rt

15 11
fs

10 0
00000000000

0

ニーモニック:

MTC1 rt, fs

機能 :

FPR[fs] ← GPR[rt]

例外 :

None

概要 :

汎用レジスタの値を浮動小数点レジスタに入れる．

3.1. MIPS互換の命令 109

MFC1 Move Word from Floating Point

レジスタ間転送 MIPS I

31 26
010001
COP1

25 21
00000
MF

20 16
rt

15 11
fs

10 0
00000000000

0

ニーモニック:

MFC1 rt, fs

機能 :

GPR[rt] ← FPR[fs]

例外 :

None

概要 :

浮動小数点レジスタの値を汎用レジスタに入れる．

110 第 3章 命令セット

ADD.fmt Floating Point Add

浮動小数点加算 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
fd

5 0
000000
ADD

ニーモニック:

ADD.S fd, fs, ft (fmt = 10000)

ADD.D fd, fs, ft (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs] + FPR[ft]

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :

概要 :

レジスタの値を加算する．

3.1. MIPS互換の命令 111

SUB.fmt Floating Point Subtract

浮動小数点減算 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
fd

5 0
000001
SUB

ニーモニック:

SUB.S fd, fs, ft (fmt = 10000)

SUB.D fd, fs, ft (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs] − FPR[ft]

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :

概要 :

レジスタの値を減算する．

112 第 3章 命令セット

MUL.fmt Floating Point Multiply

浮動小数点乗算 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
fd

5 0
000010
MUL

ニーモニック:

MUL.S fd, fs, ft (fmt = 10000)

MUL.D fd, fs, ft (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs] × FPR[ft]

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :

概要 :

レジスタの値を乗算する．

3.1. MIPS互換の命令 113

DIV.fmt Floating Point Divide

浮動小数点除算 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
fd

5 0
000011
DIV

ニーモニック:

DIV.S fd, fs, ft (fmt = 10000)

DIV.D fd, fs, ft (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs] / FPR[ft]

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :
Floating Point Divide By 0 :

概要 :

レジスタの値を除算する．

114 第 3章 命令セット

ABS.fmt Floating Point Absolute Value

浮動小数点絶対値 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
000101
ABS

ニーモニック:

ABS.S fd, fs (fmt = 10000)

ABS.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← abs(FPR[fs])

例外 :

Floating Point Invalid Operation :

概要 :

レジスタの値の絶対値をとる．

3.1. MIPS互換の命令 115

NEG.fmt Floating Point Negate

浮動小数点符号反転 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
000111
NEG

ニーモニック:

NEG.S fd, fs (fmt = 10000)

NEG.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← −(FPR[fs])

例外 :

Floating Point Invalid Operation :

概要 :

レジスタの値を符号反転する．

MOV.fmt Floating Point Move

浮動小数点移動 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
000110
MOV

ニーモニック:

MOV.S fd, fs (fmt = 10000)

MOV.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← FPR[fs]

例外 :

None

概要 :

レジスタの値をコピーする．

116 第 3章 命令セット

CVT.S.fmt Floating Point Convert to Single Floating Point

浮動小数点フォーマット変換 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
100000
CVT.S

ニーモニック:

CVT.S.D fd, fs (fmt = 10001)

CVT.S.W fd, fs (fmt = 10100)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :
Floating Point Underflow :

概要 :

レジスタの値を単精度浮動小数点フォーマットに変換する．

3.1. MIPS互換の命令 117

CVT.D.fmt Floating Point Convert to Double Floating Point

浮動小数点フォーマット変換 MIPS I

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
100001
CVT.D

ニーモニック:

CVT.D.S fd, fs (fmt = 10000)

CVT.D.W fd, fs (fmt = 10100)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :

概要 :

レジスタの値を倍精度浮動小数点フォーマットに変換する．

118 第 3章 命令セット

ROUND.W.fmt Floating Point Round to Word Fixed Point

浮動小数点フォーマット変換 MIPS II

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
001100

ROUND.W

ニーモニック:

ROUND.W.S fd, fs (fmt = 10000)

ROUND.W.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :

概要 :

レジスタノ値を整数フォーマットに変換する．

3.1. MIPS互換の命令 119

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point

浮動小数点フォーマット変換 MIPS II

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
001101

TRUNC.W

ニーモニック:

TRUNC.W.S fd, fs (fmt = 10000)

TRUNC.W.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :

概要 :

レジスタの値を整数フォーマットに変換する．

120 第 3章 命令セット

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point

浮動小数点フォーマット変換 MIPS II

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
001110

CEIL.W

ニーモニック:

CEIL.W.S fd, fs (fmt = 10000)

CEIL.W.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :

概要 :

レジスタの値を整数フォーマットに変換する．

3.1. MIPS互換の命令 121

FLOOR.W.fmt Floating Point Floor Convert to Word Fixed Point

浮動小数点フォーマット変換 MIPS II

31 26
010001
COP1

25 21
fmt

20 16
00000

0

15 11
fs

10 6
fd

5 0
001111

FLOOR.W

ニーモニック:

FLOOR.W.S fd, fs (fmt = 10000)

FLOOR.W.D fd, fs (fmt = 10001)

機能 :

FPR[fd] ← convert and round(FPR[fs])

例外 :

Floating Point Invalid Operation :
Floating Point Inexact :
Floating Point Overflow :

概要 :

レジスタの値を整数フォーマットに変換する．

122 第 3章 命令セット

3.1.5 その他の命令

SYSCALL System Call
システムコール MIPS I

31 26
000000

SPECIAL

25 6
00000000000000000000

0

5 0
001100

SYSCALL

ニーモニック:

SYSCALL

機能 :

exception(system call)

例外 :

System Call :

概要 :

システムコール例外を発生する．

BREAK Breakpoint

ブレークポイント MIPS I

31 26
000000

SPECIAL

25 6
00000000000000000000

0

5 0
001101

BREAK

ニーモニック:

BREAK

機能 :

exception(breakpoint)

例外 :

Break Point :

概要 :

ブレークポイント例外を発生する．

3.1. MIPS互換の命令 123

TGE Trap if Greater or Equal

条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110000
TGE

ニーモニック:

TGE rs, rt

機能 :

if GPR[rs] ≥ GPR[rt] then
exception(trap)

例外 :

Trap :

概要 :

rsが rt以上の場合，トラップが発生する．

TGEU Trap if Greater or Equal Unsigned

条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110001
TGEU

ニーモニック:

TGEU rs, rt

機能 :

if GPR[rs] ≥ GPR[rt] then
exception(trap)

例外 :

Trap :

概要 :

rsが rt以上の場合，トラップが発生する．値は符号無しとして比較する．

124 第 3章 命令セット

TLT Trap if Less Than

条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110010
TLT

ニーモニック:

TLT rs, rt

機能 :

if GPR[rs] < GPR[rt] then
exception(trap)

例外 :

Trap :

概要 :

rsが rtより小さい場合，トラップが発生する．

TLTU Trap if Less Than Unsigned

条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110011
TLTU

ニーモニック:

TLTU rs, rt

機能 :

if GPR[rs] < GPR[rt] then
exception(trap)

例外 :

Trap :

概要 :

rsが rtより小さい場合，トラップが発生する．値は符号無しとして比較する．

3.1. MIPS互換の命令 125

TEQ Trap if Equal

条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110100
TEQ

ニーモニック:

TEQ rs, rt

機能 :

if GPR[rs] = GPR[rt] then
exception(trap)

例外 :

Trap :

概要 :

rsが rtと等しい場合、トラップが発生する．

TNE Trap if Not Equal

条件トラップ MIPS II

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110110
TNE

ニーモニック:

TEQ rs, rt

機能 :

if GPR[rs] �= GPR[rt] then
exception(trap)

例外 :

Trap :

概要 :

rsが rtと等しくない場合，トラップが発生する．

126 第 3章 命令セット

TGEI Trap if Greater or Equal Immediate

条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01000
TGEI

15 0
immediate

ニーモニック:

TGEI rs, immediate

機能 :

if GPR[rs] ≥ sign extend(immediate) then
exception(trap)

例外 :

Trap :

概要 :

rsが immediate以上の場合，トラップが発生する．

TGEIU Trap if Greater or Equal Immediate Unsigned

条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01001

TGEIU

15 0
immediate

ニーモニック:

TGEIU rs, immediate

機能 :

if GPR[rs] ≥ sign extend(immediate) then
exception(trap)

例外 :

Trap :

概要 :

rsが immediate以上の場合，トラップが発生する．値は符号無しとして比較する．

3.1. MIPS互換の命令 127

TLTI Trap if Less Than Immediate

条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01010
TLTI

15 0
immediate

ニーモニック:

TLTI rs, immediate

機能 :

if GPR[rs] < sign extend(immediate) then
exception(trap)

例外 :

Trap :

概要 :

rsが immediateより小さい場合，トラップが発生する．

TLTIU Trap if Less Than Immediate Unsigned

条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01010

TLTIU

15 0
immediate

ニーモニック:

TLTIU rs, immediate

機能 :

if GPR[rs] < sign extend(immediate) then
exception(trap)

例外 :

Trap :

概要 :

rsが immediateより小さい場合，トラップが発生する．値は符号無しとして比較する．

128 第 3章 命令セット

TEQI Trap if Equal Immediate

条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01100
TEQI

15 0
immediate

ニーモニック:

TEQI rs, immediate

機能 :

if GPR[rs] = sign extend(immediate) then
exception(trap)

例外 :

Trap :

概要 :

rsと immediateが等しい場合，トラップが発生する．

TNEI Trap if Not Equal Immediate

条件トラップ MIPS II

31 26
000001

REGIMM

25 21
rs

20 16
01110
TNEI

15 0
immediate

ニーモニック:

TNEI rs, immediate

機能 :

if GPR[rs] �= sign extend(immediate) then
exception(trap)

例外 :

Trap :

概要 :

rsと immediateが等しくない場合，トラップが発生する．

3.2. MIPS命令と動作の異なる命令 129

3.2 MIPS命令と動作の異なる命令

以下に Responsive Multithreaded Processorの中でMIPS命令と動作の異なる命令を示す．

3.2.1 演算命令

DADDI Doubleword Add Immediate
64bit即値加算 MIPS III 動作改

31 26
011000

DADDI

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

DADDI rt, rs, immediate

機能 :

FPR[rt] ← FPR[rs] + sign extension(immediate)

例外 :

Overflow :

概要 :

加算を行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

130 第 3章 命令セット

DADDIU Doubleword Add Immediate Unsigned

64bit即値加算 MIPS III 動作改

31 26
011001

DADDIU

25 21
rs

20 16
rt

15 0
immediate

ニーモニック:

DADDIU rt, rs, immediate

機能 :

FPR[rt] ← FPR[rs] + sign extension(immediate)

例外 :

None

概要 :

加算を行う．オーバーフローが発生しても例外を発生させない．Responsive Multithreaded Pro-
cessorでは浮動小数点レジスタを用いて演算を行う．

DADD Doubleword Add
64bit加算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101100
DADD

ニーモニック:

DADD rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] + FPR[rt]

例外 :

Overflow :

概要 :

加算を行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

3.2. MIPS命令と動作の異なる命令 131

DADDU Doubleword Add Unsigned

64bit加算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101101

DADDU

ニーモニック:

DADDU rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] + FPR[rt]

例外 :

None

概要 :

加算を行う．オーバーフローが発生しても例外を発生させない．Responsive Multithreaded Pro-
cessorでは浮動小数点レジスタを用いて演算を行う．

DSUB Doubleword Subtract
64bit減算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101110
DSUB

ニーモニック:

DSUB rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] − FPR[rt]

例外 :

Overflow :

概要 :

減算を行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演算を行う．

132 第 3章 命令セット

DSUBU Doubleword Subtract Unsigned

64bit減算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
101111

DSUBU

ニーモニック:

DSUBU rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] − FPR[rt]

例外 :

None

概要 :

減算を行う．オーバーフローが発生しても例外を発生させない．Responsive Multithreaded Pro-
cessorでは浮動小数点レジスタを用いて演算を行う．

DSLL Doubleword Shift Left Logical
64bit左論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111000
DSLL

ニーモニック:

DSLL rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] 	 sa

例外 :

None

概要 :

左論理シフトを行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演
算を行う．

3.2. MIPS命令と動作の異なる命令 133

DSRL Doubleword Shift Right Logical

64bit右論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111010
DSRL

ニーモニック:

DSRL rd, rt, sa

機能 :

FPR[rd] ← FPR[rt]
 sa

例外 :

None

概要 :

右論理シフトを行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演
算を行う．

DSRA Doubleword Shift Right Arithmetic
64bit右算術シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111011
DSRA

ニーモニック:

DSRA rd, rt, sa

機能 :

FPR[rd] ← FPR[rt]
 sa

例外 :

None

概要 :

右算術シフトを行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演
算を行う．

134 第 3章 命令セット

DSLL32 Doubleword Shift Left Logical plus 32

64bit左論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111100

DSLL32

ニーモニック:

DSLL32 rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] 	 (sa + 32)

例外 :

None

概要 :

左論理シフトを行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演
算を行う．

DSRL32 Doubleword Shift Right Logical plus 32
64bit右論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111110

DSRL32

ニーモニック:

DSRL32 rd, rt, sa

機能 :

FPR[rd] ← FPR[rt]
 (sa + 32)

例外 :

None

概要 :

右論理シフトを行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演
算を行う．

3.2. MIPS命令と動作の異なる命令 135

DSRA32 Doubleword Shift Right Arithmetic plus 32

64bit右算術シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
00000

0

20 16
rt

15 11
rd

10 6
sa

5 0
111111

DSRA32

ニーモニック:

DSRA32 rd, rt, sa

機能 :

FPR[rd] ← FPR[rt]
 (sa + 32)

例外 :

None

概要 :

右算術シフトを行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演
算を行う．

DSLLV Doubleword Shift Left Logical Variable
64bit左論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
010100
DSLLV

ニーモニック:

DSLLV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt] 	 FPR[rs]

例外 :

None

概要 :

左論理シフトを行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演
算を行う．

136 第 3章 命令セット

DSRLV Doubleword Shift Right Logical Variable

64bit右論理シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
010110

DSRLV

ニーモニック:

DSRLV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt]
 FPR[rs]

例外 :

None

概要 :

右論理シフトを行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演
算を行う．

DSRAV Doubleword Shift Right Arithmetic Variable
64bit右算術シフト MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
010111

DSRAV

ニーモニック:

DSRAV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt]
 FPR[rs]

例外 :

None

概要 :

右算術シフトを行う．Responsive Multithreaded Processorでは浮動小数点レジスタを用いて演
算を行う．

3.2. MIPS命令と動作の異なる命令 137

MULT Multiply Word

符号付き乗算 MIPS I 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011000
MULT

ニーモニック:

MULT rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] × GPR[rt]

例外 :

None

概要 :

乗算を行う．Responsive Multithreaded Processorでは 3オペランド命令で演算結果の下位 32bit
をデスティネーションレジスタに格納する．

MULTU Multiply Word Unsigned
符号無し乗算 MIPS I 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011001

MULTU

ニーモニック:

MULTU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] × GPR[rt]

例外 :

None

概要 :

乗算を行う．値は符号無し整数として扱う．Responsive Multithreaded Processorでは 3オペラ
ンド命令で演算結果の下位 32bitをデスティネーションレジスタに格納する．

138 第 3章 命令セット

DIV Divide Word

符号付き除算 MIPS I 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011010
DIV

ニーモニック:

DIV rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

例外 :

Divide by Zero :

概要 :

除算を行う．Responsive Multithreaded Processorでは 3オペランド命令で，商をデスティネー
ションレジスタに格納する．

DIVU Divide Word Unsigned

符号無し除算 MIPS I 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011011
DIVU

ニーモニック:

DIVU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

例外 :

Divide by Zero :

概要 :

除算を行う．値は符号無し整数として扱う．商をデスティネーションレジスタに格納する．Re-
sponsive Multithreaded Processorでは 3オペランド命令になる．

3.2. MIPS命令と動作の異なる命令 139

DMULT Doubleword Multiply

符号付き 64bit乗算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011100

DMULT

ニーモニック:

DMULT rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

乗算を行う．Responsive Multithreaded Processorでは 3オペランド命令で，浮動小数点レジス
タを用いて演算を行う．演算結果の下位 64bit をデスティネーションレジスタに格納する．

DMULTU Doubleword Multiply Unsigned
符号無し 64bit乗算 MIPS III 動作改

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
011101

DMULTU

ニーモニック:

DMULTU rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

乗算を行う．値は符号無し整数として扱う．Responsive Multithreaded Processorでは 3オペラ
ンド命令で，浮動小数点レジスタを用いて演算を行う．演算結果の下位 64bitをデスティネー
ションレジスタに格納する．

140 第 3章 命令セット

3.2.2 浮動小数点命令

C.cond.fmt Floating-Point Compare
浮動小数点比較 MIPS I 動作改

31 26
010001
COP1

25 21
fmt

20 16
ft

15 11
fs

10 6
00000

0

5 4
11
FC

3 0
cond

ニーモニック:

C.cond.S fs, ft (fmt = 10000)

C.cond.D fs, ft (fmt = 10001)

機能 :

FPR[7] ← FPR[fs] conpare cond FPR[ft]

例外 :

Floating Point Invalid :

概要 :

浮動小数点の比較を行う．Responsive Multithreaded Processorではステータスレジスタではな
く，浮動小数点レジスタに結果が格納される．

3.2. MIPS命令と動作の異なる命令 141

BC1T Branch on FP True

浮動小数点分岐 MIPS I 動作改

31 26
010001
COP1

25 21
01000
BC

20 18
000
9

17
0

nd

16
1
tf

15 0
offset

ニーモニック:

BC1T offset

機能 :

if FPR[7] = 1 then
branch

例外 :

None

概要 :

FPR[7]が 1の場合，指定されたアドレスに分岐する．Responsive Multithreaded Processorで
はステータスレジスタではなく，浮動小数点レジスタの内容により分岐を判断する．

BC1F Branch on FP False

浮動小数点分岐 MIPS I 動作改

31 26
010001
COP1

25 21
01000
BC

20 18
000
9

17
0

nd

16
0
tf

15 0
offset

ニーモニック:

BC1F offset

機能 :

if FPR[7] = 0 then
branch

例外 :

None

概要 :

FPR[7]が 0の場合，指定されたアドレスに分岐する．Responsive Multithreaded Processorで
はステータスレジスタではなく，浮動小数点レジスタの内容により分岐を判断する．

142 第 3章 命令セット

BC1TL Branch on FP True Likely

浮動小数点分岐 MIPS II 動作改

31 26
010001
COP1

25 21
01000
BC

20 18
000
9

17
1

nd

16
1
tf

15 0
offset

ニーモニック:

BC1TL offset

機能 :

if FPR[7] = 1 then
branch likely

例外 :

None

概要 :

FPR[7]が 1の場合，指定されたアドレスに分岐する．Responsive Multithreaded Processorで
はステータスレジスタではなく，浮動小数点レジスタの内容により分岐を判断する．

BC1FL Branch on FP False Likely

浮動小数点分岐 MIPS II 動作

31 26
010001
COP1

25 21
01000
BC

20 18
000
9

17
1

nd

16
0
tf

15 0
offset

ニーモニック:

BC1FL offset

機能 :

if FPR[7] = 0 then
branch likely

例外 :

None

概要 :

FPR[7]が 0の場合，指定されたアドレスに分岐する．Responsive Multithreaded Processorで
はステータスレジスタではなく，浮動小数点レジスタの内容により分岐を判断する．

3.2. MIPS命令と動作の異なる命令 143

3.2.3 その他の命令

SYNC Synchronize Operation
命令実行順序制御 MIPS II 動作改

31 26
000000

SPECIAL

25 6
000000000000000

0

5 0
001111
SYNC

ニーモニック:

SYNC

機能 :

synchronize operation order()

例外 :

None

概要 :

Responsive Multithreaded Processorではアウトオブオーダーで命令が実行されるが，sync命
令の前後での実行順序が保証される．つまり sync 命令より後の命令は sync命令より前の命令
より先に実行されることはない．また，sync命令は投機実行されないため，投機実行の制御を
行うことができる．

3.2.4 サポートしていないMIPS II命令

Responsive Multithreaded Processorは基本的にMIPS II命令セット互換であるが，いくつかの命令をサ
ポートしていない．以下にMIPS II命令で Responsive Multithreaded Processorがサポートしていない命
令を示す．

144 第 3章 命令セット

ニーモニック 概要

LWC2 Load Word to Coprocessor-2 MIPS I
LWC3 Load Word to Coprocessor-3 MIPS I
SWC2 Store Word to Coprocessor-2 MIPS I
SWC3 Store Word to Coprocessor-3 MIPS I
LDC2 Load Doubleword to Coprocessor-2 MIPS II
LDC3 Load Doubleword to Coprocessor-3 MIPS II
SDC2 Store Doubleword to Coprocessor-2 MIPS II
SDC3 Store Doubleword to Coprocessor-3 MIPS II

MFHI Move From HI MIPS I
MTHI Move To HI MIPS I
MFLO Move From LO MIPI I
MTLO Move To LO MIPS I

CTC1 Move Control Word To Floating-Point MIPS I
CFC1 Move Control Word From Floating-Point MIPS I

SQRT.fmt Floating-Point Square Root MIPS II

3.3 Responsive Multithreaded Processor固有の命令

以下に Responsive Multithreaded Processor固有の命令を示す．

3.3. Responsive Multithreaded Processor固有の命令 145

3.3.1 Load / Store 命令

IOLB Load Byte of I/O
I/O用ロード命令 RESPII

31 26
010000
COP0

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110000
IOLB

ニーモニック:

IOLB rt, rs

機能 :

GPR[rt] ← sign extend(MEM.BYTE[GPR[rs]])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :

概要 :

指定されたアドレスから 1byteロードする．通常の Load命令は投機実行されるが，この命令
は投機実行されないため，I/Oのように 1度ロードすると状態が変わるものに用いる．

146 第 3章 命令セット

IOLH Load Half Word of I/O

I/O用ロード命令 RESPII

31 26
010000
COP0

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110001
IOLH

ニーモニック:

IOLH rt, rs

機能 :

GPR[rt] ← sign extend(MEM.HWORD[GPR[rs]])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

指定されたアドレスから half wordロードする．通常の Load命令は投機実行されるが，この
命令は投機実行されないため，I/Oのように 1度ロードすると状態が変わるものに用いる．

3.3. Responsive Multithreaded Processor固有の命令 147

IOLW Load Word of I/O

I/O用ロード命令 RESPII

31 26
010000
COP0

25 21
rs

20 16
rt

15 6
0000000000

0

5 0
110010
IOLW

ニーモニック:

IOLW rt, rs

機能 :

GPR[rt] ← sign extend(MEM.WORD[GPR[rs]])

例外 :

D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

指定されたアドレスから 1wordロードする．通常の Load命令は投機実行されるが，この命令
は投機実行されないため，I/Oのように 1度ロードすると状態が変わるものに用いる．

148 第 3章 命令セット

3.3.2 演算命令

DAND Doubleword And
64bit論理積 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
100100
AND

ニーモニック:

DAND rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] and FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて論理積を計算する．

DOR Doubleword Or
64bit論理和 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
100101
OR

ニーモニック:

DOR rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] or FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて論理和を計算する．

3.3. Responsive Multithreaded Processor固有の命令 149

DXOR Doubleword Exclusive Or

64bit排他的論理和 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
100110
XOR

ニーモニック:

DXOR rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] xor FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて排他的論理和を計算する．

DNOR Doubleword Not Or

64bit否定論理和 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
100111
NOR

ニーモニック:

DNOR rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] nor FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて論理和の否定を計算する．

150 第 3章 命令セット

MULTH Multiply Word on High Bit

符号付き乗算 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011000
MULT

ニーモニック:

MULTH rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] × GPR[rt]

例外 :

None

概要 :

乗算を行う．乗算結果の上位 32bitをデスティネーションレジスタに格納する．

MULTUH Multiply Word Unsigned on High Bit

符号無し乗算 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011001

MULTU

ニーモニック:

MULTUH rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] × GPR[rt]

例外 :

None

概要 :

乗算を行う．値は符号無しとして計算する．乗算結果の上位 32bitをデスティネーションレジ
スタに格納する．

3.3. Responsive Multithreaded Processor固有の命令 151

DMULTH Doubleword Multiply on High Bit

符号付き 64bit乗算 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011100

DMULT

ニーモニック:

DMULTH rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて乗算を行う．乗算結果の上位 64bitをデスティネーションレジス
タに格納する．

DMULTUH Doubleword Multiply Unsigned on High Bit
符号無し 64bit乗算 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011101

DMULTU

ニーモニック:

DMULTUH rd, rs, rt

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて乗算を行う．値は符号無しとして計算する．乗算結果の上位 64bit
をデスティネーションレジスタに格納する．

152 第 3章 命令セット

REM Reminder Word

符号付き剰余 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011010
DIV

ニーモニック:

REM rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

例外 :

Divide by Zero :

概要 :

除算を行う．剰余をデスティネーションレジスタに格納する．

REMU Reminder Word Unsigned
符号無し剰余 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
011011
DIVU

ニーモニック:

REMU rd, rs, rt

機能 :

GPR[rd] ← GPR[rs] ÷ GPR[rt]

例外 :

Divide by Zero :

概要 :

除算を行う．値は符号無しとして計算する．剰余をデスティネーションレジスタに格納する．

3.3. Responsive Multithreaded Processor固有の命令 153

DSLT Doubleword Set on Less Than

符号付き 64bit比較 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
101010
SLT

ニーモニック:

DSLT rd, rs, rt

機能 :

if FPR[rs] < FPR[rt] then
FPR[rd] ← 1

else
FPR[rd] ← 0

endif

例外 :

None

概要 :

浮動小数点レジスタを用いて比較を行う．

154 第 3章 命令セット

DSLTU Doubleword Set on Less Than Unsigned

符号無し 64bit比較 RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
101011
SLTU

ニーモニック:

DSLTU rd, rs, rt

機能 :

if FPR[rs] < FPR[rt] then
FPR[rd] ← 1

else
FPR[rd] ← 0

endif

例外 :

None

概要 :

浮動小数点レジスタを用いて比較を行う．値は符号無しとして比較を行う．

RTL Rotate Left

左ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
000000
SLL

ニーモニック:

RTL rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] <<< sa

例外 :

None

概要 :

左ローテーション演算を行う．

3.3. Responsive Multithreaded Processor固有の命令 155

RTR Rotate Right

右ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
000010
SRL

ニーモニック:

RTR rd, rt, sa

機能 :

GPR[rd] ← GPR[rt] >>> sa

例外 :

None

概要 :

右ローテーション演算を行う．

RTLV Rotate Left Variable

左ローテーション RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
000100
SLLV

ニーモニック:

RTLV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] <<< GPR[rs]

例外 :

None

概要 :

左ローテーション演算を行う．

156 第 3章 命令セット

RTRV Rotate Right Variable

右ローテーション RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
000110
SRLV

ニーモニック:

RTRV rd, rt, rs

機能 :

GPR[rd] ← GPR[rt] >>> GPR[rs]

例外 :

None

概要 :

右ローテーション演算を行う．

DRTL Doubleword Rotate Left

64bit左ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
111000
DSLL

ニーモニック:

DRTL rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] <<< sa

例外 :

None

概要 :

浮動小数点レジスタを用いて左ローテーション演算を行う．

3.3. Responsive Multithreaded Processor固有の命令 157

DRTR Doubleword Rotate Right

64bit右ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
111010
DSRL

ニーモニック:

DRTR rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] >>> sa

例外 :

None

概要 :

浮動小数点レジスタを用いて右ローテーション演算を行う．

DRTL32 Doubleword Rotate Left plus 32

64bit左ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
111100

DSLL32

ニーモニック:

DRTL rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] <<< (sa + 32)

例外 :

None

概要 :

浮動小数点レジスタを用いて左ローテーション演算を行う．

158 第 3章 命令セット

DRTR32 Doubleword Rotate Right plus 32

64bit右ローテーション RESPII

31 26
000000

SPECIAL

25 21
00001

1

20 16
rt

15 11
rd

10 6
sa

5 0
111110

DSRL32

ニーモニック:

DRTR32 rd, rt, sa

機能 :

FPR[rd] ← FPR[rt] >>> (sa + 32)

例外 :

None

概要 :

浮動小数点レジスタを用いて右ローテーション演算を行う．

DRTLV Doubleword Rotate Left Variable

64bit左ローテーション RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
010100
DSLLV

ニーモニック:

DRTLV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt] <<< FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて左ローテーション演算を行う．

3.3. Responsive Multithreaded Processor固有の命令 159

DRTRV Doubleword Rotate Right Variable

64bit右ローテーション RESPII

31 26
000000

SPECIAL

25 21
rs

20 16
rt

15 11
rd

10 6
00001

1

5 0
010110

DSRLV

ニーモニック:

DRTRV rd, rt, rs

機能 :

FPR[rd] ← FPR[rt] >>> FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて右ローテーション演算を行う．

3.3.3 転送命令

MTC1H Move Word to Floating Point on High bit
レジスタ間転送 RESPII

31 26
010001
COP1

25 21
00100
MT

20 16
rt

15 11
fs

10 6
00001

1

5 0
000000

0

ニーモニック:

MTC1H rt, fs

機能 :

FPR[fs] ← {GPR[rt], 032}

例外 :

None

概要 :

浮動小数点レジスタの上位 32ビットに汎用レジスタの値を転送する．

160 第 3章 命令セット

MFC1H Move Word from Floating Point on High bit

レジスタ間転送 RESPII

31 26
010001
COP1

25 21
00000
MF

20 16
rt

15 11
fs

10 6
00001

1

5 0
000000

0

ニーモニック:

MFC1H rt, fs

機能 :

GPR[rt] ← high 32bit(FPR[fs])

例外 :

None

概要 :

汎用レジスタに浮動小数点レジスタの上位 32ビットを転送する．

3.3.4 システム制御命令

MFC0 Move from System Control Register
システムレジスタリード命令 SYSTEM (特権命令)

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
rd

10 6
00000

0

5 0
000000
CTRL

ニーモニック:

MFC0 rt, rd

機能 :

GPR[rt] ← SYSTEM[GPR[rd]]

例外 :

Coprocessor Unusable :

概要 :

システムレジスタから値を読み込む．システムレジスタのアドレスは GPR[rd]で指定する．

3.3. Responsive Multithreaded Processor固有の命令 161

MTC0 Move to System Control Register

システムレジスタライト命令 SYSTEM (特権命令)

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
rd

10 6
00000

0

5 0
000000
CTRL

ニーモニック:

MTC0 rt, rd

機能 :

SYSTEM[GPR[rd]] ← GPR[rt]

例外 :

Coprocessor Unusable :

概要 :

システムレジスタに値を書き込む．システムレジスタのアドレスは GPR[rd]で指定する．

MFIMM Move from Instruction MMU Control Register

命令MMU制御レジスタリード命令 SYSTEM (特権命令)

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
rd

10 6
00000

0

5 0
000010
IMMU

ニーモニック:

MFIMM rt, rd

機能 :

GPR[rt] ← IMMU[GPR[rd]]

例外 :

Coprocessor Unusable :

概要 :

命令MMU制御レジスタから値を読み込む．制御レジスタのアドレスはGPR[rd]で指定する．

162 第 3章 命令セット

MTIMM Move to Instruction MMU Control Register

命令MMU制御レジスタライト命令 SYSTEM (特権命令)

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
rd

10 6
00000

0

5 0
000010
IMMU

ニーモニック:

MTIMM rt, rd

機能 :

IMMU[GPR[rd]] ← GPR[rt]

例外 :

Coprocessor Unusable :

概要 :

命令MMU制御レジスタに値を書き込む．制御レジスタのアドレスは GPR[rd]で指定する．

MFDMM Move from Data MMU Control Register

データMMU制御レジスタリード命令 SYSTEM

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
rd

10 6
00000

0

5 0
000011

DMMU

ニーモニック:

MFDMM rt, rd

機能 :

GPR[rt] ← DMMU[GPR[rd]]

例外 :

Coprocessor Unusable :

概要 :

データMMU制御レジスタから値を読み込む．制御レジスタのアドレスはGPR[rd]で指定する．

3.3. Responsive Multithreaded Processor固有の命令 163

MTDMM Move to Data MMU Control Register

データMMU制御レジスタライト命令 SYSTEM (特権命令)

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
rd

10 6
00000

0

5 0
000011

DMMU

ニーモニック:

MTDMM rt, rd

機能 :

DMMU[GPR[rd]] ← GPR[rt]

例外 :

Coprocessor Unusable :

概要 :

データMMU制御レジスタに値を書き込む．制御レジスタのアドレスはGPR[rd]で指定する．

ERET Exception Return

例外復帰命令 SYSTEM

31 26
010000
COP0

25 6
00000000000000000000

0

5 0
011000
ERET

ニーモニック:

ERET

機能 :

Exception Return

例外 :

None

概要 :

例外処理から復帰する．

164 第 3章 命令セット

3.3.5 スレッド制御命令

MKTH Make Thread
スレッド生成 THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000001
MKTH

ニーモニック:

MKTH rd, rs, rt

機能 :

make thread(GPR[rs], GPR[rt])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

スレッドの生成を行う．GPR[rs]に作成するスレッドの ID，GPR[rt]にスタートアドレスを指
定する．スレッドの生成に成功すると GPR[rd]に 1が，失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 165

DELTH Delete Thread

スレッド削除 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
000010

DELTH

ニーモニック:

DELTH rd, rs

機能 :

delete thread(GPR[rs])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

スレッドの削除を行う．GPR[rs]に削除するスレッドの IDを指定する．スレッドの削除に成
功すると GPR[rd]に 1が，失敗すると 0が返る．

166 第 3章 命令セット

CHGPR Change Priority

優先度の変更 THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000011

CHGPR

ニーモニック:

CHGPR rd, rs, rt

機能 :

change priority(GPR[rs] ,GPR[rd])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

優先度の変更を行う．GPR[rs]に変更するスレッドの ID，GPR[rt]に新しい優先度を指定する．
優先度の変更に成功すると GPR[rd]に 1が，失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 167

CHGST Change Status

状態の変更 THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
000100

CHGST

ニーモニック:

CHGST rd, rs, rt

機能 :

change status(GPR[rs], GPR[rt])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

スレッドの状態を変更する．GPR[rs]に変更するスレッド IDの，GPR[rt]に新しい状態を指
定する．状態の変更に成功すると GPR[rd]に 1が，失敗すると 0が返る．

168 第 3章 命令セット

RUNTH Run Thread

スレッドの実行 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
000101

RUNTH

ニーモニック:

RUNTH rd, rs

機能 :

run thread(GPR[rs])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

スレッドを実行状態する．GPR[rs]に実行するスレッドの IDを指定する．スレッドの実行に
成功すると GPR[rd]に 1が，失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 169

STOPTH Stop Thread

スレッドの停止 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
000110

STOPTH

ニーモニック:

STOPTH rd, rs

機能 :

stop thread(GPR[rs])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

スレッドを停止状態にする．GPR[rs]に停止するスレッド IDを指定する．スレッドの停止に
成功すると GPR[rd]に 1が，失敗すると 0が返る．

170 第 3章 命令セット

STOPSLF Stop Myself

スレッドの停止 THREAD

31 26
011101

THREAD

25 16
0000000000

0

15 11
rd

10 6
00000

0

5 0
000111

STOPSLF

ニーモニック:

STOPSLF rd

機能 :

stop myself()
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

自分自身のスレッドを停止する．スレッドの停止に成功するとGPR[rd]に 1が，失敗すると 0
が返る．

3.3. Responsive Multithreaded Processor固有の命令 171

BKUPTH Backup Thread

スレッドの退避 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
001000

BKUPTH

ニーモニック:

BKUPTH rd, rs

機能 :

backup thread(GPR[rs])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

アクティブスレッドをコンテキストキャッシュに退避する．GPR[rs]に退避するスレッドの ID
を指定する．スレッドの退避に成功すると GPR[rd]に 1が，失敗すると 0が返る．

172 第 3章 命令セット

BKUPSLF Backup Myself

スレッドの退避 THREAD

31 26
011101

THREAD

25 16
0000000000

0

15 11
rd

10 6
00000

0

5 0
001001

BKUPSLF

ニーモニック:

BKUPSLF rd

機能 :

backup myself()
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

自分自身をコンテキストキャッシュに退避する．スレッドの退避に成功するとGPR[rd]に 1が，
失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 173

RSTRTH Restore Thread

スレッドの復帰 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
001010

RSTRTH

ニーモニック:

RSTRTH rd, rs

機能 :

restore thread(GPR[rs])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

キャッシュスレッドをコンテキストキャッシュから復帰する．GPR[rs]に復帰するスレッドの
IDを指定する．スレッドの復帰に成功するとGPR[rd]に 1が，失敗すると 0が返る．

174 第 3章 命令セット

SWAPTH Swap Thread

スレッドの入れ換え THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001011

SWAPTH

ニーモニック:

SWAPTH rd, rs, rt

機能 :

swap thread(GPR[rs], GPR[rt])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

アクティブスレッドとキャッシュスレッドを入れ換える．GPR[rs]に退避するアクティブスレッ
ドの ID，GPR[rt]に復帰するキャッシュスレッドを指定する．スレッドの入れ換えに成功する
と GPR[rd]に 1が，失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 175

SWAPSLF Swap Myself

スレッドの入れ換え THREAD

31 26
011101

THREAD

25 21
00000

0

20 16
rt

15 11
rd

10 6
00000

0

5 0
001100

SWAPSLF

ニーモニック:

SWAPSLF rd, rt

機能 :

swap myself(GPR[rt])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

自分自身とキャッシュスレッドを入れ換える．GPR[rt]に復帰するキャッシュスレッドを指定す
る．スレッドの入れ換えに成功すると GPR[rd] に 1が，失敗すると 0が返る．

176 第 3章 命令セット

CPTHTOA Copy Thread to Active Thread

スレッドのコピー THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001101

CPTHTOA

ニーモニック:

CPTHTOA rd, rs, rt

機能 :

copy to active(GPR[rs], GPR[rt])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

アクティブスレッドを別のアクティブスレッドとしてコピーする．GPR[rs]にコピー元のアク
ティブスレッドの ID，GPR[rt]にコピー先のアクティブスレッドの IDを指定する．スレッド
のコピーに成功すると GPR[rd]に 1が，失敗すると 0が返る．

3.3. Responsive Multithreaded Processor固有の命令 177

CPTHTOM Copy Thread to Cache Thread (Memory)

スレッドのコピー THREAD

31 26
011101

THREAD

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001110

CPTHTOM

ニーモニック:

CPTHTOM rd, rs, rt

機能 :

copy to meory(GPR[rs], GPR[rt])
if success thread operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

概要 :

アクティブスレッドを別のキャッシュスレッドとしてコピーする．GPR[rs]にコピー元のアク
ティブスレッドの ID，GPR[rt]にコピー先のキャッシュスレッドの IDを指定する．スレッド
のコピーに成功すると GPR[rd]に 1が，失敗すると 0が返る．

178 第 3章 命令セット

GETTT Get Thread Table

スレッドテーブルの参照 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
001111

GETTT

ニーモニック:

GETTT rd, rs

機能 :

GPR[rd] ← ThreadTable of GPR[rs]

例外 :

概要 :

スレッドテーブルから値を読み込む．GPR[rs]に読み込むスレッドの IDを指定する．GPR[rd]
にスレッドテーブルの内容が返る．

GETTID Get Thread ID
スレッド IDの参照 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
010000

GETTID

ニーモニック:

GETTID rd, rs

機能 :

GPR[rd] ← ThreadID of GPR[rs]

例外 :

概要 :

コンテキスト IDからスレッド IDを調べる．GPR[rs]に調べるスレッドのコンテキスト IDを
指定する．GPR[rd]にスレッド IDが返る．

3.3. Responsive Multithreaded Processor固有の命令 179

GETOTID Get Own Thread ID

スレッド IDの参照 THREAD

31 26
011101

THREAD

25 16
0000000000

0

15 11
rd

10 6
00000

0

5 0
010001

GETOTID

ニーモニック:

GETOTID rd

機能 :

GPR[rd] ← Own ThreadID

例外 :

概要 :

自分自身のスレッド IDを調べる．GPR[rd]にスレッド IDが返る．

GETMTID Get Cache Thread ID (Get Memory Thread ID)

スレッド IDの参照 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
010010

GETMTID

ニーモニック:

GETMTID rd, rs

機能 :

GPR[rd] ← ThreadID of GPR[rs]

例外 :

概要 :

コンテキスト IDからスレッド IDを調べる．GPR[rs]に調べるキャッシュスレッドのコンテキ
スト IDを指定する．GPR[rd]にスレッド IDが返る．

180 第 3章 命令セット

GETCNUM Get Context ID Number

コンテキスト IDの参照 THREAD

31 26
011101

THREAD

25 21
rs

20 16
00000

0

15 11
rd

10 6
00000

0

5 0
010011

GETCNUM

ニーモニック:

GETCNUM rd, rs

機能 :

GPR[rd] ← ContextID of GPR[rs]

例外 :

概要 :

スレッド ID からコンテキスト ID を調べる．GPR[rs] に調べるスレッドの ID を指定する．
GPR[rd]にコンテキスト IDが返る．8bit目が 1の場合，スレッドはアクティブスレッドにあ
り，2bit目から 0bit目にコンテキスト IDが返る．6bit目が 1の場合，スレッドはキャッシュス
レッドにあり，4bit目から 0bit目にコンテキストキャッシュにおけるコンテキスト IDが返る．

3.3. Responsive Multithreaded Processor固有の命令 181

3.3.6 SIMD演算命令

SADD.size SIMD Add
SIMD加算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100000
ADD

ニーモニック:

SADD.8 rd, rs, rt (size = 01)

SADD.16 rd, rs, rt (size = 10)

SADD.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] + FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD加算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．

182 第 3章 命令セット

SADD.size.sc SIMD Add Scalar

SIMD加算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
110000

ADD.sc

ニーモニック:

SADD.8.sc rd, rs, rt (size = 01)

SADD.16.sc rd, rs, rt (size = 10)

SADD.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] + FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD加算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 183

SSUB.size SIMD Subtract

SIMD減算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100010
SUB

ニーモニック:

SSUB.8 rd, rs, rt (size = 01)

SSUB.16 rd, rs, rt (size = 10)

SSUB.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] − FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD減算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．

184 第 3章 命令セット

SSUB.size.sc SIMD Subtract Scalar

SIMD減算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
110010
SUB.sc

ニーモニック:

SSUB.8.sc rd, rs, rt (size = 01)

SSUB.16.sc rd, rs, rt (size = 10)

SSUB.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] − FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD減算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 185

SMULT.size SIMD Multiply

符号付き SIMD乗算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
011000
MULT

ニーモニック:

SMULT.8 rd, rs, rt (size = 01)

SMULT.16 rd, rs, rt (size = 10)

SMULT.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD乗算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．

186 第 3章 命令セット

SMULT.size.sc SIMD Multiply Scalar

符号付き SIMD乗算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
101000

MULT.sc

ニーモニック:

SMULT.8.sc rd, rs, rt (size = 01)

SMULT.16.sc rd, rs, rt (size = 10)

SMULT.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD乗算を行う．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 187

SMULTU.size SIMD Multiply Unsigned

符号無し SIMD乗算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
011001

MULTU

ニーモニック:

SMULTU.8 rd, rs, rt (size = 01)

SMULTU.16 rd, rs, rt (size = 10)

SMULTU.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD乗算を行う．値は符号無し整数として計算する．8は 8bit
× 8演算，16は 16bit × 4演算，32 は 32bit × 2演算．

188 第 3章 命令セット

SMULTU.size.sc SIMD Multiply Unsigned Scalar

符号無し SIMD乗算 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
101001

MULTU.sc

ニーモニック:

SMULTU.8.sc rd, rs, rt (size = 01)

SMULTU.16.sc rd, rs, rt (size = 10)

SMULTU.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] × FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD乗算を行う．値は符号無し整数として計算する．8は 8bit
× 8演算，16は 16bit × 4演算，32 は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに
複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 189

SAND.size.sc SIMD And Scalar

SIMD論理積 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100100

AND.sc

ニーモニック:

SAND.8.sc rd, rs, rt (size = 01)

SAND.16.sc rd, rs, rt (size = 10)

SAND.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] and FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD論理積を計算する．8は 8bit × 8演算，16は 16bit × 4演
算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

190 第 3章 命令セット

SOR.size.sc SIMD Or Scalar

SIMD論理和 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100101
OR.sc

ニーモニック:

SOR.8.sc rd, rs, rt (size = 01)

SOR.16.sc rd, rs, rt (size = 01)

SOR.32.sc rd, rs, rt (size = 01)

機能 :

FPR[rd] ← FPR[rs] or FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD論理和を計算する．8は 8bit × 8演算，16は 16bit × 4演
算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 191

SXOR.size.sc SIMD Exclusive Or Scalar

SIMD排他的論理和 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100110

XOR.sc

ニーモニック:

SXOR.8.sc rd, rs, rt (size = 01)

SXOR.16.sc rd, rs, rt (size = 10)

SXOR.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] xor FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD排他的論理和を計算する．8 は 8bit × 8演算，16は 16bit
× 4演算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

192 第 3章 命令セット

SNOR.size.sc SIMD Not Or Scalar

SIMD否定論理和 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
100111

NOR.sc

ニーモニック:

SNOR.8.sc rd, rs, rt (size = 01)

SNOR.16.sc rd, rs, rt (size = 10)

SNOR.32.sc rd, rs, rt (size = 11)

機能 :

FPR[rd] ← FPR[rs] nor FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD論理和の否定を計算する．8 は 8bit × 8演算，16は 16bit
× 4演算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 193

SSLT.size SIMD Set Less Than

SIMD大小判定 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
101010
SLT

ニーモニック:

SSLT.8 rd, rs, rt (size = 01)

SSLT.16 rd, rs, rt (size = 10)

SSLT.32 rd, rs, rt (size = 11)

機能 :

if FPR[rs] < FPR[rt] then
FPR[rd] ← 1

else
FPR[rd] ← 0

endif

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD大小判定を行う．8は 8bit × 8演算，16は 16bit × 4演
算，32は 32bit × 2演算．

194 第 3章 命令セット

SSLT.size.sc SIMD Set Less Than Scalar

SIMD大小判定 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
011010
SLT.sc

ニーモニック:

SSLT.8.sc rd, rs, rt (size = 01)

SSLT.16.sc rd, rs, rt (size = 10)

SSLT.32.sc rd, rs, rt (size = 11)

機能 :

if FPR[rs] < FPR[rt] then
FPR[rd] ← 1

else
FPR[rd] ← 0

endif

例外 :

None

概要 :

浮動小数点レジスタを用いて SIDM大小判定を行う．8は 8bit × 8演算，16は 16bit × 4演
算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 195

SSLTU.size SIMD Set Less Than Unsigned

符号無し SIMD大小判定 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
101011
SLTU

ニーモニック:

SSLTU.8 rd, rs, rt (size = 01)

SSLTU.16 rd, rs, rt (size = 10)

SSLTU.32 rd, rs, rt (size = 11)

機能 :

if FPR[rs] < FPR[rt] then
FPR[rd] ← 1

else
FPR[rd] ← 0

endif

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD大小判定を行う．値は符号無し整数として比較を行う．8
は 8bit × 8演算，16は 16bit × 4演算，32は 32bit × 2演算．

196 第 3章 命令セット

SSLTU.size.sc SIMD Set Less Than Unsigned Scalar

符号無し SIMD大小判定 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
011011

SLTU.sc

ニーモニック:

SSLTU.8.sc rd, rs, rt (size = 01)

SSLTU.16.sc rd, rs, rt (size = 10)

SSLTU.32.sc rd, rs, rt (size = 11)

機能 :

if FPR[rs] < FPR[rt] then
FPR[rd] ← 1

else
FPR[rd] ← 0

endif

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD大小判定を行う．値は符号無し整数として比較を行う．8
は 8bit × 8演算，16は 16bit × 4演算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィー
ルドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 197

SSLLV.size SIMD Shift Left Logical Variable

SIMD左論理シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000100
SLLV

ニーモニック:

SSLLV.8 rd, rt, rs (size = 01)

SSLLV.16 rd, rt, rs (size = 10)

SSLLV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] 	 FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD左論理シフトを行う．8は 8bit × 8演算，16は 16bit × 4
演算，32は 32bit × 2演算．

198 第 3章 命令セット

SSLLV.size.sc SIMD Shift Left Logical Variable Scalar

SIMD左論理シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010100

SLLV.sc

ニーモニック:

SSLLV.8.sc rd, rt, rs (size = 01)

SSLLV.16.sc rd, rt, rs (size = 10)

SSLLV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] 	 FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD左論理シフトを行う．8は 8bit × 8演算，16は 16bit × 4
演算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 199

SSRLV.size SIMD Shift Right Logical Variable

SIMD右論理シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000110
SRLV

ニーモニック:

SSRLV.8 rd, rt, rs (size = 01)

SSRLV.16 rd, rt, rs (size = 10)

SSRLV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt]
 FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD右論理シフトを行う．8は 8bit × 8演算，16は 16bit × 4
演算，32は 32bit × 2演算．

200 第 3章 命令セット

SSRLV.size.sc SIMD Shift Right Logical Variable Scalar

SIMD右論理シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010110

SRLV.sc

ニーモニック:

SSRLV.8.sc rd, rt, rs (size = 01)

SSRLV.16.sc rd, rt, rs (size = 10)

SSRLV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt]
 FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD右論理シフトを行う．8は 8bit × 8演算，16は 16bit × 4
演算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 201

SSRAV.size SIMD Shift Right Arithmetic Variable

SIMD右算術シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000111
SRAV

ニーモニック:

SSRAV.8 rd, rt, rs (size = 01)

SSRAV.16 rd, rt, rs (size = 10)

SSRAV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt]
 FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD右算術シフトを行う．8は 8bit × 8演算，16は 16bit × 4
演算，32は 32bit × 2演算．

202 第 3章 命令セット

SSRAV.size.sc SIMD Shift Right Arithmetic Variable Scalar

SIMD右算術シフト SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010111

SRAV.sc

ニーモニック:

SSRAV.8.sc rd, rt, rs (size = 01)

SSRAV.16.sc rd, rt, rs (size = 10)

SSRAV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt]
 FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD右算術シフトを行う．8は 8bit × 8演算，16は 16bit × 4
演算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 203

SRTLV.size SIMD Rotate Left Variable

SIMD左ローテーション SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000000
RTL

ニーモニック:

SRTLV.8 rd, rt, rs (size = 01)

SRTLV.16 rd, rt, rs (size = 10)

SRTLV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] <<< FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD左ローテーションを行う．8 は 8bit × 8演算，16は 16bit
× 4演算，32は 32bit × 2演算．

204 第 3章 命令セット

SRTLV.size.sc SIMD Rotate Left Variable Scalar

SIMD左ローテーション SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010000
RTL.sc

ニーモニック:

SRTLV.8.sc rd, rt, rs (size = 01)

SRTLV.16.sc rd, rt, rs (size = 10)

SRTLV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] <<< FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD左ローテーションを行う．8 は 8bit × 8演算，16は 16bit
× 4演算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 205

SRTRV.size SIMD Rotate Right Variable

SIMD右ローテーション SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
000010
RTR

ニーモニック:

SRTRV.8 rd, rt, rs (size = 01)

SRTRV.16 rd, rt, rs (size = 10)

SRTRV.32 rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] >>> FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD右ローテーションを行う．8 は 8bit × 8演算，16は 16bit
× 4演算，32は 32bit × 2演算．

206 第 3章 命令セット

SRTRV.size.sc SIMD Rotate Right Variable Scalar

SIMD右ローテーション SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
010010
RTR.sc

ニーモニック:

SRTRV.8.sc rd, rt, rs (size = 01)

SRTRV.16.sc rd, rt, rs (size = 10)

SRTRV.32.sc rd, rt, rs (size = 11)

機能 :

FPR[rd] ← FPR[rt] >>> FPR[rs]

例外 :

None

概要 :

浮動小数点レジスタを用いて SIMD右ローテーションを行う．8 は 8bit × 8演算，16は 16bit
× 4演算，32は 32bit × 2演算．FPR[rt]の下位 bitが各フィールドに複製されて演算される．

3.3. Responsive Multithreaded Processor固有の命令 207

PCK Pack Data

データパッキング SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111000
PCK

ニーモニック:

PCK.8 rd, rs, rt (size = 01)

PCK.16 rd, rs, rt (size = 10)

PCK.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← pack(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタにデータをパッキングする．rs, rtに指定された浮動小数点レジスタを size
の大きさで分割し，区切ったフィールドの下位半分を集めて 1つにまとめる．

208 第 3章 命令セット

PCKH Pack Data on High Bit

データパッキング SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111001
PCKH

ニーモニック:

PCKH.8 rd, rs, rt (size = 01)

PCKH.16 rd, rs, rt (size = 10)

PCKH.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← packh(FPR[rs], FPR[rt])

例外 :

None

概要 :

浮動小数点レジスタにデータをパッキングする．rs, rtに指定された浮動小数点レジスタを size
の大きさで分割し，区切ったフィールドの上位半分を集めて 1つにまとめる．

3.3. Responsive Multithreaded Processor固有の命令 209

CAT1 Concatenate Data Type1

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111010
CAT1

ニーモニック:

CAT1.8 rd, rs, rt (size = 01)

CAT1.16 rd, rs, rt (size = 10)

CAT1.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat1(FPR[rs], FPR[rt])

例外 :

None

概要 :

データを結合して浮動小数点レジスタに入れる．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．

210 第 3章 命令セット

CAT1H Concatenate Data Type1 on High Bit

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111011

CAT1H

ニーモニック:

CAT1H.8 rd, rs, rt (size = 01)

CAT1H.16 rd, rs, rt (size = 10)

CAT1H.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat1h(FPR[rs], FPR[rt])

例外 :

None

概要 :

データを結合して浮動小数点レジスタに入れる．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．

3.3. Responsive Multithreaded Processor固有の命令 211

CAT2 Concatenate Data Type2

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111100
CAT2

ニーモニック:

CAT2.8 rd, rs, rt (size = 01)

CAT2.16 rd, rs, rt (size = 10)

CAT2.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat2(FPR[rs], FPR[rt])

例外 :

None

概要 :

データを結合して浮動小数点レジスタに入れる．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．

212 第 3章 命令セット

CAT2H Concatenate Data Type2 on High Bit

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111101

CAT2H

ニーモニック:

CAT2H.8 rd, rs, rt (size = 01)

CAT2H.16 rd, rs, rt (size = 10)

CAT2H.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat2h(FPR[rs], FPR[rt])

例外 :

None

概要 :

データを結合して浮動小数点レジスタに入れる．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．

3.3. Responsive Multithreaded Processor固有の命令 213

CAT3 Concatenate Data Type3

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111110
CAT3

ニーモニック:

CAT3.8 rd, rs, rt (size = 01)

CAT3.16 rd, rs, rt (size = 10)

CAT3.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat3(FPR[rs], FPR[rt])

例外 :

None

概要 :

データを結合して浮動小数点レジスタに入れる．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．

214 第 3章 命令セット

CAT3H Concatenate Data Type3 on High Bit

データ結合 SIMD

31 26
011100
SIMD

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7 6
size

5 0
111111

CAT3H

ニーモニック:

CAT3H.8 rd, rs, rt (size = 01)

CAT3H.16 rd, rs, rt (size = 10)

CAT3H.32 rd, rs, rt (size = 11)

機能 :

FPR[rd] ← cat3h(FPR[rs], FPR[rt])

例外 :

None

概要 :

データを結合して浮動小数点レジスタに入れる．8は 8bit × 8演算，16は 16bit × 4演算，32
は 32bit × 2演算．

3.3. Responsive Multithreaded Processor固有の命令 215

3.3.7 同期命令

RGPSH Read Shared(General Purpose Register)
同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
00000

0

5 0
100000

GPSHR

ニーモニック:

RGPSH rt, ss

機能 :

GPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから汎用レジスタに値を読み込む．

WGPSH Write Shared(General Purpose Register)
同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100000

GPSHR

ニーモニック:

WGPSH rt, sd

機能 :

SHARE[sd] ← GPR[rt]

例外 :

None

概要 :

汎用レジスタから共有レジスタに値を書き込む．

216 第 3章 命令セット

RFPSH Read Shared(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
00000

0

5 0
100100

FPSHR

ニーモニック:

RFPSH rt, ss

機能 :

FPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから浮動小数点レジスタに値を読み込む．

WFPSH Write Shared(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100100

FPSHR

ニーモニック:

WFPSH rt, sd

機能 :

SHARE[sd] ← FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタから共有レジスタに値を書き込む．

3.3. Responsive Multithreaded Processor固有の命令 217

RGPEX Read Exclusive(General Purpose Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
00000

0

5 0
100001

GPLOCK

ニーモニック:

RGPEX rt, ss

機能 :

GPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから汎用レジスタに値を読み込む．

WGPEX Write Exclusive(General Purpose Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100001

GPLOCK

ニーモニック:

WGPEX rt, sd

機能 :

SHARE[sd] ← GPR[rt]

例外 :

None

概要 :

汎用レジスタから共有レジスタに値を書き込む．

218 第 3章 命令セット

RFPEX Read Exclusive(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
00000

0

5 0
100101

FPLOCK

ニーモニック:

RFPEX rt, ss

機能 :

FPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから浮動小数点レジスタに値を読み込む．

WFPEX Write Exclusive(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100101

FPLOCK

ニーモニック:

WFPEX rt, sd

機能 :

SHARE[sd] ← FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタから共有レジスタに値を書き込む．

3.3. Responsive Multithreaded Processor固有の命令 219

GPCO Read Consumer(General Purpose Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
tid

5 0
100010

GPPRCO

ニーモニック:

GPCO rt, ss, tid

機能 :

GPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから汎用レジスタに値を読み込む．tidにはスレッドの IDを指定する．

GPPR Write Producer(General Purpose Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
ss

10 6
tid

5 0
100010

GPPRCO

ニーモニック:

GPPR rt, sd, tid

機能 :

SHARE[sd] ← GPR[rt]

例外 :

None

概要 :

汎用レジスタから共有レジスタに値を書き込む．tidにはスレッドの IDを指定する．

220 第 3章 命令セット

FPCO Read Consumer(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00000
MF

20 16
rt

15 11
ss

10 6
tid

5 0
100110

FPPRCO

ニーモニック:

FPCO rt, ss, tid

機能 :

FPR[rt] ← SHARE[ss]

例外 :

None

概要 :

共有レジスタから浮動小数点レジスタに値を読み込む．tidにはスレッドの IDを指定する．

FPPR Write Producer(Floating-Point Register)

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
ss

10 6
tid

5 0
100110

FPPRCO

ニーモニック:

FPPR rt, sd, tid

機能 :

SHARE[sd] ← FPR[rt]

例外 :

None

概要 :

浮動小数点レジスタから共有レジスタに値を書き込む．tidにはスレッドの IDを指定する．

3.3. Responsive Multithreaded Processor固有の命令 221

BAR Barrier

同期命令 SYNC

31 26
010000
COP0

25 21
00100
MT

20 16
rt

15 11
sd

10 6
00000

0

5 0
100011

BARRIER

ニーモニック:

BAR rt, sd

機能 :

SHARE[sd] ← GPR[rt] + 1

例外 :

None

概要 :

—–

PBAR Pre Barrier
同期命令 SYNC

31 26
010000
COP0

25 21
000000
MF

20 16
00000

0

15 11
sd

10 6
00000

0

5 0
100011

BARRIER

ニーモニック:

PBAR sd

機能 :

—–

例外 :

None

概要 :

—–

222 第 3章 命令セット

3.3.8 整数ベクトル命令

VADD Vector Add
ベクトル加算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100000
ADD

ニーモニック:

VADD.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VADD.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VADD.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VADD.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] + VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル加算．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて
演算を行う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 223

VSUB Vector Subtract

ベクトル減算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
100010
SUB

ニーモニック:

VSUB.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VSUB.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VSUB.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VSUB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VSUB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VSUB.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] − VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル減算．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて
演算を行う．s1が 1の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を用いて演
算を行う．syncが 1の場合は，投機実行を抑制する．

224 第 3章 命令セット

VMULT Vector Multiply

ベクトル乗算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
011000
MULT

ニーモニック:

VMULT.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULT.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULT.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULT.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号付きベクトル乗算．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 225

VMULTU Vector Multiply Unsigned

ベクトル乗算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
011001

MULTU

ニーモニック:

VMULTU.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULTU.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULTU.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULTU.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル乗算．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

226 第 3章 命令セット

VMULTH Vector Multiply on High Bit

ベクトル乗算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
010000

MULTH

ニーモニック:

VMULTH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULTH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULTH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULTH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号付きベクトル乗算．演算結果の上位 bit(63-32bit)が VGPR[rd]に格納される．s0が 1の
場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncが 1の
場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 227

VMULTUH Vector Multiply Unsigned on High Bit

ベクトル乗算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
010001

MULTUH

ニーモニック:

VMULTUH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMULTUH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMULTUH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMULTUH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル乗算．演算結果の上位 bit(63-32bit)が VGPR[rd]に格納される．s0が 1の
場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncが 1の
場合は，投機実行を抑制する．

228 第 3章 命令セット

VDIV Vector Divide

ベクトル除算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
011010
DIV

ニーモニック:

VDIV.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIV.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIV.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIV.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIV.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIV.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号付きベクトル除算．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s1が 1の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を
用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 229

VDIVU Vector Divide Unsigned

ベクトル除算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
011011
DIVU

ニーモニック:

VDIVU.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIVU.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIVU.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIVU.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIVU.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIVU.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル除算．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s1が 1の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を
用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

230 第 3章 命令セット

VREM Vector Reminder

ベクトル剰余 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
010010
REM

ニーモニック:

VREM.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VREM.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VREM.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VREM.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VREM.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VREM.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号付きベクトル剰余．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s1がの場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を用
いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 231

VREMU Vector Reminder Unsigned

ベクトル剰余 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
010011
REMU

ニーモニック:

VREMU.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VREMU.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VREMU.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VREMU.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VREMU.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VREMU.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] ÷ VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル剰余．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s1が 1の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])を
用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

232 第 3章 命令セット

VMADD Vector Multiply and Add

ベクトル積和演算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100001
MADD

ニーモニック:

VMADD.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMADD.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMADD.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMADD.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] + VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

ベクトル積和演算．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用
いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 233

VMSUB Vector Multiply and Subtract

ベクトル積差演算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100011
MSUB

ニーモニック:

VMSUB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMSUB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMSUB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMSUB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] − VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

ベクトル積差演算．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用
いて演算を行う．syncが 1の場合は，投機実行を抑制する．

234 第 3章 命令セット

VACC Vector Accumulate

ベクトル累算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
001010
ACC

ニーモニック:

VACC rd, rs (sync(s) = 0)

VACC.sy rd, rs (sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル累算．ベクトルの要素を全て加算する．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 235

VMAC Vector Multiply and Accumulate

ベクトル積和演算 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
001011
MAC

ニーモニック:

VMAC.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMAC.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMAC.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMAC.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル積和演算．2つのベクトル要素を乗算し，それを全て加算する．s0が1の場合はVGPR[rt]
の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncが 1の場合は，投機実行
を抑制する．

236 第 3章 命令セット

VAND Vector And

ベクトル論理積 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100100
AND

ニーモニック:

VAND.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VAND.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VAND.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VAND.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] and VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル論理積．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用い
て演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 237

VOR Vector Or

ベクトル論理和 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100101
OR

ニーモニック:

VOR rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VOR.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VOR.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VOR.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] or VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル論理和．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用い
て演算を行う．syncが 1の場合は，投機実行を抑制する．

238 第 3章 命令セット

VXOR Vector Exclusive Or

ベクトル排他的論理和 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100110
XOR

ニーモニック:

VXOR.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VXOR.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VXOR.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VXOR.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] xor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル排他的論理和．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 239

VNOR Vector Not Or

ベクトル否定論理和 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
100111
NOR

ニーモニック:

VNOR.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VNOR.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VNOR.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VNOR.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] nor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

ベクトル否定論理和．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を
用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

240 第 3章 命令セット

VSLLV Vector Shift Left Logical Variable

ベクトル左論理シフト VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000100
SLLV

ニーモニック:

VSLLV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSLLV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSLLV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSLLV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] 	 VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル左論理シフト．s0が 1の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 241

VSRLV Vector Shift Right Logical Variable

ベクトル右論理シフト VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000110
SRLV

ニーモニック:

VSRLV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSRLV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSRLV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSRLV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt]
 VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右論理シフト．s0が 1の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

242 第 3章 命令セット

VSRAV Vector Shift Right Arithmetic Variable

ベクトル右算術シフト VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000111
SRAV

ニーモニック:

VSRAV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSRAV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSRAV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSRAV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt]
 VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右算術シフト．s0が 1の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 243

VRTLV Vector Rotate Left Variable

ベクトル左ローテーション VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000000
SRTLV

ニーモニック:

VRTLV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VRTLV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VRTLV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VRTLV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] <<< VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル左ローテーション．s0が 1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

244 第 3章 命令セット

VRTRV Vector Rotate Right Variable

ベクトル右ローテーション VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000010

SRTRV

ニーモニック:

VRTRV.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VRTRV.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VRTRV.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VRTRV.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] >>> VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右ローテーション．s0が 1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 245

VCMP Vector Compare

ベクトル比較 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101000
CMP

ニーモニック:

VCMP.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

ベクトル比較命令．条件 (cond)によりVGPR[rd]に1または0が入る．s0が1の場合はVGPR[rt]
の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncが 1の場合は，投機実行
を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを
指定する．

246 第 3章 命令セット

VCMPU Vector Compare Unsigned

ベクトル比較 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101001
CMPU

ニーモニック:

VCMPU.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPU.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPU.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPU.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VREG[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル比較命令．条件 (cond)によりVGPR[rd]に 1または 0が入る．s0が 1の場合
は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncが 1の場合
は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)
のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 247

VCMPTS Vector Compare to Scalar Register

ベクトル比較 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101010

CMPTS

ニーモニック:

VCMPTS.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

ベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納される．s0が
1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncが 1
の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，
ge(≥)のどれかを指定する．

248 第 3章 命令セット

VCMPUTS Vector Compare Unsigned to Scalar Register

ベクトル比較 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101011

CMPUTS

ニーモニック:

VCMPUTS.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPUTS.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPUTS.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPUTS.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

符号無しベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納さ
れる．s0が 1の場合は VGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行
う．syncが 1の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，
ne(�=)，le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 249

VIRSH Vector Register Shift

ベクトルレジスタシフト VECTOR (MRMTP2以降)

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
010100
RSH

ニーモニック:

VIRSH rd, rs, rt (sync(s) = 0)

VIRSH.sy rd, rs, rt (sync(s) = 1)

機能 :

VREG[rd][i] ← VREG[rs][i−SREG[rt]]

例外 :

Vector Integer Exception :

概要 :

レジスタの要素をスカラレジスタ rtの分だけシフトする．デスティネーションレジスタの要素
iにはスカラレジスタ rtの分だけ減算した要素番号の値が入る．シフト値はマイナスの値も指
定することが可能．ソースレジスタの要素番号がマイナスおよびベクトル長よりも大きくなっ

た場合，デスティネーションレジスタには 0が入る．

250 第 3章 命令セット

VIRROT Vector Register Rotation

ベクトルレジスタローテーション VECTOR (MRMTP2以降)

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
010101
RROT

ニーモニック:

VIRROT rd, rs, rt (sync(s) = 0)

VIRROT.sy rd, rs, rt (sync(s) = 1)

機能 :

VREG[rd][i] ← VREG[rs][(i−SREG[rt]) mod LENGTH]

例外 :

Vector Integer Exception :

概要 :

レジスタの要素をスカラレジスタ rtの分だけローテーションする．デスティネーションレジス
タの要素 iにはスカラレジスタ rtの分だけ減算し，ベクトル長で除算した剰余の要素番号の値
が入る．シフト値はマイナスの値も指定することが可能．

3.3. Responsive Multithreaded Processor固有の命令 251

VIRPK Vector Register Packing

ベクトルレジスタパッキング VECTOR (MRMTP2以降)

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 9
00
0

8
si

7
b

6
s

5 0
010110
RPK

ニーモニック:

VIRPK rd, rs (sync(s) = 0, high(h) = 0, byte(b) = 0)

VIRPK.sy rd, rs (sync(s) = 1, high(h) = 0, byte(b) = 0)

VIRPK.b rd, rs (sync(s) = 0, high(h) = 0, byte(b) = 1)

VIRPK.b.sy rd, rs (sync(s) = 1, high(h) = 0, byte(b) = 1)

VIRPK.h rd, rs (sync(s) = 0, high(h) = 1, byte(b) = 0)

VIRPK.h.sy rd, rs (sync(s) = 1, high(h) = 1, byte(b) = 0)

VIRPK.b.h rd, rs (sync(s) = 0, high(h) = 1, byte(b) = 1)

VIRPK.b.h.sy rd, rs (sync(s) = 1, high(h) = 1, byte(b) = 1)

機能 :

VREG[rd][i/2] ← { VREG[rs][i]15...0, VREG[rs][i+1]15...0} (high = 0, byte = 0)
VREG[rd][i/2] ← { VREG[rs][i]31...16, VREG[rs][i+1]31...16} (high = 1, byte = 0)
VREG[rd][i/2] ←{ VREG[rs][i]23...16, VREG[rs][i+1]23...16, VREG[rs][i]7...0, VREG[rs][i+1]7...0}
(high = 0, byte = 1)
VREG[rd][i/2] ←{ VREG[rs][i]31...24, VREG[rs][i+1]31...24, VREG[rs][i]15...8, VREG[rs][i+1]15...8}
(high = 1, byte = 1)

例外 :

Vector Integer Exception :

概要 :

ベクトルレジスタの要素 iと i+1をパッキングし i番目のレジスタに格納する．この結果，デ
スティネーションのベクトルレジスタのベクトル長は元のレジスタのベクトル長の半分になる．

syncが 1の場合は，投機実行を抑制する．

252 第 3章 命令セット

VIRUPK Vector Register Unpacking

ベクトルレジスタアンパッキング VECTOR (MRMTP2以降)

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 9
00
0

8
h

7
b

6
s

5 0
010111
RUPK

ニーモニック:

VIRUPK rd, rs (sync(s) = 0, signed(si) = 0, byte(b) = 0)

VIRUPK.sy rd, rs (sync(s) = 1, signed(si) = 0, byte(b) = 0)

VIRUPK.b rd, rs (sync(s) = 0, signed(si) = 0, byte(b) = 1)

VIRUPK.b.sy rd, rs (sync(s) = 1, signed(si) = 0, byte(b) = 1)

VIRUPK.s rd, rs (sync(s) = 0, signed(si) = 1, byte(b) = 0)

VIRUPK.s.sy rd, rs (sync(s) = 1, signed(si) = 1, byte(b) = 0)

VIRUPK.b.s rd, rs (sync(s) = 0, signed(si) = 1, byte(b) = 1)

VIRUPK.b.s.sy rd, rs (sync(s) = 1, signed(si) = 1, byte(b) = 1)

機能 :

VREG[rd][i*2] ← zero ext(VREG[rs][i]31...16),
VREG[rd][i*2+1] ← zero ext(VREG[rs][i]15...0) (signed = 0, byte = 0)
VREG[rd][i*2] ← sign ext(VREG[rs][i]31...16),
VREG[rd][i*2+1] ← sign ext(VREG[rs][i]15...0) (signed = 1, byte = 0)
VREG[rd][i*2] ← { zero ext(VREG[rs][i]31...24), zero ext(VREG[rs][i]15...8)},
VREG[rd][i*2+1] ← { zero ext(VREG[rs][i]23...16), zero ext(VREG[rs][i]7...0)} (signed = 0,
byte = 1)
VREG[rd][i*2] ← { sign ext(VREG[rs][i]31...24), sign ext(VREG[rs][i]15...8)},
VREG[rd][i*2+1] ← { sign ext(VREG[rs][i]23...16), sign ext(VREG[rs][i]7...0)} (signed = 1,
byte = 1)

例外 :

Vector Integer Exception :

概要 :

ベクトルレジスタの要素 iをアンパッキングし i*2番目と i*2+1 番目のレジスタに格納する．
この結果，デスティネーションのベクトルレジスタのベクトル長は元のレジスタのベクトル長

の倍になる．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 253

VIMFC Move from Vector Integer Control Register

制御レジスタリード VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110000
MFC

ニーモニック:

VIMFC rd, rs (sync(s) = 0)

VIMFC.sy rd, rs (sync(s) = 1)

機能 :

GPR[rd] ← VICTRL[rs]

例外 :

概要 :

整数ベクトル制御レジスタリード命令．rsで指定された制御レジスタの値を汎用レジスタに格
納する．syncが 1の場合，投機実行を抑制する．

254 第 3章 命令セット

VIMTC Move to Vector Integer Control Register

制御レジスタライト VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110001
MTC

ニーモニック:

VIMTC rd, rs (sync(s) = 0)

VIMTC.sy rd, rs (sync(s) = 1)

機能 :

VICTRL[rd] ← GPR[rs]

例外 :

概要 :

整数ベクトル制御レジスタライト命令．rdで指定された制御レジスタに汎用レジスタの値を格
納する．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 255

VIMFS Move from Vector Integer Scalar Register

整数スカラレジスタリード VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110010
MFS

ニーモニック:

VIMFS rd, rs (sync(s) = 0)

VIMFS.sy rd, rs (sync(s) = 1)

機能 :

GPR[rd] ← SGPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数スカラレジスタリード命令．rsで指定された整数スカラレジスタの値を汎用レジスタに格
納する．syncが 1の場合，投機実行を抑制する．

256 第 3章 命令セット

VIMTS Move to Vector Integer Scalar Register

整数スカラレジスタライト VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110011
MTS

ニーモニック:

VIMTS rd, rs (sync(s) = 0)

VIMTS.sy rd, rs (sync(s) = 1)

機能 :

SGPR[rd] ← GPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数スカラレジスタライト命令．rdで指定された整数スカラレジスタに汎用レジスタの値を格
納する．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 257

VIMFV Move from Vector Integer Vector Register

整数ベクトルレジスタリード VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
110100
MFV

ニーモニック:

VIMFV rd, rs, rt (sync(s) = 0)

VIMFV.sy rd, rs, rt (sync(s) = 1)

機能 :

SGPR[rd] ← VGPR[rs][rt]

例外 :

Vector Integer Exception :

概要 :

整数ベクトルレジスタリード命令．rsで指定された整数ベクトルレジスタの rt番目の要素の値
を整数スカラレジスタに格納する．syncが 1の場合，投機実行を抑制する．

258 第 3章 命令セット

VIMTV Move to Vector Integer Vector Register

整数ベクトルレジスタライト VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
110101
MTV

ニーモニック:

VIMTV rd, rs, rt (sync(s) = 0)

VIMTV.sy rd, rs, rt (sync(s) = 1)

機能 :

VGPR[rd][rt] ← SGPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数ベクトルレジスタリード命令．rdで指定された整数ベクトルレジスタの rt番目の要素に
整数スカラレジスタの値を書き込む．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 259

VIMTM Move to Vector Integer Mask Register

整数ベクトルマスクレジスタライト VECTOR

31 26
011110
VINT

25 21
rs

20 9
000000000000

0

8
s1

7
s0

6
s

5 0
011110
MTM

ニーモニック:

VIMTM.lo rs (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VIMTM.hi rs (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VIMTM.lo.sy rs (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VIMTM.hi.sy rs (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VICTRL[Mask Regieter] ← SGPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数ベクトルマスクレジスタライト命令．rsで指定した整数スカラレジスタの値をマスクレジ
スタに格納する．s0が 1の場合，マスクレジスタの下位 32bitに値を格納し，s1が 1の場合，
マスクレジスタの上位 32bitに値を格納する．syncが 1の場合，投機実行を抑制する．

260 第 3章 命令セット

VIRSV Vector Integer Register Reserve

整数ベクトルレジスタ予約 VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110110
RSV

ニーモニック:

VIRSV rd, rs (sync(s) = 0)

VIRSV.sy rd, rs (sync(s) = 1)

機能 :

reserve vector register(GPR[rs])
if success reserve operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

None

概要 :

整数ベクトルレジスタ予約命令．GPR[rs]に予約するレジスタの構成を指定する．予約に成功
した場合は GPR[rd]に 1が，失敗した場合は 0が格納される．syncが 1の場合，投機実行を
抑制する．

3.3. Responsive Multithreaded Processor固有の命令 261

VIRLS Vector Integer Register Release

整数ベクトルレジスタ開放 VECTOR

31 26
011110
VINT

25 16
0000000000

15 11
rd

10 7
0000
0

6
s

5 0
110111
RLS

ニーモニック:

VIRLS rd (sync(s) = 0)

VIRLS.sy rd (sync(s) = 1)

機能 :

release vector register()
if success release operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

None

概要 :

整数ベクトルレジスタ開放命令．開放に成功した場合はGPR[rd]に 1が，失敗した場合は 0が
格納される．syncが 1の場合，投機実行を抑制する．

262 第 3章 命令セット

VIDCI Vector Integer Define Compound Instruction

整数ベクトル複合命令定義 VECTOR

31 26
011110
VINT

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101110
DCI

ニーモニック:

VIDCI rd, rs (sync(s) = 0)

VIDCI.sy rd, rs (sync(s) = 1)

機能 :

VICPD[rd] ← GPR[rs]

例外 :

Vector Integer Exception :

概要 :

整数ベクトル複合命令の定義を行う．GPR[rs]で定義した命令を rdで指定した複合命令バッ
ファのアドレスに格納する．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 263

VIECI Vector Integer Execute Compound Instruction

整数ベクトル複合命令実行 VECTOR

31 26
011110
VINT

25 21
rs

20 16
rt

15 11
rd

10 6
no

5 0
101111
ECI

ニーモニック:

VIECI rd, rs, rt, no

機能 :

VGPR[rd] ← VGPR[rs] op VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

整数ベクトル複合命令の実行を行う．noで指定した複合命令バッファのアドレスから命令を実
行する．

264 第 3章 命令セット

VILW Vector Integer Load Word

整数ベクトルロード VECTOR

31 26
011110
VINT

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111010
LW

ニーモニック:

VILW rt, base (sync(s) = 0)

VILW.sy rt, base (sync(s) = 1)

機能 :

VGPR[rt] ← MEM.WORD[GPR[base]]

例外 :

Vector Integer Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

メモリから整数ベクトルレジスタにロードする．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 265

VISW Vector Integer Store Word

整数ベクトルストア VECTOR

31 26
011110
VINT

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111110
SW

ニーモニック:

VISW rt, base (sync(s) = 0)

VISW.sy rt, base (sync(s) = 1)

機能 :

MEM.WORD[GPR[base]] ← VGPR[rt]

例外 :

Vector Integer Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

整数ベクトルレジスタをメモリにストアする．syncが 1の場合，投機実行を抑制する．

266 第 3章 命令セット

VADD.QB Vector Add Quad Byte

ベクトル加算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100000
ADD

ニーモニック:

VADD.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VADD.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VADD.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VADD.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VADD.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VADD.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VADD.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VADD.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] + VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル加算．s0が 1の場合はVGPR[rt] の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1
の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 267

VSUB.QB Vector Subtract Quad Byte

ベクトル減算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
s1

7
s0

6
s

5 0
100010
SUB

ニーモニック:

VSUB.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.QB.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 0)

VSUB.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.QB.sv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 0)

VSUB.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.QB.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 1)

VSUB.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 1)

VSUB.QB.sv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] - VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル減算．s0が 1の場合はVGPR[rt] の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s1が 1の場合は VGPR[rs] の代わりに，スカラレジスタ (SGPR[rs])を
用いて演算を行う．s2が 1の場合はVGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1の
場合，投機実行を抑制する．

268 第 3章 命令セット

VMULT.QB Vector Multiply Quad Byte

ベクトル乗算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
011000
MULT

ニーモニック:

VMULT.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULT.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULT.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULT.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULT.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULT.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULT.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULT.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号付きベクトル乗算．s0 が 1 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 269

VMULTU.QB Vector Multiply Unsigned

ベクトル乗算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0

9
s2

8
0

7
s0

6
s

5 0
011001

MULTU

ニーモニック:

VMULTU.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTU.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTU.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTU.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTU.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTU.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTU.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTU.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号無しベクトル乗算．s0 が 1 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

270 第 3章 命令セット

VMULTH.QB Vector Multiply Quad Byte on High Bit

ベクトル乗算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010000

MULTH

ニーモニック:

VMULTH.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTH.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTH.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTH.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTH.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTH.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTH.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTH.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit × 2 符号付きベクトル乗算．8 bit 毎に演算結果の上位 bit(16-8bit) が VGPR[rd] に格納
される．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を
行う．s2が 1の場合はVGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1の場合，投機実
行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 271

VMULTUH.QB Vector Multiply Unsigned Quad Byte on High Bit

ベクトル乗算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010001

MULTUH

ニーモニック:

VMULTUH.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTUH.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号無しベクトル乗算．8 bit 毎に演算結果の上位 bit(16-8bit) が VGPR[rd] に格納
される．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を
行う．s2が 1の場合はVGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1の場合，投機実
行を抑制する．

272 第 3章 命令セット

VMADD.QB Vector Multiply and Add Quad Byte

ベクトル積和演算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100001
MADD

ニーモニック:

VMADD.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMADD.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMADD.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMADD.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMADD.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMADD.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMADD.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMADD.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] + VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4ベクトル積和演算．s0が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1
の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 273

VMSUB.QB Vector Multiply and Subtract Quad Byte

ベクトル積差演算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100011
MSUB

ニーモニック:

VMSUB.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMSUB.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMSUB.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMSUB.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMSUB.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMSUB.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMSUB.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMSUB.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] - VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4ベクトル積差演算．s0が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1
の場合，投機実行を抑制する．

274 第 3章 命令セット

VACC.QB Vector Accumulate Quad Byte

ベクトル累算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001010
ACC

ニーモニック:

VACC.QB rd, rs (sync(s) = 0)

VACC.QB.sy rd, rs (sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル累算．ベクトルの要素を全て加算する．syncが 1の場合，投機実行を抑制
する．

3.3. Responsive Multithreaded Processor固有の命令 275

VMAC.QB Vector Multiply and Accumulate Quad Byte

ベクトル積和演算 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
001011
MAC

ニーモニック:

VMAC.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMAC.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMAC.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMAC.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMAC.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMAC.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMAC.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMAC.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル積和演算．2 つのベクトル要素を乗算し，それを全て加算する．s0が 1の
場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．s2が 1の場
合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1の場合，投機実行を抑制する．

276 第 3章 命令セット

VAND.QB Vector And Quad Byte

ベクトル論理積 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100100
AND

ニーモニック:

VAND.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VAND.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VAND.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VAND.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VAND.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VAND.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VAND.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VAND.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] and VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4ベクトル論理積．s0が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1
の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 277

VOR.QB Vector Or

ベクトル論理和 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100101
OR

ニーモニック:

VOR.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VOR.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VOR.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VOR.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VOR.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VOR.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VOR.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VOR.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] or VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4ベクトル論理和．s0が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1
の場合，投機実行を抑制する．

278 第 3章 命令セット

VXOR.QB Vector Exclusive Or Quad Byte

ベクトル排他的論理和 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100110
XOR

ニーモニック:

VXOR.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VXOR.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VXOR.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VXOR.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VXOR.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VXOR.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VXOR.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VXOR.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] xor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル排他的論理和．s0 が 1 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 279

VNOR.QB Vector Not Or Paried HalfWord

ベクトル否定論理和 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100111
NOR

ニーモニック:

VNOR.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VNOR.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VNOR.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VNOR.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VNOR.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VNOR.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VNOR.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VNOR.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] nor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

8 bit × 4 ベクトル否定論理和．s0 が 1 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

280 第 3章 命令セット

VSLLV.QB Vector Shift Left Logical Variable Quad Byte

ベクトル左論理シフト VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000100
SLLV

ニーモニック:

VSLLV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSLLV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSLLV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSLLV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSLLV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSLLV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSLLV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSLLV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] 	 VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル左論理シフト．s0 が 1 の場合は VGPR[rs] の代わりに，スカラレジスタ
(SGPR[rs]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 281

VSRLV.QB Vector Shift Right Logical Variable Quad Byte

ベクトル右論理シフト VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000110
SRLV

ニーモニック:

VSRLV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRLV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRLV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRLV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRLV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRLV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRLV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRLV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt]
 VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル右論理シフト．s0 が 1 の場合は VGPR[rs] の代わりに，スカラレジスタ
(SGPR[rs]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

282 第 3章 命令セット

VSRAV.QB Vector Shift Right Arithmetic Variable Quad Byte

ベクトル右算術シフト VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000111
SRAV

ニーモニック:

VSRAV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRAV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRAV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRAV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRAV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRAV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRAV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRAV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt]
 VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右算術シフト．s0が 1の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1
の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 283

VRTLV.QB Vector Rotate Left Variable Quad Byte

ベクトル左ローテーション VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000000
SRTLV

ニーモニック:

VRTLV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTLV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTLV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTLV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTLV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTLV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTLV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTLV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] <<< VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル左ローテーション．s0が 1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 8 bit を用いて演算を行う．syncが 1
の場合，投機実行を抑制する．

284 第 3章 命令セット

VRTRV.QB Vector Rotate Right Variable Quad Byte

ベクトル右ローテーション VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000010

SRTRV

ニーモニック:

VRTRV.QB.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTRV.QB.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTRV.QB.vv.lo8 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTRV.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTRV.QB.vs.lo8 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTRV.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTRV.QB.vv.lo8.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTRV.QB.vs.lo8.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] >>> VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル右ローテーション．s0が 1の場合は VGPR[rs] の代わりに，スカラレジス
タ (SGPR[rs]) を用いて演算を行う．s2が 1 の場合は VGPR[rt] の下位 8 bit を用いて演算を
行う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 285

VCMP.QB Vector Compare

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101000
CMP

ニーモニック:

VCMP.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル比較命令．条件 (cond) によりVGPR[rd]に 1 または 0 が入る．s0が 1の場
合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．syncが 1の場
合，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)
のどれかを指定する．

286 第 3章 命令セット

VSCMP.QB Vector Compare

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001100
SCMP

ニーモニック:

VSCMP.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMP.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMP.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMP.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル比較命令．VGPR[rt] の下位 8 bit を用いて演算を行う．条件 (cond) によ
り VGPR[rd] に 1 または 0 が入る．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．sync が 1の場合，投機実行を抑制する．比較条件 (cond)に
は，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 287

VCMPU.QB Vector Compare Unsigned Quad Byte

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101001
CMPU

ニーモニック:

VCMPU.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPU.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPU.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPU.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号無しベクトル比較命令．条件 (cond) によりVGPR[rd]に 1 または 0が入る．s0
が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncが
1の場合，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，
ge(≥)のどれかを指定する．

288 第 3章 命令セット

VSCMPU.QB Vector Compare Unsigned Quad Byte

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001101

SCMPU

ニーモニック:

VSCMPU.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPU.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPU.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPU.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

8 bit× 4符号無しベクトル比較命令．VGPR[rt]の下位 8 bitを用いて演算を行う．条件 (cond)
によりVGPR[rd]に 1 または 0 が入る．s0が 1の場合はVGPR[rt]の代わりに，スカラレジス
タ (SGPR[rt]) を用いて演算を行う．syncが 1の場合，投機実行を抑制する．比較条件 (cond)
には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 289

VCMPTS.QB Vector Compare to Scalar Register Quad Byte

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101010

CMPTS

ニーモニック:

VCMPTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 ベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタに格納
される．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を
行う．syncが 1の場合，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，
ne(�=)，le(≤)，ge(≥)のどれかを指定する．

290 第 3章 命令セット

VSCMPTS.QB Vector Compare Quad Byte to Scalar Register

ベクトル比較 VECTOR

31 26

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001110

SCMPTS

ニーモニック:

VSCMPTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

8 bit × 4 ベクトル比較命令．VGPR[rt] の下位 8 bit を用いて演算を行う．結果は各要素ごと
に 1bit を割り当ててスカラレジスタに格納される．s0が 1の場合はVGPR[rt]の代わりに，ス
カラレジスタ (SGPR[rt]) を用いて演算を行う．syncが 1の場合，投機実行を抑制する．比較
条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 291

VCMPUTS.QB Vector Compare Unsigned Quad Byte to Scalar Register

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101011

CMPUTS

ニーモニック:

VCMPUTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPUTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPUTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPUTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号無しベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタ
に格納される．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて
演算を行う．syncが 1の場合，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，
lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

292 第 3章 命令セット

VSCMPUTS.QBVector Compare Unsigned Quad Byte to Scalar Register

ベクトル比較 VECTOR

31 26
111110

VINT.QB

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001111

SCMPUTS

ニーモニック:

VSCMPUTS.cond.QB.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPUTS.cond.QB.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPUTS.cond.QB.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPUTS.cond.QB.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

8 bit× 4 符号無しベクトル比較命令．VGPR[rt] の下位 8 bit を用いて演算を行う．結果は各
要素ごとに 1bit を割り当ててスカラレジスタに格納される．s0が 1の場合はVGPR[rt]の代わ
りに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．syncが 1の場合，投機実行を抑制す
る．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 293

VADD.PH Vector Add Paired HalfWord

ベクトル加算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100000
ADD

ニーモニック:

VADD.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VADD.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VADD.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VADD.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VADD.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VADD.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VADD.PH.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VADD.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] + VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル加算．s0が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行う．syncが
1の場合，投機実行を抑制する．

294 第 3章 命令セット

VSUB.PH Vector Subtract Paired HalfWord

ベクトル減算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
s1

7
s0

6
s

5 0
100010
SUB

ニーモニック:

VSUB.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PH.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 0)

VSUB.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PH.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PH.sv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 0)

VSUB.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PH.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 0, sync(s) = 1)

VSUB.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) =0, scalar2(s2) = 1, sync(s) = 1)

VSUB.PH.sv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) =1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] - VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル減算．s0が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s1が 1の場合は VGPR[rs] の代わりに，スカラレジスタ (SGPR[rs])を
用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行う．syncが 1
の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 295

VMULT.PH Vector Multiply Paired HalfWord

ベクトル乗算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
011000
MULT

ニーモニック:

VMULT.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULT.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULT.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULT.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULT.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULT.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULT.PH.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULT.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号付きベクトル乗算．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

296 第 3章 命令セット

VMULTU.PH Vector Multiply Unsigned

ベクトル乗算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0

9
s2

8
0

7
s0

6
s

5 0
011001

MULTU

ニーモニック:

VMULTU.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTU.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTU.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTU.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTU.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTU.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTU.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTU.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル乗算．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 297

VMULTH.PH Vector Multiply Paired HalfWord on High Bit

ベクトル乗算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010000

MULRH

ニーモニック:

VMULTH.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTH.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTH.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTH.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTH.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTH.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTH.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTH.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 符号付きベクトル乗算．16 bit 毎に演算結果の上位 bit(32-16bit) が VGPR[rd] に
格納される．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演
算を行う．s2が 1の場合はVGPR[rt]の下位 16 bit を用いて演算を行う．syncが 1の場合，投
機実行を抑制する．

298 第 3章 命令セット

VMULTUH.PH Vector Multiply Unsigned Paired HalfWord on High Bit

ベクトル乗算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010001

MULTUH

ニーモニック:

VMULTUH.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMULTUH.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMULTUH.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMULTUH.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMULTUH.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル乗算．16 bit 毎に演算結果の上位 bit(32-16bit) が VGPR[rd] に
格納される．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演
算を行う．s2が 1の場合はVGPR[rt]の下位 16 bit を用いて演算を行う．syncが 1の場合，投
機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 299

VMADD.PH Vector Multiply and Add Paired HalfWord

ベクトル積和演算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100001
MADD

ニーモニック:

VMADD.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMADD.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMADD.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMADD.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMADD.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMADD.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMADD.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMADD.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] + VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 ベクトル積和演算．s0 が 1 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

300 第 3章 命令セット

VMSUB.PH Vector Multiply and Subtract Paired HalfWord

ベクトル積差演算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100011
MSUB

ニーモニック:

VMSUB.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMSUB.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] × VGPR[rt] - VGPR[rd]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 ベクトル積差演算．s0 が 1 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 301

VACC.PH Vector Accumulate Paired HalfWord

ベクトル累算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 6
00000

0

5 0
001010
ACC

ニーモニック:

VACC.PH rd, rs (sync(s) = 0)

VACC.PH.sy rd, rs (sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル累算．ベクトルの要素を全て加算する．syncが 1の場合，投機実行を抑制
する．

302 第 3章 命令セット

VMAC.PH Vector Multiply and Accumulate Paired HalfWord

ベクトル積和演算 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
001011
MAC

ニーモニック:

VMAC.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMAC.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMAC.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMAC.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMAC.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMAC.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMAC.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMAC.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

SGPR[rd] ←
∑

VGPR[rs] × VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル積和演算．2 つのベクトル要素を乗算し，それを全て加算する．s0が 1の
場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．s2が 1の場
合は VGPR[rt] の下位 16 bit を用いて演算を行う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 303

VAND.PH Vector And Paired HalfWord

ベクトル論理積 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100100
AND

ニーモニック:

VAND.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VAND.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VAND.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VAND.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VAND.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VAND.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VAND.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VAND.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] and VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2ベクトル論理積．s0が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行う．syncが
1の場合，投機実行を抑制する．

304 第 3章 命令セット

VOR.PH Vector Or

ベクトル論理和 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100101
OR

ニーモニック:

VOR.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VOR.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VOR.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VOR.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VOR.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VOR.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VOR.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VOR.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] or VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2ベクトル論理和．s0が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行う．syncが
1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 305

VXOR.PH Vector Exclusive Or Paired HalfWord

ベクトル排他的論理和 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100110
XOR

ニーモニック:

VXOR.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VXOR.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VXOR.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VXOR.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VXOR.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VXOR.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VXOR.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VXOR.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] xor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル排他的論理和．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

306 第 3章 命令セット

VNOR.PH Vector Not Or Paried HalfWord

ベクトル否定論理和 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
100111
NOR

ニーモニック:

VNOR.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VNOR.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VNOR.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VNOR.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VNOR.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VNOR.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VNOR.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VNOR.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rs] nor VGPR[rt]

例外 :

Vector Integer Exception :

概要 :

16 bit × 2 ベクトル否定論理和．s0 が 1 の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 307

VSLLV.PH Vector Shift Left Logical Variable Paired HalfWord

ベクトル左論理シフト VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000100
SLLV

ニーモニック:

VSLLV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSLLV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSLLV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSLLV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSLLV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSLLV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSLLV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSLLV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] 	 VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル左論理シフト．s0が 1の場合は VGPR[rs] の代わりに，スカラレジスタ
(SGPR[rs]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

308 第 3章 命令セット

VSRLV.PH Vector Shift Right Logical Variable Paired HalfWord

ベクトル右論理シフト VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000110
SRLV

ニーモニック:

VSRLV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRLV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRLV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRLV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRLV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRLV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRLV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRLV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt]
 VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル右論理シフト．s0が 1の場合は VGPR[rs] の代わりに，スカラレジスタ
(SGPR[rs]) を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行
う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 309

VSRAV.PH Vector Shift Right Arithmetic Variable Paired HalfWord

ベクトル右算術シフト VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000111
SRAV

ニーモニック:

VSRAV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VSRAV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VSRAV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VSRAV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VSRAV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VSRAV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VSRAV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VSRAV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt]
 VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右算術シフト．s0が 1の場合は VGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行う．syncが
1の場合，投機実行を抑制する．

310 第 3章 命令セット

VRTLV.PH Vector Rotate Left Variable Paired HalfWord

ベクトル左ローテーション VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000000
SRTLV

ニーモニック:

VRTLV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTLV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTLV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTLV.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTLV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTLV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTLV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTLV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] <<< VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル左ローテーション．s0が 1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行う．syncが
1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 311

VRTRV.PH Vector Rotate Right Variable Paired HalfWord

ベクトル右ローテーション VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000010

SRTRV

ニーモニック:

VRTRV.PH.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VRTRV.PH.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VRTRV.PH.vv.lo16 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VRTRV.PH.vv,sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VRTRV.PH.vs.lo16 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VRTRV.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VRTRV.PH.vv.lo16.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VRTRV.PH.vs.lo16.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VGPR[rd] ← VGPR[rt] >>> VGPR[rs]

例外 :

Vector Integer Exception :

概要 :

ベクトル右ローテーション．s0が 1の場合はVGPR[rs]の代わりに，スカラレジスタ (SGPR[rs])
を用いて演算を行う．s2が 1の場合は VGPR[rt] の下位 16 bit を用いて演算を行う．syncが
1の場合，投機実行を抑制する．

312 第 3章 命令セット

VCMP.PH Vector Compare

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101000
CMP

ニーモニック:

VCMP.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル比較命令．条件 (cond) により VGPR[rd] に 1 または 0 が入る．s0が 1
の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．syncが 1
の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，
ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 313

VSCMP.PH Vector Compare

ベクトル比較 VECTOR

31 26

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001100
SCMP

ニーモニック:

VSCMP.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMP.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMP.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMP.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル比較命令．VGPR[rt]の下位 16 bit を用いて演算を行う．条件 (cond) によ
り VGPR[rd] に 1 または 0 が入る．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ
(SGPR[rt]) を用いて演算を行う．syncが 1に場合は，投機実行を抑制する．比較条件 (cond)
には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

314 第 3章 命令セット

VCMPU.PH Vector Compare Unsigned Paired HalfWord

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101001
CMPU

ニーモニック:

VCMPU.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPU.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPU.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPU.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル比較命令．条件 (cond)によりVGPR[rd]に 1 または 0 が入る．s0
が 1の場合はVGPR[rt]の代わりに，スカラレジスタ (SGPR[rt])を用いて演算を行う．syncが
1の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，
ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 315

VSCMPU.PH Vector Compare Unsigned Paired HalfWord

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001101

SCMPU

ニーモニック:

VSCMPU.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPU.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPU.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPU.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
VGPR[rd] ← 1

else
VGRP[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル比較命令．VGPR[rt] の下位 16 bit を用いて演算を行う．条件
(cond)により VGPR[rd] に 1 または 0 が入る．s0 が 1の場合は VGPR[rt] の代わりに，スカ
ラレジスタ (SGPR[rt]) を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．比較
条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

316 第 3章 命令セット

VCMPTS.PH Vector Compare to Scalar Register Paired HalfWord

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101010

CMPTS

ニーモニック:

VCMPTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタに格納さ
れる．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行
う．syncが 1の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，
ne(�=)，le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 317

VSCMPTS.PH Vector Compare Paired HalfWord to Scalar Register

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001110

SCMPTS

ニーモニック:

VSCMPTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 ベクトル比較命令．VGPR[rt] の下位 16 bit を用いて演算を行う．結果は各要素ご
とに 1bit を割り当ててスカラレジスタに格納される．s0が 1の場合は VGPR[rt] の代わりに，
スカラレジスタ (SGPR[rt]) を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．
比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

318 第 3章 命令セット

VCMPUTS.PHVector Compare Unsigned Paired HalfWord to Scalar Register

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
101011

CMPUTS

ニーモニック:

VCMPUTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPUTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPUTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPUTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタ
に格納される．s0が 1の場合は VGPR[rt] の代わりに，スカラレジスタ (SGPR[rt]) を用いて
演算を行う．syncが 1の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，
lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 319

VSCMPUTS.PHVector Compare Unsigned Paired HalfWord to Scalar Register

ベクトル比較 VECTOR

31 26
110110

VINT.PH

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
001111

SCMPUTS

ニーモニック:

VSCMPUTS.cond.PH.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPUTS.cond.PH.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPUTS.cond.PH.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPUTS.cond.PH.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VGPR[rs] cond VGPR[rt] then
SGPR[rd] ← 1

else
SGPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

16 bit× 2 符号無しベクトル比較命令．VGPR[rt] の下位 16 bit を用いて演算を行う．結果は
各要素ごとに 1bit を割り当ててスカラレジスタに格納される．s0が 1の場合は VGPR[rt]の
代わりに，スカラレジスタ (SGPR[rt]) を用いて演算を行う．syncが 1の場合は，投機実行を
抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指
定する．

320 第 3章 命令セット

3.3.9 浮動小数点ベクトル命令

VADD.S Vector Add Single
ベクトル加算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000000
ADD.S

ニーモニック:

VADD.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VADD.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VADD.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VADD.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] + VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル加算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 321

VADD.D Vector Add Double

ベクトル加算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
001000

ADD.D

ニーモニック:

VADD.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VADD.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VADD.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VADD.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] + VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル加算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

322 第 3章 命令セット

VSUB.S Vector Subtract Single

ベクトル減算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
000001
SUB.S

ニーモニック:

VSUB.S.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VSUB.S.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VSUB.S.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VSUB.S.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VSUB.S.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VSUB.S.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] − VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル減算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．s1が 1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用
いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 323

VSUB.D Vector Subtract Double

ベクトル減算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
001001
SUB.D

ニーモニック:

VSUB.D.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VSUB.D.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VSUB.D.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VSUB.D.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VSUB.D.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VSUB.D.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] − VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル減算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．s1が 1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用
いて演算を行う．syncが 1の場合，投機実行を抑制する．

324 第 3章 命令セット

VMUL.S Vector Multiply Single

ベクトル乗算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
000010
MUL.S

ニーモニック:

VMUL.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMUL.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMUL.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMUL.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル乗算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 325

VMUL.D Vector Multiply Double

ベクトル乗算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
001010

MUL.D

ニーモニック:

VMUL.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMUL.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMUL.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMUL.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル乗算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．syncが 1の場合，投機実行を抑制する．

326 第 3章 命令セット

VDIV.S Vector Divide Single

ベクトル除算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
000011
DIV.S

ニーモニック:

VDIV.S.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIV.S.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIV.S.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIV.S.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIV.S.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIV.S.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] ÷ VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル除算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．s1が 1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用
いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 327

VDIV.D Vector Divide Double

ベクトル除算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 9
00
0

8
s1

7
s0

6
s

5 0
001011
DIV.D

ニーモニック:

VDIV.D.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 0)

VDIV.D.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 0)

VDIV.D.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 0)

VDIV.D.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, sync(s) = 1)

VDIV.D.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, sync(s) = 1)

VDIV.D.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] ÷ VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル除算．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を
用いて演算を行う．s1が 1の場合は VFPR[rs]の代わりに，スカラレジスタ (SFPR[rs])を用
いて演算を行う．syncが 1の場合は，投機実行を抑制する．

328 第 3章 命令セット

VABS.S Vector Absolute Single

ベクトル絶対値演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000101
ABS.S

ニーモニック:

VABS.S rd, rs (sync(s) = 0)

VABS.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← | VFPR[rs] |

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル絶対値演算．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 329

VABS.D Vector Absolute Double

ベクトル絶対値演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
001101
ABS.D

ニーモニック:

VABS.D rd, rs (sync(s) = 0)

VABS.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← | VFPR[rs] |

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル絶対値演算．syncが 1の場合は，投機実行を抑制する．

330 第 3章 命令セット

VMOV.S Vector Move Single

ベクトル転送 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000110
MOV.S

ニーモニック:

VMOV.S rd, rs (sync(s) = 0)

VMOV.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル転送命令．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 331

VMOV.D Vector Move Double

ベクトル転送 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
001110

MOV.D

ニーモニック:

VMOV.D rd, rs (sync(s) = 0)

VMOV.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル転送命令．syncが 1の場合は，投機実行を抑制する．

332 第 3章 命令セット

VNEG.S Vector Negate Single

ベクトル符号反転 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000111
NEG.S

ニーモニック:

VNEG.S rd, rs (sync(s) = 0)

VNEG.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← −1 × VFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル符号反転演算．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 333

VNEG.D Vector Negate Double

ベクトル符号反転 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
001111
NEG.D

ニーモニック:

VNEG.D rd, rs (sync(s) = 0)

VNEG.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← −1 × VFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル符号反転演算．syncが 1の場合は，投機実行を抑制する．

334 第 3章 命令セット

VMADD.S Vector Multiply and Add Single

ベクトル積和演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
010000

MADD.S

ニーモニック:

VMADD.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMADD.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMADD.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMADD.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] + VFPR[rd]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル積和演算．s0が 1の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 335

VMADD.D Vector Multiply and Add Double

ベクトル積和演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
011000

MADD.D

ニーモニック:

VMADD.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMADD.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMADD.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMADD.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] + VFPR[rd]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル積和演算．s0が 1の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

336 第 3章 命令セット

VMSUB.S Vector Multiply and Subtract Single

ベクトル積差演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
010001

MSUB.S

ニーモニック:

VMSUB.S.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMSUB.S.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMSUB.S.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMSUB.S.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] − VFPR[rd]

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル積差演算．s0が 1の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 337

VMSUB.D Vector Multiply and Subtract Double

ベクトル積差演算 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
000
0

7
s0

6
s

5 0
011001

MSUB.D

ニーモニック:

VMSUB.D.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VMSUB.D.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VMSUB.D.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VMSUB.D.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] − VFPR[rd]

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル積差演算．s0が 1の場合はVFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])
を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．

338 第 3章 命令セット

VCMP.S Vector Compare Single

ベクトル比較 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010010
CMP.S

ニーモニック:

VCMP.S.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.S.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.S.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.S.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VFPR[rs] cond VFPR[rt] then
VFPR[rd] ← 1

else
VFPR[rd] ← 0

endif

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル比較命令．条件 (cond) により VFPR[rd] の値が決定する．s0 が 1 の場合は
VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncが 1の場合は，
投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)の
どれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 339

VCMP.D Vector Compare Double

ベクトル比較 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
011010

CMP.D

ニーモニック:

VCMP.D.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.D.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.D.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.D.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VFPR[rs] cond VFPR[rt] then VFPR[rd] ← 1
else

VFPR[rd] ← 0
endif

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル比較命令．条件 (cond) により VFPR[rd] の値が決定する．s0 が 1 の場合は
VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．syncが 1の場合は，
投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)の
どれかを指定する．

340 第 3章 命令セット

VCMPTS.S Vector Compare Single to Scalar Register

ベクトル比較 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010011

CMPTS.S

ニーモニック:

VCMPTS.S.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.S.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.S.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.S.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VFPR[rs] cond VFPR[rt] then
SFPR[rd] ← 1

else
SFRP[rd] ← 0

endif

例外 :

Vector Floating Point Exception :

概要 :

単精度ベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納され
る．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．
syncが 1の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，
le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 341

VCMPTS.D Vector Compare Double to Scalar Register

ベクトル比較 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
011011

CMPTS.D

ニーモニック:

VCMPTS.D.cond.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.D.cond.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.D.cond.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.D.cond.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VFPR[rs] cond VFPR[rt] then
SFPR[rd] ← 1

else
SFPR[rd] ← 0

endif

例外 :

Vector Floating Point Exception :

概要 :

倍精度ベクトル比較命令．結果は各要素ごとに 1bitを割り当ててスカラレジスタに格納され
る．s0が 1の場合は VFPR[rt]の代わりに，スカラレジスタ (SFPR[rt])を用いて演算を行う．
syncが 1の場合は，投機実行を抑制する．比較条件 (cond)には，eq(=)，gt(>)，lt(<)，ne(�=)，
le(≤)，ge(≥)のどれかを指定する．

342 第 3章 命令セット

VCVT.S.D Vector Convert to Single from Double

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101000

VCVT.S.D

ニーモニック:

VCVT.S.D rd, rs (sync(s) = 0)

VCVT.S.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Double to Single(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

倍精度フォーマットから単精度フォーマットへ変換する．syncが 1の場合は，投機実行を抑制
する．

3.3. Responsive Multithreaded Processor固有の命令 343

VCVT.S.W Vector Convert to Single from Word

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
100010

VCVT.S.W

ニーモニック:

VCVT.S.W rd, rs (sync(s) = 0)

VCVT.S.W.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Word to Single(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

整数フォーマットから単精度フォーマットへ変換する．sync が 1の場合は，投機実行を抑制
する．

344 第 3章 命令セット

VCVT.D.S Vector Convert to Double from Single

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
100001

VCVT.D.S

ニーモニック:

VCVT.D.S rd, rs (sync(s) = 0)

VCVT.D.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Single to Double(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

単精度フォーマットから倍精度フォーマットへ変換する．syncが 1の場合は，投機実行を抑制
する．

3.3. Responsive Multithreaded Processor固有の命令 345

VCVT.D.W Vector Convert to Double from Word

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101010

VCVT.D.W

ニーモニック:

VCVT.D.W rd, rs (sync(s) = 0)

VCVT.D.W.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Word to Double(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

整数フォーマットから倍精度フォーマットへ変換する．sync が 1の場合は，投機実行を抑制
する．

346 第 3章 命令セット

VCVT.W.S Vector Convert to Word from Single

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
100100

VCVT.W.S

ニーモニック:

VCVT.W.S rd, rs (sync(s) = 0)

VCVT.W.S.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Single to Word(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

単精度フォーマットから整数フォーマットへ変換する．sync が 1の場合は，投機実行を抑制
する．

3.3. Responsive Multithreaded Processor固有の命令 347

VCVT.W.D Vector Convert to Word from Double

ベクトルフォーマット変換 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101100

VCVT.W.D

ニーモニック:

VCVT.W.D rd, rs (sync(s) = 0)

VCVT.W.D.sy rd, rs (sync(s) = 1)

機能 :

VFPR[rd] ← Double to Word(VFPR[rs])

例外 :

Vector Floating Point Exception :

概要 :

倍精度フォーマットから整数フォーマットへ変換する．sync が 1の場合は，投機実行を抑制
する．

348 第 3章 命令セット

VFMFC Move from Vector Floating-Point Control Register

制御レジスタリード VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110000
MFC

ニーモニック:

VFMFC rd, rs (sync(s) = 0)

VFMFC.sy rd, rs (sync(s) = 1)

機能 :

FPR[rd] ← VFCTRL[rs]

例外 :

概要 :

浮動小数点ベクトル制御レジスタリード命令．rsで指定された制御レジスタの値を浮動小数点
レジスタに格納する．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 349

VFMTC Move to Vector Floating-Point Control Register

制御レジスタライト VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110001
MTC

ニーモニック:

VFMTC rd, rs (sync(s) = 0)

VFMTC.sy rd, rs (sync(s) = 1)

機能 :

VFCTRL[rd] ← FPR[rs]

例外 :

概要 :

浮動小数点ベクトル制御レジスタライト命令．rdで指定された制御レジスタに浮動小数点レジ
スタの値を格納する．syncが 1の場合は，投機実行を抑制する．

350 第 3章 命令セット

VFMFS Move from Vector Floating-Point Scalar Register

浮動小数点スカラレジスタリード VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110010
MFS

ニーモニック:

VFMFS rd, rs (sync(s) = 0)

VFMFS.sy rd, rs (sync(s) = 1)

機能 :

FPR[rd] ← SFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点スカラレジスタリード命令．rsで指定された浮動小数点スカラレジスタの値を浮動
小数点レジスタに格納する．syncが 1の場は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 351

VFMTS Move to Vector Floating-Point Scalar Register

浮動小数点スカラレジスタライト VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110011
MTS

ニーモニック:

VFMTS rd, rs (sync(s) = 0)

VFMTS.sy rd, rs (sync(s) = 1)

機能 :

SFPR[rd] ← FPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点スカラレジスタライト命令．rdで指定された浮動小数点スカラレジスタに浮動小数
点レジスタの値を格納する．syncが 1の場合は，投機実行を抑制する．

352 第 3章 命令セット

VFMFV Move from Vector Floating-Point Vector Register

浮動小数点ベクトルレジスタリード VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
110100
MFV

ニーモニック:

VFMFV rd, rs, rt (sync(s) = 0)

VFMFV.sy rd, rs, rt (sync(s) = 1)

機能 :

SFPR[rd] ← VFPR[rs][rt]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトルレジスタリード命令．rsで指定された浮動小数点ベクトルレジスタの rt番
目の要素の値を浮動小数点レジスタに格納する．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 353

VFMTV Move to Vector Floating-Point Vector Register

浮動小数点ベクトルレジスタライト VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 7
0000
0

6
s

5 0
110101
MTV

ニーモニック:

VFMTV rd, rs, rt (sync(s) = 0)

VFMTV.sy rd, rs, rt (sync(s) = 1)

機能 :

SFPR[rd] ← VFPR[rs][rt]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトルレジスタライト命令．rdで指定された浮動小数点ベクトルレジスタの rt
番目の要素に浮動小数点レジスタの値を書き込む．syncが 1の場合は，投機実行を抑制する．

354 第 3章 命令セット

VFMTM Move to Vector Floating-Point Mask Register

浮動小数点ベクトルマスクレジスタライト VECTOR

31 26
011111
VFP

25 21
rs

20 7
00000000000000

0

6
s

5 0
011110
MTM

ニーモニック:

VFMTM rs (sync(s) = 0)

VFMTM.sy rs (sync(s) = 1)

機能 :

VFCTRL[Mask Register] ← VSFPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトルマスクレジスタライト命令．rdで指定した浮動小数点スカラレジスタの値
をマスクレジスタに格納する．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 355

VFRSV Vector Floating-Point Register Reserve

浮動小数点ベクトルレジスタ予約 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
110110
RSV

ニーモニック:

VFRSV rd, rs (sync(s) = 0)

VFRSV.sy rd, rs (sync(s) = 1)

機能 :

reserve vector register(GPR[rs])
if success reserve operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

None

概要 :

浮動小数点ベクトルレジスタ予約命令．GPR[rs]に予約するレジスタの構成を指定する．予約
に成功した場合は GPR[rd]に 1が，失敗した場合は 0が格納される．syncが 1の場合は，投
機実行を抑制する．

356 第 3章 命令セット

VFRLS Vector Floating-Point Register Release

浮動小数点ベクトルレジスタ開放 VECTOR

31 26
011111
VFP

25 16
0000000000

0

15 11
rd

10 7
0000
0

6
s

5 0
110111
RLS

ニーモニック:

VFRLS rd (sync(s) = 0)

VFRLS.sy rd (sync(s) = 1)

機能 :

release vector register()
if success release operation then

GPR[rd] ← 1
else

GPR[rd] ← 0
endif

例外 :

None

概要 :

浮動小数点ベクトルレジスタ開放命令．開放に成功した場合はGPR[rd]に 1が，失敗した場合
は 0が格納される．syncが 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 357

VFDCI Vector Floating-Point Define Compound Instruction

浮動小数点ベクトル複合命令定義 VECTOR

31 26
011111
VFP

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
101110
DCI

ニーモニック:

VFDCI rd, rs (sync(s) = 0)

VFDCI.sy rd, rs (sync(s) = 1)

機能 :

VFCPD[rd] ← GPR[rs]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトル複合命令の定義を行う．GPR[rs]で定義した命令を rdで指定した複合命令
バッファのアドレスに格納する．syncが 1の場合，投機実行を抑制する．

358 第 3章 命令セット

VFECI Vector Floating-Point Execute Compound Instruction

浮動小数点ベクトル複合命令実行 VECTOR

31 26
011111
VFP

25 21
rs

20 16
rt

15 11
rd

10 6
no

5 0
101111
ECI

ニーモニック:

VFDCI rd, rs, rt, no

機能 :

VFPR[rd] ← VFPR[rs] op VFPR[rt]

例外 :

Vector Floating Point Exception :

概要 :

浮動小数点ベクトル複合命令の実行を行う．noで指定した複合命令バッファのアドレスから命
令を実行する．

3.3. Responsive Multithreaded Processor固有の命令 359

VFLW Vector Floating-Point Load Word

浮動小数点ベクトルロード VECTOR

31 26
011111
VFP

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111010
LW

ニーモニック:

VFLW rt, base (sync(s) = 0)

VFLW.sy rt, base (sync(s) = 1)

機能 :

VFPR[rt] ← MEM.WORD[GPR[base]]

例外 :

Vector Floating Point Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

メモリから浮動小数点ベクトルレジスタにロードする．sync が 1の場合，投機実行を抑制する．

360 第 3章 命令セット

VFLD Vector Floating-Point Load Double

浮動小数点ベクトルロード VECTOR

31 26
011111
VFP

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111011
LD

ニーモニック:

VFLD rt, base (sync(s) = 0)

VFLD.sy rt, base (sync(s) = 1)

機能 :

VFPR[rt] ← MEM.DWORD[GPR[base]]

例外 :

Vector Floating Point Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Load) :

概要 :

メモリから浮動小数点ベクトルレジスタにロードする．sync が 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 361

VFSW Vector Floating-Point Store Word

浮動小数点ベクトルストア VECTOR

31 26
011111
VFP

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111110
SW

ニーモニック:

VFSW rt, base (sync(s) = 0)

VFSW.sy rt, base (sync(s) = 1)

機能 :

MEM.WORD[GPR[base]] ← VFPR[rt]

例外 :

Vector Floating Point Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

浮動小数点ベクトルレジスタからメモリにストアする．sync が 1の場合，投機実行を抑制する．

362 第 3章 命令セット

VFSD Vector Floating-Point Store Double

浮動小数点ベクトルストア VECTOR

31 26
011111
VFP

25 21
base

20 16
rt

15 7
000000000

0

6
s

5 0
111111
SD

ニーモニック:

VFSD rt, base (sync(s) = 0)

VFSD.sy rt, base (sync(s) = 1)

機能 :

MEM.DWORD[GPR[base]] ← VFPR[rt]

例外 :

Vector Floating Point Exception :
D-TLB No Entry Matched :
D-TLB Protection Error :
Data Address Miss Align (Store) :

概要 :

浮動小数点ベクトルレジスタからメモリにストアする．sync が 1の場合，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 363

VADD.PS Vector Add Paired Single

ベクトル加算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000000
ADD.S

ニーモニック:

VADD.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VADD.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VADD.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VADD.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VADD.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VADD.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VADD.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VADD.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] + VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit × 2 単精度ベクトル加算．s0 が 1 の場合は VFPR[rt] の代わりに，スカラレジスタ
(SFPR[rt]) を用いて演算を行う．s2 が 1 の場合 VFPR[rt] の下位 32bit を用いて演算を行
う．syncが 1の場合は，投機実行を抑制する．

364 第 3章 命令セット

VSUB.PS Vector Subtract Paired Single

ベクトル減算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
s1

7
s0

6
s

5 0
000001
SUB.S

ニーモニック:

VSUB.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 0)

VSUB.PS.sv rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 0, sync(s) = 0)

VSUB.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 0)

VSUB.PS.sv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 1, sync(s) = 0)

VSUB.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 0, sync(s) = 1)

VSUB.PS.sv.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 0, sync(s) = 1)

VSUB.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 1)

VSUB.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar1(s1) = 0, scalar2(s2) = 1, sync(s) = 1)

VSUB.PS.sv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar1(s1) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] - VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit × 2 単精度ベクトル減算．s0 が 1 の場合は VFPR[rt] の代わりに，スカラレジスタ
(SFPR[rt]) を用いて演算を行う．s1 が 1 の場合は VFPR[rs] の代わりに，スカラレジスタ
(SFPR[rs]) を用いて演算を行う．s2が 1 の場合 VFPR[rt] の下位 32bit を用いて演算を行う．
syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 365

VMUL.PS Vector Multiply Paired Single

ベクトル乗算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
000010
MUL.S

ニーモニック:

VMUL.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMUL.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMUL.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMUL.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMUL.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMUL.PS.vs.sync rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMUL.PS.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMUL.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt]

例外 :

Vector Integer Exception :

概要 :

32bit × 2 単精度ベクトル乗算．s0 が 1 の場合は VFPR[rt] の代わりに，スカラレジスタ
(SFPR[rt]) を用いて演算を行う．s2 が 1 の場合 VFPR[rt] の下位 32bit を用いて演算を行
う．syncが 1の場合は，投機実行を抑制する．

366 第 3章 命令セット

VABS.PS Vector Absolute Paired Single

ベクトル絶対値演算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000101
ABS.S

ニーモニック:

VABS.PS rd, rs, rt (sync(s) = 0)

VABS.PS.sy rd, rs, rt (sync(s) = 1)

機能 :

VFPR[rd] ← |VFPR[rs]|

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル絶対値演算．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 367

VNEG.PS Vector Negate Paired Single

ベクトル符号反転 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
00000

0

15 11
rd

10 7
0000
0

6
s

5 0
000111
NEG.S

ニーモニック:

VNEG.PS rd, rs, rt (sync(s) = 0)

VNEG.PS.sy rd, rs, rt (sync(s) = 1)

機能 :

VFPR[rd] ← -1 times VFPR[rs]

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル符号反転演算．syncが 1の場合は，投機実行を抑制する．

368 第 3章 命令セット

VMADD.PS Vector Multiply and Add Paired Single

ベクトル積和演算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010000

MADD.S

ニーモニック:

VMADD.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMADD.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMADD.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMADD.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMADD.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMADD.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMADD.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMADD.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] times VFPR[rt] + VFPR[rd]

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル積和演算．s0が 1の場合は VFPR[rt] の代わりに，スカラレジスタ
(SFPR[rt]) を用いて演算を行う．s2が 1の場合は VFPR[rt] の下位 32bit を用いて演算を行
う．syncが 1の場合は，投機実行を抑制する．

3.3. Responsive Multithreaded Processor固有の命令 369

VMSUB.PS Vector Multiply and Subtract Paired Single

ベクトル積差演算 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10
0
0

9
s2

8
0
0

7
s0

6
s

5 0
010001

MSUB.S

ニーモニック:

VMSUB.PS.vv rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PS.vs rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 0)

VMSUB.PS.vv.lo32 rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PS.vs.lo32 rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 0)

VMSUB.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 0, sync(s) = 1)

VMSUB.PS.vv.lo32.sy rd, rs, rt (scalar0(s0) = 0, scalar2(s2) = 1, sync(s) = 1)

VMSUB.PS.vs.lo32.sy rd, rs, rt (scalar0(s0) = 1, scalar2(s2) = 1, sync(s) = 1)

機能 :

VFPR[rd] ← VFPR[rs] × VFPR[rt] - VFPR[rd]

例外 :

Vector Integer Exception :

概要 :

32bit× 単精度ベクトル積差演算．s0が 1の場合は VFPR[rt] の代わりに，スカラレジスタ
(SFPR[rt]) を用いて演算を行う．s2が 1の場合は VFPR[rt] の下位 32bit を用いて演算を行
う．syncが 1の場合は，投機実行を抑制する．

370 第 3章 命令セット

VCMP.PS Vector Compare Paired Single

ベクトル比較 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010010
CMP.S

ニーモニック:

VCMP.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMP.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMP.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMP.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VFPR[rs] cond VFPR[rt] then
VFPR[rd] ← 1

else
VFPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル比較命令．条件 (cond) により VFPR[rd] の値が決定する．s0が 1
の場合は VFPR[rt] の代わりに，スカラレジスタ (SFPR[rt]) を用いて演算を行う．syncが 1
の場合は，投機実行を抑制する．比較条件 (cond)には eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，
ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 371

VSCMP.PS Vector Compare Paired Single

ベクトル比較 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010010

SCMP.S

ニーモニック:

VSCMP.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMP.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMP.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMP.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VFPR[rs] cond VFPR[rt] then
VFPR[rd] ← 1

else
VFPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル比較命令．条件 (cond)によりVFPR[rd]の値が決定する．VFPR[rt]
の下位 32bit を用いて演算を行う．s0が 1 の場合は VFPR[rt] の代わりに，スカラレジスタ
(SFPR[rt]) を用いて演算を行う．syncが 1の場合は，投機実行を抑制する．比較条件 (cond)
には eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

372 第 3章 命令セット

VCMPTS.PS Vector Compare Paired Single to Scalar Register

ベクトル比較 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010011

CMPTS.S

ニーモニック:

VCMPTS.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VCMPTS.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VCMPTS.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VCMPTS.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VFPR[rs] cond VFPR[rt] then
SFPR[rd] ← 1

else
SFRP[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタ
に格納される．s0が 1の場合は VFPR[rt] の代わりに，スカラレジスタ (SFPR[rt]) を用いて
演算を行う．syncが 1の場合は，投機実行を抑制する．比較条件 (cond)には eq(=)，gt(>)，
lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

3.3. Responsive Multithreaded Processor固有の命令 373

VSCMPTS.PS Vector Compare Paired Single to Scalar Register

ベクトル比較 VECTOR

31 26
111111

VFP.PS

25 21
rs

20 16
rt

15 11
rd

10 8
cond

7
s0

6
s

5 0
010011

SCMPTS.S

ニーモニック:

VSCMPTS.cond.PS.vv rd, rs, rt (scalar0(s0) = 0, sync(s) = 0)

VSCMPTS.cond.PS.vs rd, rs, rt (scalar0(s0) = 1, sync(s) = 0)

VSCMPTS.cond.PS.vv.sy rd, rs, rt (scalar0(s0) = 0, sync(s) = 1)

VSCMPTS.cond.PS.vs.sy rd, rs, rt (scalar0(s0) = 1, sync(s) = 1)

機能 :

if VFPR[rs] cond VFPR[rt] then
SFPR[rd] ← 1

else
SFPR[rd] ← 0

endif

例外 :

Vector Integer Exception :

概要 :

32bit× 2 単精度ベクトル比較命令．結果は各要素ごとに 1bit を割り当ててスカラレジスタに
格納される．VFPR[rt] の下位 32bit を用いて演算を行う．s0が 1の場合は VFPR[rt] の代わ
りに，スカラレジスタ (SFPR[rt]) を用いて演算を行う．syncが 1の場合は，投機実行を抑制
する．比較条件 (cond)には eq(=)，gt(>)，lt(<)，ne(�=)，le(≤)，ge(≥)のどれかを指定する．

375

4
アドレスデコーダ

4.1 レジスタインターフェース

アドレスデコーダの各種設定レジスタはシステムレジスタとして定義されている．そのため各種レジス

タを設定するためにはmtc0命令を用いる．
設定する値はモジュールにより異なる．

• 標準 (TYPE A)

31 16
-

15 8
Address

7 0
Mask

• I/O (TYPE B)

31 12
-

11 8
Address

7 4
-

3 0
Mask

• 外部バス (TYPE C)

31 19
-

18
AR

17 16
WN

15 8
Address

7 0
Mask

• リンク メモリ (TYPE D)

376 第 4章 アドレスデコーダ

31 18
-

17 16
WN

15 8
Address

7 0
Mask

• I/O Base (TYPE E)

31 16
Address

15 0
Mask

bit名 機能

Address ベースアドレス

Mask マスク

WN Word Number

AR Auto Ready

4.2. アドレスマップ 377

4.2 アドレスマップ

接続されるモジュール 初期デコードアドレス 設定レジスタのアドレス タイプ

ROM (EXT 0) 0x00000000 ～ 0x00ffffff 0xa0 TYPE C

EXT 1 0x20000000 ～ 0x20ffffff 0xa1 TYPE C

SDRAM IF0 0x80000000 ～ 0x87ffffff 0xa2 TYPE A

SDRAM IF1 0x88000000 ～ 0x8fffffff 0xa3 TYPE A

SDRAM IF2 0x90000000 ～ 0x97ffffff 0xa4 TYPE A

SRAM 0x98000000 ～ 0x9fffffff 0xa5 TYPE A

LINK SDRAM 0x04000000 ～ 0x04ffffff 0xa6 TYPE D

LINK DPM 0xc0000000 ～ 0xcfffffff 0xa7 TYPE D

DMAC0 0xffff0000 ～ 0xffff0fff 0xa8 TYPE B

DMAC1 0xffff1000 ～ 0xffff1fff 0xa9 TYPE B

DMAC2 0xffff2000 ～ 0xffff2fff 0xaa TYPE B

PCI 0xffff3000 ～ 0xffff3fff 0xab TYPE B

DMAC3 0xffff4000 ～ 0xffff4fff 0xac TYPE B

Ether 0xffff5000 ～ 0xffff5fff 0xad TYPE B

UART 0xffff6000 ～ 0xffff6fff 0xae TYPE B

PP 0xffff7000 ～ 0xffff7fff 0xaf TYPE B

IEEE1394 0xffff8000 ～ 0xffff8fff 0xb0 TYPE B

LINK 0xfffe0000 ～ 0xfffeffff 0xb1 TYPE E

IRC 0xffff9000 ～ 0xffff9fff 0xb2 TYPE B

CLK Generator 0xffffa000 ～ 0xffffafff 0xb3 TYPE B

SPI 0xffffb000 ～ 0xffffbfff 0xb7 TYPE B

Parallel I/O 0xffffc000 ～ 0xffffcfff 0xbe TYPE B

MDMAC 0xffffd000 ～ 0xffffdfff 0xb4 TYPE B

LINK SDRAM Mode 0xffffe000 ～ 0xffffefff 0xb5 TYPE B

SDRAM Mode 0xfffff000 ～ 0xffff7fff 0xb6 TYPE B

RTC 0xfffff800 ～ 0xffffffff 0xc1 TYPE B

I/O Base 0xffff0000 ～ 0xffffffff 0xb8 TYPE E

379

5
MMU

Responsive Multithreaded Processorのキャッシュシステムは命令キャッシュ，データキャッシュともに
物理キャッシュなのでMMUでのアドレス変換はプロセッシングコアとキャッシュの間で行う．また，アド
レス空間上に，TLBによるアドレス変換が行なわれない領域は存在しない．

5.1 TLBエントリ

本MMUにおける TLBエントリ数は命令MMU, データMMUともに 64エントリである．エントリへ
の設定方法は full associative方式とし，設定を行うページ番号に関わらずどのエントリでも設定を行うこ
とを可能である．

以下本MMUにおける TLBエントリの機能の詳細と特徴について述べて行く．
表 5.1に TLBエントリの設定項目の一覧を示す．TLBエントリは全部で 8byteであるが，設定に際し

ては 32bitの整数型データを用いて行うため便宜上エントリ 1とエントリ 2に分かれる．
また TLBエントリに指定した仮想アドレスとコンテキスト IDが一致したかどうかの判断はエントリ番

号の大きな順に行われる．そのため複数のエントリが一致した場合には，よりエントリ番号が大きなTLB
エントリの設定値を用いてアドレス変換が行われる．

TLBのエントリを設定した直後，そのエントリの LRU情報はもっとも最近に参照されたものとして扱
われる．

TLBエントリを初期化した場合，各フィールドの値は表 5.2のようになる．また，TLBエントリの LRU
情報を初期化すると LRUの順序はエントリ 0がもっとも最近アクセスされた tlbエントリとなり，エント
リ 1,2,3,... 62, 63と順にアクセスが古い，という状態になる．

VPN

この VPN フィールドには，アドレス変換を行う仮想アドレスがエントリを検索するために必要な仮想
ページ番号を保持する．Responsive Multithreaded Processorは仮想アドレスに 32bitの信号を用い，最
小ページサイズが 4KBであるため，TLBエントリには表 5.1に示すように仮想アドレスの上位 20bitを保
持する．VPN フィールドはエントリ 1に属し，エントリ設定時には設定を行う仮想ページ番号を設定デー
タの上位 20bitに指定する．

380 第 5章 MMU

表 5.1: TLBエントリ一覧
フィールド名 エントリ番号 データ割り当て 機能

VPN エントリ 1 [31:12] 仮想ページ番号 (Virtual Page Number)

LOCK エントリ 1 [11] エントリのロック

PROTECT エントリ 1 [10:8] 保護情報

SHARE TH エントリ 1 [7:0] エントリの有効情報と共有情報

PPN エントリ 2 [31:12] 物理ページ番号 (Physical Page Number)

PSZ エントリ 2 [11:10] ページサイズ

GROUP エントリ 2 [9:4] コンテキストグループ番号

CACHE LOCK エントリ 2 [3] 該当ページのキャッシュでのロック

UNCACHE エントリ 2 [2] 該当ページのキャッシュ不可

BURST エントリ 2 [1:0] 内部バスアクセス時のバースト転送長

表 5.2: TLBの初期化時の値

フィールド名 初期化時の値

VPN 全 bit 0

LOCK 0 (ロックオフ)

PROTECT 000 (KER Rモード)

SHARE TH 11111111 (全コンテキスト無効)

PPN 全 bit 0

PSZ 00 (4K Byte)

GROUP 全 bit 0

CACHE LOCK 0 (ロックオフ)

UNCACHE 0 (無効)

BURST 11 (バーストなし)

LOCK

TLBミスが起こると，そのミスを起こした仮想アドレスを変換するための新たな設定を TLBエントリ
に行う必要がある．全てのエントリがすでに使われていると，いずれかのエントリを選択して設定の入れ

換えを行わなければならない．本MMUでは各TLBエントリへのアクセス情報を記録した LRU情報を用
い，最もアクセスがなされていないエントリを入れ換えの対象とする．

この LOCK フィールドを設定する (1にする)と，その TLBエントリを LRU情報を用いた入れ換えの
対象から外すことができる．ただし設定を行うエントリを直接指定した場合にはこの LOCKフィールドの
設定は無効となる．

また，LOCKフィールドが設定されたTLBエントリを使ってアドレス変換を行った場合，そのTLBエ
ントリはもっとも最近に参照されたものとして LRU情報が更新される．
この LOCKフィールドはエントリ 1に属する．

5.1. TLBエントリ 381

PROTECT

ページ単位でのメモリ領域の保護を行うため，この PROTECTフィールドにそのための保護情報を指
定する．表 5.3に指定可能な保護情報の一覧を示す．
尚 Responsive Multithreaded Processorでは制限の厳しい順にカーネル・スーパバイザー・ユーザの 3

つのスレッドの動作モードが規定されているが，モードフィールドとして 2bitが利用可能であるため，本
フィールドにはユーザモードよりも更に制限の緩い場合を設定できる．

この PROTECTフィールドはエントリ 1に属する．

SHARE TH

Responsive Multithreaded Processorは同時に最大 8個のスレッドが動作するため，TLBエントリのミ
ス率が高くなってしまう．ミス率を少しでも低く抑えるために，コンテキスト毎にTLBエントリに有効情
報を持つようにする．Responsive Multithreaded Processorはスレッド ID(32bit)ではなくコンテキスト
ID(3bit)を用いてスレッドの実行を制御している．特にコンテキストが有効かどうかは各コンテキストにつ
き 1bitの情報で与えられるので，TLBエントリにはそれに対応する bitを用意している．この SHARE TH
フィールドには，各コンテキストの有効情報を保持する．エントリの有効情報は仮想アドレスの比較に用

いられるだけではなく，エントリの共有と入れ換えエントリの選択にも用いる．

入れ替えを行う TLB エントリは特に指定がなければ LRU 情報に基づいて選択されるが，その前に
SHARE THフィールドを調べて無効なエントリが存在する場合はそれを入れ替えの対象とする．
また，有効であったコンテキストが無効化され，かつそのコンテキストのMMUでのアドレス変換が有

効であった場合には，自動的にこの SHARE THフィールドは無効に設定される．
このフィールドはエントリ 1に属する．

PPN

この PPNフィールドには，VPNフィールドの仮想ページ番号がマップされている物理ページ番号が保
持される．Responsive Multithreaded Processorは物理アドレスに 32bitの信号を用い，最小ページサイ
ズが 4KBであるため，TLBエントリで変換される物理アドレスは表 5.1に示すように上位 20bitである．
PPNフィールドはエントリ 2に属し，エントリ設定時には設定を行う物理ページ番号を設定データの上位
20bitに指定する．

表 5.3: TLBエントリに指定可能なページ保護情報

保護モード 設定コード 保護の詳細

ALL RW 111 全モードでの読み出しと書き込みを許可

ALL R 110 全モードでの読み込み，ユーザモード以上での書き込みを許可

USR RW 101 ユーザモード以上での読み出しと書き込みを許可

USR R 100 ユーザモード以上の読み込み，スーパバイザーモード以上の書き込みを許可

SV RW 011 スーパバイザーモード以上での読み出しと書き込みを許可

SV R 010 スーパバイザーモード以上の読み込み，カーネルモードでの書き込みを許可

KER RW 001 カーネルモードでの読み出しと書き込みを許可

KER R 000 カーネルモードでの読み込みのみを許可

382 第 5章 MMU

PSZ

Responsive Multithreaded Processorでは，複数ページサイズのサポートをしている．TLBエントリで
も複数のページサイズを用いることができるようにしており，表 5.4に指定可能なページサイズを示す．

表 5.4: TLBエントリに指定可能なページサイズ
ページサイズ 設定コード

4K byte 00

64K byte 01

1M byte 10

16M byte 11

この PSZフィールドはエントリ 2に属する．

GROUP

Responsive Multithreaded Processorではコンテキスト IDを用いた制御が行なわれるため，特に一度コ
ンテキストキャッシュに退避されたスレッドが実行を再開する場合には，退避前のTLBエントリの設定値
は全く使うことができない．これはコンテキスト単位で仮想アドレスを識別しているために，実行スレッ

ドが切り替わる際にはどうしても無効化しなければならないからである．各々のスレッドのアドレスマッ

プは通常独立であるから，エントリの無効化は問題にはならない．しかし共有メモリ領域のエントリでは，

退避前までエントリを共有していたスレッドが，実行再開後は全く別のエントリに設定しなければならな

くなる．

そこでそのような無駄を省くためにこの GROUP フィールドを用いる．各 TLBエントリはこのフィー
ルドに設定された IDを用いて有効情報の変更が可能になっている (5.2)．そこで共有メモリ領域を持つス
レッドは，その領域の TLBエントリに設定されたコンテキストグループ番号を知っていれば，実行を再
開したコンテキスト番号をそのコンテキストグループに属する TLBエントリに通知するだけで，容易に
TLBエントリの有効化を行なうことができる．
この GROUPフィールドはエントリ 2に属する．

CACHE LOCK

このフィールドを有効にすることで，該当ページのデータブロックをキャッシュ上にロックすることが

できる．機能は TLBエントリのロックフィールド (5.1) と同等である．
このCACHE LOCKフィールドはエントリ 2に属し，MMUが無効状態でのデフォルトの値は無効 (ロッ

ク不可)となる．

UNCACHE

この UNCACHEフィールドを有効 (1と設定)にすると，そのページのブロックはキャッシュされない．
キャッシュシステム内にはキャッシュメモリ本体以外にもデータが置かれるバッファがいくつかあるが，こ

のフィールドが有効になっているページのデータは，書き込みデータのマージ機構 (6.1.4)や内部バス要求
キューでの複数データヒット機構 (6.1.4)，victim buffer (6.1.3) が無効になる．
このフィールドはエントリ 2に属し，MMUが無効状態でのデフォルトの値は有効 (キャッシュ不可)と

なる．

5.2. MMUの制御 383

BURST

アクセスしたいデータがキャッシュミスとなると，内部バスへ要求を出すことになる．このBURSTフィー
ルドには，その場合の内部バスに対するバースト読み出しの転送長を指定する．設定可能な転送長を表 5.5
に示す．

表 5.5: TLBエントリで指定可能な内部バスのバースト転送長

転送長 設定コード 転送データ量

無し 11 32byte

2 10 64byte

4 01 128byte

8 00 256byte

このフィールドの値は書き込み要求には適応されない．また I/Oなど 32bitバスのデータ読み出しにも
適応されない．I/Oであるかどうかはアドレス空間を用いて識別する．
このフィールドはエントリ 2に属し，MMUが無効状態でのデフォルトの値はバースト転送無しとなる．

5.2 MMUの制御

MMUのコントロールレジスタの一覧を表 5.7に示す．
各レジスタは通常のアドレス空間や，プロセッシングコアのコントロールレジスタのアドレス空間とは

異なる独自のアドレス空間にマッピングされている．そのためMMUのコントロールレジスタへのアクセ
スは表 5.6に示す 4つの専用命令を用いて行う．

表 5.6: MMUのコントロールレジスタアクセス用命令

命令 用途

MFIMM 命令用MMUのコントロールレジスタの値を読み出す

MTIMM 命令用MMUのコントロールレジスタに値を設定

MFDMM データ用MMUのコントロールレジスタの値を読み出す

MTDMM データ用MMUのコントロールレジスタに値を設定

コントロールレジスタの値の設定方法には，設定するデータをそのまま指定するものと，一定の形式に合

わせて指定するものがある．後者の一定の形式はMMUのコントロールレジスタの設定のみならず，キャッ
シュコントローラのコントロールレジスタの設定にも用いられる場合がある (6.1.5)．そこでこの一定の形
式のことを共通設定形式 (図 5.1)と呼ぶことにする．共通設定形式では 1を設定することで該当レジスタ
の機能を有効化することができる．またコンテキストグループ (5.1)に対してはこの共通設定形式を拡張
した独自の形式 (図 5.4)を用いて設定を行う．
コントロールレジスタの設定のタイミングはプロセッサの実行状況によって全く異なるため，実行中の

スレッドに対してページ設定以外の設定情報の変更 (MMUのオン・オフやエントリのフラッシュ) を行う
場合は注意が必要である．

またコントロールレジスタの多くは設定要求 (書き込み要求)のみを規定しており，そのようなレジスタ
に対する読み出し要求には返戻値として 0が返る．

384 第 5章 MMU

context7 context6 context5 context4 context3 context2 context1 context0
15 13 11 9 7 5 3 1

S V S V S V S V S V S V S V S V

14 12 10 8 6 4 2 0

S

V

select field

value field

1に設定すると該当コンテキストを撰択

1に設定すると有効化、0に設定すると無効化

図 5.1: コントロールレジスタの共通設定形式

MMU SPR START

MMU SPR STARTレジスタはMMU機能の有効・無効を示す．
Responsive Multithreaded Processorはスレッド毎ではなくコンテキスト毎に制御を行うため，MMU SPR START

レジスタもコンテキスト毎に用意されている．コンテキストの指定は書き込みデータの下位 8bit[7:0]で
行う．

またこのレジスタの読み出し要求に対しては，データの下位 8bit[7:0]の上位から順番にコンテキスト番
号 7からコンテキスト番号 0までの設定値が格納される．
設定には図 5.1に示した共通設定形式を用いる．

MMU SPR ALL FLUSH

このレジスタに対して書き込み要求を行うと，全てのTLBエントリの設定データとエントリアクセスの
LRU情報を初期化する．書き込むデータに制約はなく，設定を行うと次クロックで自動的にクリアされる．

MMU SPR TLB FLUSH

このレジスタに指定した番号の TLBエントリのみを初期化する．TLBエントリの指定は書き込みデー
タの下位 6bit[5:0]で行う．設定を行うと次クロックで自動的にクリアされる．

MMU SPR THREAD FLUSH

各 TLBエントリにおいてこのレジスタに指定したコンテキストのみを無効化する．設定方法は図 5.1に
示した共通設定形式を用いる．設定を行うと次クロックで自動的にクリアされる．

MMU SPR GROUP FLUSH

このレジスタに指定したコンテキストグループに属する TLBエントリを無効化する (5.1)．コンテキス
トグループの指定は書き込みデータの下位 6bit[5:0]で行う．設定を行うと次クロックで自動的にクリアさ
れる．

MMU SPR LRU FLUSH

このレジスタに書き込み要求を行うと，TLBエントリのアクセスに関する LRU情報を初期化する．書
き込むデータに制約はない．設定を行うと次クロックで自動的にクリアされる．

5.2. MMUの制御 385

表 5.7: MMUのコントロールレジスタ一覧
アドレス [7:0] レジスタ名 設定方法 機能

0x00 MMU SPR START 共通形式 アドレス変換の有効・無効

0x04 MMU SPR ALL FLUSH 設定値無し エントリの無効化と LRU情報の初期化

0x08 MMU SPR TLB FLUSH 直接指定 指定したエントリを無効化

0x0c MMU SPR THREAD FLUSH 共通形式 指定したコンテキストを無効化

0x10 MMU SPR GROUP FLUSH 直接指定 指定したグループを全て無効化

0x14 MMU SPR LRU FLUSH 直接指定 LRU情報を初期化

0x18 MMU SPR MAX LOCK 直接指定 エントリをロックできる最大数

0x1c MMU SPR ENTRY1 直接指定 TLBエントリのエントリ 1を設定

0x20 MMU SPR ENTRY2 直接指定 TLBエントリのエントリ 2を設定

0x24 MMU SPR ENTRY INDEX 設定値無し 指定した TLBエントリを設定

0x28 MMU SPR ENTRY LRU 設定値無し LRU情報によりエントリを設定

0x2c MMU SPR GROUP 特殊形式 指定したグループのエントリの有効化・無効化

0x30 MMU SPR EXP ADDR 設定値無し 例外を発生したアドレス

0x34 MMU SPR EXP LOG 設定値無し 発生した例外の詳細情報

0x38 MMU READ TLB ADDR 設定値無し TLBの読みたいエントリのアドレス

0x3c MMU READ TLB DATA 設定値無し TLBの読みたいエントリのデータ

MMU SPR MAX LOCK

このレジスタには TLBエントリをロックし，LRU情報によるエントリの入れ換え対象計算から外すこ
とのできるエントリ数を設定する．既定値は 16エントリ，最小値は 0エントリ，最大値は 63エントリで
あり，このレジスタの値以上のエントリをロックすることは基本的にできない．しかしロックエントリ数

の計算に 1クロック要するため，エントリの設定命令が 2クロック連続するとこのレジスタの値を越えて
ロックが設定される可能性がある．全 64エントリがロックされてしまった場合，ページフォルト発生時に
ページテーブルを設定できなくなってしまう．そのため，64エントリがロックされると例外を発生させる
(5.3) ．MMU SPR ENTRY LRUでエントリ 1の LOCKフィールドを 1にしたTLBエントリをセットす
る時にMMU SPR MAX LOCKの値以上にセットしようとした場合，ロックはされないがTLBエントリ
のほかの内容はセットされる．例えば，MMU SPR MAX LOCKが 16で既にロックされている TLBエ
ントリも 16個存在する時にMMU SPR ENTRY LRUでロックしたエントリをセットする場合，LOCK
フィールドを 0にして TLBエントリをセットすることになる．
このレジスタの読み出し要求に対しては，データの下位 6bit[5:0]に現在の設定値を格納する．

MMU SPR ENTRY1

各 TLBエントリが持つエントリフィールドのうち，このレジスタには仮想アドレス，エントリのロック
指定，ページ保護情報，エントリ共有情報を設定する．設定形式を図 5.2に示す．

MMU SPR ENTRY2

各 TLBエントリが持つエントリフィールドのうち，このレジスタには物理アドレス，ページサイズ，コ
ンテキストグループ，該当ページのキャッシュでのロックの可否，該当ページのキャッシュの可否，該当

386 第 5章 MMU

7:010:81131:12

仮想ページ番号 ページ保護情報

共有情報

: VPN : PRO

: SHR: LCKエントリロック

LCK PRO SHRVPN

図 5.2: ENTRY1 の設定形式

ページのバスアクセス時のバースト転送長を指定する．設定形式を図 5.3に示す．

物理ページ番号

コンテキストグループ

キャッシュロック

キャッシュ不可

バースト転送長

ページサイズ

: PPN

: PSZ

: GRP

: CLC

: UNC

: BRT

1:09:411:1031:12

PPN BRTUNCCLCGRPPSZ

3 2

図 5.3: ENTRY2 の設定形式

MMU SPR ENTRY INDEX

このレジスタに書き込み要求を行いTLBエントリ番号を指定することで，事前に設定しておいたMMU SPR ENTRY1
フィールドとMMU SPR ENTRY2フィールドの値を，その指定された TLBエントリに設定する．TLB
エントリの指定は書き込むデータの下位 6bit[5:0]で行う．

MMU SPR ENTRY LRU

このレジスタに書き込み要求を行うことで，事前に設定しておいたMMU SPR ENTRY1フィールドと
MMU SPR ENTRY2フィールドの値を，LRU情報を元にして最もアクセスがなされていない TLBエン
トリに設定する．書き込むデータに制約はない．

MMU SPR GROUP

このレジスタに書き込み要求を行うことで，指定したコンテキストグループに所属する TLBエントリ
の，指定したコンテキストの有効化・無効化を行う (5.1)．コンテキストグループとコンテキストの指定形
式を図 5.4に示す．

5.2. MMUの制御 387

context7 context6 context5 context4 context3 context2 context1 context0
15 13 11 9 7 5 3 1

S V S V S V S V S V S V S V S V

14 12 10 8 6 4 2 01621

コンテキストグループ番号

S

V

select field

value field

1に設定すると該当コンテキストを撰択

1に設定すると有効化、0に設定すると無効化

図 5.4: コンテキストグループの設定形式

MMU SPR EXP ADDR

このレジスタはアドレス変換において該当するTLBエントリが存在しなかった場合に，その仮想アドレ
スを保持する．アドレスはコンテキスト毎に保持され，その値を読み出すにはデータの下位 3bit[2:0]にコ
ンテキスト番号を指定する．

このレジスタに対する書き込み要求は，実行したコンテキストに対応するレジスタの値がクリアされる

だけである．

MMU SPR EXP LOG

このレジスタにはページ保護の違反が確認された時にその違反コード (表 5.8)が保持される．

表 5.8: MMUのページ保護違反コード
コード名 違反コード 違反内容

MMU EXP NONE 000 違反無し

MMU EXP PRO ALL R 001 全モードでの書き込み制限違反

MMU EXP PRO USR RW 010 ユーザモード以上に限定されたページへのアクセス違反

MMU EXP PRO USR R 011 ユーザモード以上に限定されたページへの書き込み違反

MMU EXP PRO SPV RW 100 スーパバイザーモード以上に限定されたページへのアクセス違反

MMU EXP PRO SPV R 101 スーパバイザモード以上に限定されたページへの書き込み違反

MMU EXP PRO KER RW 110 カーネルモード以上に限定されたページへのアクセス違反

MMU EXP PRO KER R 111 カーネルモード以上に限定されたページへの書き込み違反

このレジスタの読み出し要求に対しては，4bit目に違反発生の有無が (1で保護違反発生)，下位 3bit[2:0]
に違反コードが格納される．

またこのレジスタに対する書き込み要求は，実行したコンテキストに対応するレジスタの値がクリアさ

れるだけである．

MMU READ TLB ADDR

MMU READ TLB DATA

この2つのレジスタを用いてTLBの中身を読むことができる．まず読みたいTLBのエントリをMMU READ TLB ADDR
レジスタに書き込み，次にMMU READ TLB DATAレジスタを読み出す．MMU READ TLB ADDRレ

388 第 5章 MMU

ジスタに書き込む値は 6:1 bit目にエントリの番号，0bit目に Entry1ならば 0，Entry2ならば 1を指定
する．

5.3 MMUが発生させる例外

本MMUが発生させる例外を表 5.9に示す．
命令用MMU，データ用MMU共に発生させる例外の種類は同じであるが，命令とデータの区別をつけ

て例外を扱う．

また命令要求が発生させた例外とデータ要求が発生させた例外とではプロセッシングコアでの扱いが異

なるが，MMUに対して設定を行うのはデータ要求であるため，命令用MMUで発生した設定用の例外 (表
5.9の例外の種類の設定)はデータ用MMUの例外コードと一緒に扱われる．

表 5.9: MMUの発生させる例外
例外名 例外の種類 命令用MMUのコード データ用MMUのコード

エントリミス 要求 0x3 0x8

ページ保護違反 要求 0x5 0xa

エントリミス (TLBミス)

命令要求やデータ要求によって指定された仮想アドレスとコンテキスト IDが，どのエントリの設定値
とも一致しなかった場合に発生する．例外を起こした仮想アドレスをコントロールレジスタに保持するが

(5.2)，MMUの状態は変化しない．例外発生後もアドレス変換や TLBエントリの設定は通常通り可能で
ある．例外発生時，MMU SPR EXP LOGの値は 0(違反なし)に設定される．
尚命令用MMUで本例外が発生した場合，命令フェッチユニットの仕様により命令を返さなければ例外

処理に進むことができないため，フェッチ命令幅の全てを No-opコードとして返す．

ページ保護違反

命令要求やデータ要求によって指定された仮想アドレスとコンテキスト IDが一致した TLBエントリに
おいて，その要求が設定された保護情報に反する場合に発生する．コントロールレジスタには例外コード

(表 5.8)が格納されるが，MMUの状態は変化しない．
命令用MMUでこの例外が発生した場合，エントリミスと同様に命令フェッチ幅の全てをNo-opとして

返す．

389

6
CACHE

6.1 キャッシュシステム

6.1.1 概要

Responsive Multithreaded Processorのキャッシュシステムの特徴を以下に示す．またモジュール構成を
図 6.1に示す．本節ではこれらキャッシュシステムを構成する各要素について述べる．

• 32 KB 8-way set-associative方式

• ブロックサイズ，ラインサイズともに 32byte

• Look Through

• ノンブロッキング

• 下位メモリとのデータ一貫性の維持はライトバック方式

• 書き込み要求ミスの処理はライトアロケート方式

• キャッシュポートは 1 ポート

• 物理タグでデータを保持

• 転送ブロック数が可変

• キャッシュのロックが可能

• 3 サイクルのアクセス遅延

• マルチタグ，シングルデータ方式

• 16 エントリの victim buffer

• 最大 16 個のキャッシュミスを同時に保持

• 入れ換えを行うブロックの選択方法は LRUと優先度の 2 通り

• バス待ちキューでの優先度による要求の追い越しが可能

390 第 6章 CACHE

命令用 MMU

データ用 MMU

命令キャッシュ
コントローラ データキャッシュ

タグ・設定情報

データキャッシュ
コントローラ

mem_rw_buffer

victim buffer
コントローラ

victim buffer
コントローラ

read buffer

write buffer
wait buffer
コントローラ

wait buffer
コントローラ

victim buffer

256 bit 内部バス

メモリアクセスユニット命令フェッチ
ユニット

命令キャッシュ

タグ・設定情報

read buffer

victim buffer

CPU コア

データキャッシュシステム

命令キャッシュシステム

図 6.1: キャッシュシステムのモジュール構成

6.1.2 キャッシュ制御

キャッシュの制御は図 6.1の命令キャッシュコントローラ，データキャッシュコントローラで行う．
キャッシュ要求がキャッシュミスを起こした場合には，先に victim bufferで保持されているデータと比較

され (6.1.3)，そこでも該当データを発見できなければ wait buffer から内部バスへアクセスを行う (6.1.4)．

キャッシュでのデータ一貫性の維持

命令，データの両キャッシュコントローラは，内部バスで発生する書き込み要求を常に監視する．そし

てもしキャッシュしているデータが書き込みを受けた場合にそのデータを無効化する．

6.1.3 victim buffer

victim bufferでは，キャッシュブロックの入れ換えに伴いキャッシュメモリを追い出されたデータを，full
associative 方式でエントリに保持する．そしてキャッシュミスを起こした要求のアドレスを現在保持して
いるデータのタグと比較し，もし一致するデータがあれば該当データをキャッシュへと送り込む．

6.1.4 wait buffer

概要

wait buffer は内部バス要求キュー，read buffer とその管理機構からなるキャッシュコントローラの内部
バスインタフェースであり，命令用とデータ用のそれぞれに分かれる．データキャッシュ用の wait buffer
には更に write buffer とその管理機構が付随する．

6.1. キャッシュシステム 391

内部バス要求

内部バス要求キューと write buffer は 16 エントリから成り，victim buffer から送られてくる様々な要
求を順にエントリに格納して行く．

内部バス要求キューの要求順位入れ換え機能

内部バス要求キューの要求順位を入れ替える機構がある．その方法は読み出し要求を書き込み要求より

も優先して行う方法と，優先度が高いコンテキストの要求を優先して行う方法の 2種類である．ただし，
ライトアロケート方式を用いているため通常の書き込み要求は読み出し要求と同じくデータの読み出しを

行うため，追い抜きの対象は write back 要求になっている．

書き込み要求のマージ機能

通常の書き込み要求のデータは 1 byte の文字型や 4 byte の整数型， 8 byte の倍精度浮動点小数型の
データであるため，1 キャッシュラインのデータ幅である 32 byte に対しては小さい．よって同じキャッ
シュラインに対するデータの書き込みは 1 つのエントリにまとめることができるようにしている．
ただし I/O への書き込み要求であった場合には，データのマージは行わない．

6.1.5 キャッシュのコントロールレジスタ

キャッシュのコントロールレジスタの一覧を表 6.1に示す．これらのレジスタはプロセッシングコアのコ
ントロールレジスタと同じアドレス空間にマッピングされており，それらと同じ命令 (表 6.2)を用いてア
クセスする．尚これらのレジスタの設定方法は TLB のコントロールレジスタの設定 (5.2)と同じように
データを直接指定するか，図 5.1に示した共通設定形式を用いる．

表 6.1: キャッシュのコントロールレジスタ
レジスタ名 設定方法 機能 命令用アドレス [7:0] データ用アドレス [7:0]

ON 共通形式 キャッシュの有効・無効 0x80 0x86

REP MODE 直接指定 入れ換え方法の指定 0x81 0x87

ACC SCHE 直接指定 要求の追い越し指定 0x82 0x88

LOCK 共通形式 ロックの有効・無効 0x83 0x89

RESET 直接指定 キャッシュのリセット 0x84 0x8a

FLUSH 共通形式 write backの指定 無し 0x8b

ALL FLUSH 直接指定 全て write back 無し 0x8c

表 6.2: コントロールレジスタをアクセスする命令
命令 用途

MFC0 コントロールレジスタの値を読み出す

MTC0 コントロールレジスタに値を設定

392 第 6章 CACHE

ON

このレジスタを設定することで，コンテキスト毎にキャッシュの有効・無効を指定できる．

初期状態の設定値は全コンテキスト共に無効になっており，またコンテキストが無効化されるとそのコ

ンテキストに対応するフィールドは自動的に無効となる．

このレジスタの設定には共通設定形式 (図 5.1)を用いる．またこのレジスタの読み出し要求に対しては，
データの下位 8 bit [7:0]の上位から順番にコンテキスト番号 7 からコンテキスト番号 0 までの設定値が格
納される．

REP MODE

このレジスタにはキャッシュブロックの入れ換え方法を指定する．0 を設定すると LRU 情報に基づく方
法，1 を設定するとオーナーコンテキストの優先度に基づく方法となる．
設定はデータの 1 bit 目で行われる．このレジスタの初期値は LRU を用いた方法である．またこのレ

ジスタの読み出し要求に対しては，データの最下位 bit [0] に設定値が格納される．

ACC SCHE

このレジスタには，6.1.4で述べた優先度に従った内部バス要求キューの要求入れ換え機能の有効，無効
を指定する．このレジスタに 1 を設定することでその機能を有効にできる．
設定は REP MODEレジスタと同様にデータの 1 bit 目で行われ，初期値は無効である．またこのレジ

スタの読み出し要求に対しては，データの最下位 bit [0] に設定値が格納される．

LOCK

このレジスタには 5.1で述べたコンテキスト毎のキャッシュロックの有効，無効を指定する．このレジ
スタと TLBエントリの CACHE LOCKフィールドが設定されることで，該当コンテキストがキャッシュ
データをロックすることが可能になる．どちらか一方の設定だけではキャッシュロックを行うことはでき

ない．

一旦キャッシュをロックしてしまうと，そのコンテキストが有効である限りそのデータがキャッシュから

追い出されることはない．これはキャッシュの入れ換えを優先度に従う方式で行っていても同様のため，低

優先度のスレッドに対するロック許可や，ロック許可状態での高優先度のスレッドの実行を行う場合には

注意が必要である．

初期状態の設定値は全コンテキスト共に無効になっており，またコンテキストが無効化されるとそのコ

ンテキストに対応するフィールドは自動的に無効となる．

このレジスタの設定には共通設定形式 (図 5.1)を用いる．またこのレジスタの読み出し要求に対しては，
データの下位 8 bit [7:0]の上位から順番にコンテキスト番号 7 からコンテキスト番号 0 までの設定値が格
納される．

RESET

このレジスタに 1 を設定することで，キャッシュと victim buffer のエントリを全て無効化することがで
きる．ただしデータ用のエントリに収められているデータでもその書き戻しは行わない．

このレジスタの読み出し要求に対しては，データの最下位 bit [0] に現在の状態を格納する．1 が読み出
された場合は，現在キャッシュの無効化が行われていることを意味する．

6.1. キャッシュシステム 393

FLUSH (データキャッシュコントローラのみ)

このレジスタを有効に設定することで，キャッシュデータと victim buffer のデータの下位メモリへの書
き戻しを開始する．書き戻しが終了すると，自動的に無効状態になる．設定には共通設定形式 (図 5.1)を
用い，コンテキスト単位で書き戻し要求を指定できるが，無効状態のコンテキストに対する指定でも書き

戻しを行う．

またこのレジスタの読み出し要求に対しては，データの下位 8 bit [7:0]の上位から順番にコンテキスト
番号 7 からコンテキスト番号 0 までの設定値が格納される．

ALL FLUSH

このレジスタに書き込み要求を行うと，それだけで全コンテキストの書き戻しを開始する．指定するデー

タに制限はない．

395

7
システムレジスタ

システムレジスタはMFC0，MTC0命令でアクセスする．アクセスしたいレジスタ番号を入れたレジス
タを rdに指定する．

7.1 レジスタマップ
offset 31 24 23 16 15 8 7 0
0x00 Status Register (Thread0)
0x01 Status Register (Thread1)
0x02 Status Register (Thread2)
0x03 Status Register (Thread3)
0x04 Status Register (Thread4)
0x05 Status Register (Thread5)
0x06 Status Register (Thread6)
0x07 Status Register (Thread7)
0x08 Thread Table Register (Thread0)
0x09 Thread Table Register (Thread1)
0x0a Thread Table Register (Thread2)
0x0b Thread Table Register (Thread3)
0x0c Thread Table Register (Thread4)
0x0d Thread Table Register (Thread5)
0x0e Thread Table Register (Thread6)
0x0f Thread Table Register (Thread7)
0x10 Thread ID Register (Thread0)
0x11 Thread ID Register (Thread1)
0x12 Thread ID Register (Thread2)
0x13 Thread ID Register (Thread3)
0x14 Thread ID Register (Thread4)
0x15 Thread ID Register (Thread5)
0x16 Thread ID Register (Thread6)
0x17 Thread ID Register (Thread7)

396 第 7章 システムレジスタ

offset 31 24 23 16 15 8 7 0
0x18 Instruction Count Register (Thread0)
0x19 Instruction Count Register (Thread1)
0x1a Instruction Count Register (Thread2)
0x1b Instruction Count Register (Thread3)
0x1c Instruction Count Register (Thread4)
0x1d Instruction Count Register (Thread5)
0x1e Instruction Count Register (Thread6)
0x1f Instruction Count Register (Thread7)
0x20 Count Register (Thread0)
0x21 Count Register (Thread1)
0x22 Count Register (Thread2)
0x23 Count Register (Thread3)
0x24 Count Register (Thread4)
0x25 Count Register (Thread5)
0x26 Count Register (Thread6)
0x27 Count Register (Thread7)
0x28 Compare Register (Thread0)
0x29 Compare Register (Thread1)
0x2a Compare Register (Thread2)
0x2b Compare Register (Thread3)
0x2c Compare Register (Thread4)
0x2d Compare Register (Thread5)
0x2e Compare Register (Thread6)
0x2f Compare Register (Thread7)
0x30 Floating-Point Control Register (Thread0)
0x31 Floating-Point Control Register (Thread1)
0x32 Floating-Point Control Register (Thread2)
0x33 Floating-Point Control Register (Thread3)
0x34 Floating-Point Control Register (Thread4)
0x35 Floating-Point Control Register (Thread5)
0x36 Floating-Point Control Register (Thread6)
0x37 Floating-Point Control Register (Thread7)
0x38 Issue Mode Register
0x39 CPU Count Register (Low)
0x3a CPU Count Register (High)

0x3b ～ 0x47 MMU Register
0x48 Exception PC Register (Thread0)
0x49 Exception PC Register (Thread1)
0x4a Exception PC Register (Thread2)
0x4b Exception PC Register (Thread3)
0x4c Exception PC Register (Thread4)
0x4d Exception PC Register (Thread5)
0x4e Exception PC Register (Thread6)
0x4f Exception PC Register (Thread7)
0x50 Exception Cause Register (Thread0)
0x51 Exception Cause Register (Thread1)
0x52 Exception Cause Register (Thread2)
0x53 Exception Cause Register (Thread3)
0x54 Exception Cause Register (Thread4)
0x55 Exception Cause Register (Thread5)
0x56 Exception Cause Register (Thread6)
0x57 Exception Cause Register (Thread7)

7.1. レジスタマップ 397

offset 31 24 23 16 15 8 7 0
0x58 Interruption Wait Register (Thread0)
0x59 Interruption Wait Register (Thread1)
0x5a Interruption Wait Register (Thread2)
0x5b Interruption Wait Register (Thread3)
0x5c Interruption Wait Register (Thread4)
0x5d Interruption Wait Register (Thread5)
0x5e Interruption Wait Register (Thread6)
0x5f Interruption Wait Register (Thread7)
0x60 External Interruption Level Register (Thread0)
0x61 External Interruption Level Register (Thread1)
0x62 External Interruption Level Register (Thread2)
0x63 External Interruption Level Register (Thread3)
0x64 External Interruption Level Register (Thread4)
0x65 External Interruption Level Register (Thread5)
0x66 External Interruption Level Register (Thread6)
0x67 External Interruption Level Register (Thread7)

0x68 ～ 0x69 -
0x6a Exception Base Address Register

0x6b ～ 0x6f -
0x70 ～ 0x73 Event Link In Register
0x74 ～ 0x77 Event Link Out Register
0x80～0x84 Instruction Cache Control Register
0x86～0x8c Data Cache Control Register

0x8e ROM Status
0x8f EXT Status
0x90 Multiplexer Arbitor Mode 256bit Bus
0x91 Multiplexer Arbitor Mode 32bit Bus
0x92 Multiplexer Watchdog Timer 256bit Bus Enable
0x93 Multiplexer Watchdog Timer 256bit Bus Mode
0x94 Multiplexer Watchdog Timer 256bit Bus Reset
0x95 Multiplexer Watchdog Timer 256bit Bus Count
0x96 Multiplexer Error Handler State 256bit Bus
0x97 Multiplexer Error Handler State 32bit Bus
0x98 Multiplexer Error Handler Instruction Cache
0x99 Multiplexer Error Handler Data Cache
0x9a Multiplexer Error Handler DMAC0
0x9b Multiplexer Error Handler DMAC1
0x9c Multiplexer Error Handler DMAC2
0x9d Multiplexer Error Handler PCI
0x9e Multiplexer Error Handler Bus Interface Unit
0x9f Multiplexer Error Handler MDMAC256

0xa0～0xb8 Address Decoder Control Register
0xb9 Multiplexer Watchdog Timer 32bit Bus Enable
0xba Multiplexer Watchdog Timer 32bit Bus Mode
0xbb Multiplexer Watchdog Timer 32bit Bus Reset
0xbc Multiplexer Watchdog Timer 32bit Bus Count
0xbd Multiplexer Error Handler MDMAC32
0xe0 Own Status Register
0xe1 Own Thread Table Register
0xe2 Own Thread ID Register
0xe3 Own Instruction Count Register
0xe4 Own Count Register

398 第 7章 システムレジスタ

offset 31 24 23 16 15 8 7 0
0xe5 Own Compare Register
0xe6 Own Floating-Point Control Register
0xe7 Own Bad Virtual Address Register
0xe8 Own Exception PC Register
0xe9 Own Exception Cause Register
0xea Own Interruption Wait Register
0xeb Own External Interruption Level Register

7.1.1 Status Register

アドレス: 0x00 ～ 0x07 (各スレッド毎)
スレッド毎の状態を示す．リセット後は 0x00000000に初期化される．

31 25
-

24
TS

23
PE

22
EV

21 12
-

11 8
IM

7
-

6
EB

5
C

4 3
MO

2
-

1
EL

0
IE

7.1. レジスタマップ 399

bit名 機能

TS Timer Start
1: タイマーをスタートする．
0: タイマーをストップする．

PE Period
1: Timer Interruptを周期的に発生する
0: One Shot

EV Exception Vector Location．
1: Bootstrap · · · 例外発生時にブート時用の例外ベクタへ制御が移る．
0: Normal · · · 例外発生時に通常の例外ベクタへ制御が移る．

IM Interruption Mask．1をセットすると，対応する種類の割り込みをマスクする．
11: Tiemr Interruption
10: Hardware Interruption
9: Software Interruption1
8: Software Interruption0

EBAE (EB) Exception Base Address Enable
1: Variable · · · TBA(Table Base Address)を基準とした番地の例外ベクタを使用する．
0: Fixed · · · 固定番地の例外ベクタを使用する．

CRAM (C) Control Register Access Mode
0: Precise · · · 直前の命令がコミットされるまで制御レジスタに対するアクセス命令の
発行を待たせる．

MO Mode Bit
00: Kernel Mode
01: Superviser Mode
10: User Mode

EL Exception Level．例外が発生すると 1にセットされる．ERET命令で 0にセットされ
る．

IE Interruption Mode
0: 全ての割り込みが無効
1: 全ての割り込みが有効

7.1.2 Thread Table Register

アドレス: 0x08 ～ 0x0f (各スレッド毎)
スレッドの状態を示す．基本的にスレッド制御命令によって変更を行う．読み書き可能であるが，強制

的に書き込みを行った場合の動作は保証しない．0x08意外は 0x00000000に初期化される．

31 14
-

13
E

12 9
STATE

8
K

7 0
PRIOR

400 第 7章 システムレジスタ

bit名 機能

E Thread Enable
0: そのコンテキストにアクティブスレッドが割り当てられていない．
1: そのコンテキストにアクティブスレッドが割り当てられている．

STATE Thread State
0000: Invalid
0001: Run
0010: Ready
0011: Not Ready
0100: Backup Now
0101: Restore Now
0110: Backup Wait
0111: Restore Wait
1000: Copy or Swap Now
1001: Stop Wait

KEEP (K) Keep Active Thread
0: 通常
1: スレッドをコンテキストキャッシュに退避する命令を無効にする．

PRIOR Thread Priority．256 Level．

7.1.3 Thread ID Register

アドレス: 0x10 ～ 0x17 (スレッド毎)

31 0
Thread ID

bit名 機能

Thread ID スレッドに対するアクセスの際のスレッドの指定に用いる．

7.1.4 Instruction Counter Register

アドレス: 0x18 ～ 0x1f (スレッド毎)

31 0
Instruction Counter

7.1. レジスタマップ 401

bit名 機能

Instruction
Counter

各スレッドが生成されてからコミットした命令の総数をカウントする．

7.1.5 Count Register

アドレス: 0x20 ～ 0x27 (スレッド毎)

31 0
Count

bit名 機能

Count 毎クロックカウントアップされるカウンタ．Compare Register と等しくなると 0にク
リアされる．

7.1.6 Compare Register

アドレス: 0x28 ～ 0x2f (スレッド毎)

31 0
Compare

bit名 機能

Compare このレジスタに 0 以外の値がセットされており，かつ Count Register の値がこのレ
ジスタの値と等しくなった時，タイマ割り込みを発生する．タイマ割り込みは Status
Registerの IMフィールドと IEフィールドで有効または無効に設定される．

7.1.7 Floating-Point Control Register

アドレス: 0x30 ～ 0x37 (スレッド毎)

31 6
-

5 4
RND

3 0
EM

402 第 7章 システムレジスタ

bit名 機能

RND Rounding Mode
00: Round to Nearest
01: Round to Zero
10: Round to Positive Infinity
11: Round to Negative Infinity

EM Exception Mask
各ビットに 1を立てることで、対応する例外をマスクすることができる。
3: Inexact Exception
2: Underflow Exception
1: Overflow Exception
0: Invalid Exception

7.1.8 Issue Mode Register

アドレス: 0x38
発行命令の選択方法を設定するレジスタ．0x00000000に初期化される．

31 28
-

27 25
SA3

24 22
SA2

21 19
SA1

18 16
SA0

15 13
MA3

12 10
MA2

9 7
MA1

6 4
MA0

3 2
SP

1 0
PO

7.1. レジスタマップ 403

bit名 機能

Sub Assign0,
1, 2, 3 (SA0,
1, 2, 3)

発行スロットにスレッドを割り当てる発行方式 (TH ASSIGN)で，SUB POLICYフィー
ルドが SUB FIXに設定されている状態で，スロット毎のメインで割り当てられてい
るスレッドから命令を発行できない場合にこのフィールドで設定されたスレッドから

命令を発行する．

Main As-
sign0, 1, 2, 3
(MA0, 1, 2,
3)

発行スロットにスレッドを割り当てる発行方式 (TH ASSIGN)で，スロット毎にメイ
ンで割り当てるスレッドを指定する．

Sub Policy
(SP)

発行命令選択ポリシーのサブポリシーを設定する．

• 1INST 1TH

00: NORMAL

01: PRED STOP · · · 次に発行すべき命令が分岐予測の結果として発行される命
令であり，キャンセルされる可能性がある場合はそのスレッドの優先度を低下さ

せる．

10: MINST STOP · · · あるスレッドのリオーダバッファの半数以上のエントリ
が埋まっている場合はそのスレッドの優先度を低下させる．

• TH ASSIGN

00: SUB PRIOR · · · スロットにメインで割り当てられているスレッドに発行で
きる命令がない場合は，スロットに割り当てられていないスレッドの中で最も優

先度の高いスレッドから命令を発行する．

01: SUB FIX · · · スロットにメインで割り当てられているスレッドに発行できる
命令がない場合は，スロットに対しサブで割り当てられているスレッドから命令

を発行する．サブのスレッドにも発行できる命令がない場合は，空きスロットと

なる．

Policy (PO) 発行選択ポリシーを設定する．

00: 1INST 1TH · · · 毎クロックサイクル，1スレッドから最大 1命令だけを発行可能
とするポリシー．4スレッド以上のスレッドが実行されていないと，発行スロットに空
きができてしまうことになる．

01: HIGHEST FAST · · · 毎クロックサイクル，最高優先度のスレッドから発行できる
だけの命令を発行し，余った発行スロットは次に高い優先度を持つスレッドに割り当

てる．さらに余った場合は 3番目に高い優先度を持つスレッドでも同様に行う．
10: TH ASSIGN · · · 発行スロットごとに特定のスレッドを割り当てて，そのスレッド
から命令を発行できない場合のみ他のスレッドの命令を発行する．

7.1.9 CPU Count Register

アドレス: 0x39, 0x3a

404 第 7章 システムレジスタ

31 0
CPU Count

bit名 機能

CPU Count 64bitカウンタ．リセット時から毎クロック 1ずつカウントアップしていく．0x39が下
位 32bit，0x3aが上位 32bitを示す．

7.1.10 MMU Register

アドレス: 0x3b ～ 0x47
MMU関連の設定レジスタ．

7.1.11 Exception PC Register

アドレス: 0x48 ～ 0x4f (スレッド毎)

31 0
Exception PC

bit名 機能

Exception
PC

例外を生じた命令，もしくは例外が発生した時点で最後にコミットされた PCを保持
するレジスタ．ERET命令で例外処理からの戻り番地として参照する．

7.1.12 Exception Cause Register

アドレス: 0x50 ～ 0x57 (スレッド毎)
発生した例外の情報を保持するレジスタ．0x00000000に初期化される．

31
D

30 17
-

16 12
HIRL

11
TI

10
HI

9
S1

8
S0

7
-

6 2
CODE

1 0
-

7.1. レジスタマップ 405

bit名 機能

Delay Bit
(D)

例外を発生した命令が Delay Slotの命令である場合に 1がセットされる．

Hardware
Interruption
Level
(HIRL)

外部割込みのレベル．

TI Timer Interruption Pending

HI Hardware Interruption Pending

S1 Software Interruption 1 Pending

S0 Software Interruption 0 Pending

Exception
Code
(CODE)

最後に発生した例外のコードを保持する．

7.1.13 Interruption Wait Register (スレッド毎)

アドレス: 0x58 ～ 0x5f

31 0
Interruption Wait

bit名 機能

Interruption
Wait

各ビットが割り込みレベル (IRL)に対応している．ビットが 1ならそのスレッドは対
応する IRLの外部割込みを受け付ける．

7.1.14 External Interruption Level Register (スレッド毎)

アドレス: 0x60 ～ 0x67

31 0
External Interruption Level

bit名 機能

External In-
terruption
Level

最後に IRCから入力された外部割り込みの IRLを保持する．

406 第 7章 システムレジスタ

7.1.15 Interruption Pending Register

アドレス: 0x68
現在 (多分)使用していない．

7.1.16 Interruption Clear Register

アドレス: 0x69
現在 (多分)使用していない．

7.1.17 Exception Base Address Register

アドレス: 0x6a

31 0
Exception Base Address

bit名 機能

Exception
Base
Address

例外ベクタのベースアドレスを保持する．Status Registerの EBAEビットを 1に設定
すると，例外発生時に EBAに例外の内容に従ったオフセットを加えた番地に制御が移
る．

7.1.18 Event Link In Register

アドレス: 0x70 ～ 0x73

7.1.19 Event Link Out Register

アドレス: 0x74 ～ 0x77

7.1.20 Instruction Cache Control Register

アドレス: 0x80～0x84
6章 (CACHE)のキャッシュのコントローロレジスタを参照。

7.1.21 Data Cache Control Register

アドレス: 0x86～0x8c
6章 (CACHE)のキャッシュのコントローロレジスタを参照。

7.1. レジスタマップ 407

7.1.22 ROM Status

アドレス: 0x8e

31 9
Reserved

8
UC

7 0
Count

bit名 機能

Uncache
(UC)

1を指定するとROMアクセス時に 32bit I/OバスにUncache信号を生成する (現在は
使用されていない)。Read時は反転した値が読み出される。

Count ROMアクセス時の Auto Readyを返すカウントを指定する。

7.1.23 EXT Status

アドレス: 0x8f

31 9
Reserved

8
UC

7 0
Count

bit名 機能

Uncache
(UC)

1を指定すると外部バスアクセス時に 32bit I/OバスにUncache信号を生成する (現在
は使用されていない)。Read時は反転した値が読み出される。

Count 外部バスアクセス時の Auto Readyを返すカウントを指定する。

7.1.24 Multiplexer Arbitor Mode 256bit Bus

アドレス: 0x90

31 1
Reserved

1
MO

bit名 機能

Mode (MO) バスアービトレーションのモードを指定する。0を指定すると固定優先度、1を指定す
るとラウンドロビン方式でバスマスタにバス権を与える。

408 第 7章 システムレジスタ

7.1.25 Multiplexer Arbitor Mode 32bit Bus

アドレス: 0x91

31 1
Reserved

1
MO

bit名 機能

Mode (MO) バスアービトレーションのモードを指定する。0を指定すると固定優先度、1を指定す
るとラウンドロビン方式でバスマスタにバス権を与える。

7.1.26 Multiplexer Watchdog Timer 256bit Bus Enable

アドレス: 0x92

31 1
Reserved

1
MO

bit名 機能

Mode (MO) バスアービトレーションのモードを指定する。0を指定すると固定優先度、1を指定す
るとラウンドロビン方式でバスマスタにバス権を与える。

7.1.27 Multiplexer Watchdog Timer 256bit Bus Mode

アドレス: 0x93
使用していない。

7.1.28 Multiplexer Watchdog Timer 256bit Bus Reset

アドレス: 0x94

7.1.29 Multiplexer Watchdog Timer 256bit Bus Count

アドレス: 0x95

7.1.30 Multiplexer Error Handler State 256bit Bus

アドレス: 0x96

7.1. レジスタマップ 409

7.1.31 Multiplexer Error Handler State 32bit Bus

アドレス: 0x97

7.1.32 Multiplexer Error Handler Instruction Cache

アドレス: 0x98

7.1.33 Multiplexer Error Handler Data Cache

アドレス: 0x99

7.1.34 Multiplexer Error Handler DMAC0

アドレス: 0x9a

7.1.35 Multiplexer Error Handler DMAC1

アドレス: 0x9b

7.1.36 Multiplexer Error Handler DMAC2

アドレス: 0x9c

7.1.37 Multiplexer Error Handler PCI

アドレス: 0x9d

7.1.38 Multiplexer Error Handler Bus Interface Unit

アドレス: 0x9e

7.1.39 Multiplexer Error Handler MDMAC256

アドレス: 0x9f

7.1.40 Address Decoder Control Register

アドレス: 0xa0～0xb8
4章 (アドレスデコーダ)のアドレスマップを参照。

7.1.41 Multiplexer Watchdog Timer 32bit Bus Enable

アドレス: 0xb9

410 第 7章 システムレジスタ

7.1.42 Multiplexer Watchdog Timer 32bit Bus Mode

アドレス: 0xba

7.1.43 Multiplexer Watchdog Timer 32bit Bus Reset

アドレス: 0xbb

7.1.44 Multiplexer Watchdog Timer 32bit Bus Count

アドレス: 0xbc

7.1.45 Multiplexer Error Handler MDMAC32

アドレス: 0xbd

7.1.46 Own Status Register

アドレス: 0xe0

7.1.47 Own Thread Table Register

アドレス: 0xe1

7.1.48 Own Thread ID Register

アドレス: 0xe2

7.1.49 Own Instruction Count Register

アドレス: 0xe3

7.1.50 Own Count Register

アドレス: 0xe4

7.1.51 Own Compare Register

アドレス: 0xe5

7.1.52 Own Floating-Point Control Register

アドレス: 0xe6

7.1. レジスタマップ 411

7.1.53 Own Bad Virtual Address Register

アドレス: 0xe7

7.1.54 Own Exception PC Register

アドレス: 0xe8

7.1.55 Own Exception Cause Register

アドレス: 0xe9

7.1.56 Own Interruption Wait Register

アドレス: 0xea

7.1.57 Own External Interruption Level Register

アドレス: 0xe8

413

8
例外処理

8.1 割り込みコントローラ (IRC)

初期アドレス: 0xffff9000

8.1.1 レジスタマップ

offset 31 24 23 16 15 8 7 0
0x00 31ch 30ch 29ch 28ch 27ch 26ch 25ch 24ch 23ch 22ch 21ch 20ch 19ch 18ch 17ch 16ch
0x04 15ch 14ch 13ch 12ch 11ch 10ch 9ch 8ch 7ch 6ch 5ch 4ch 3ch 2ch 1ch 0x00
0x08 Request Sense Register 0
0x0c Request Clear Register 0
0x10 Mask Register MI

0x14 26’h0 CL IRL Latch
0x18 31’h0 Mode

8.1.2 Trigger Mode Register

オフセット: 0x00,0x04

31 30
31ch

29 28
30ch

27 26
29ch

25 24
28ch

23 22
27ch

21 20
26ch

19 18
25ch

17 16
24ch

15 14
23ch

13 12
22ch

11 10
21ch

9 8
20ch

7 6
19ch

5 4
18ch

3 2
17ch

1 0
16ch

31 30
15ch

29 28
14ch

27 26
13ch

25 24
12ch

23 22
11ch

21 20
10ch

19 18
9ch

17 16
8ch

15 14
7ch

13 12
6ch

11 10
5ch

9 8
4ch

7 6
3ch

5 4
2ch

3 2
1ch

1 0
0x00

414 第 8章 例外処理

bit名 機能

Trigger 各チャネルのトリガモードの設定．offset 0x00ではチャネル 31-17まで，offset0x04で
はチャネル 16-1のトリガモードの設定を行う．

bit Trigger Mode

00 High Level

01 Low Level

10 Rise Edge

11 Fall Edge

8.1.3 Request Sense Register

31 1
Request Sense Register

0
0

bit名 機能

Request
Sense

Trigger Mode Registerで設定されたトリガが端子 IRLIN,IRQINに入力されると，そ
の割り込みチャネルに対応したビットに 1がセットされる．bit31が IRQ31, bit1が
IRQ1に対応．Readのみ

8.1.4 Request Clear Register

31 1
Request Clear Register

0
0

bit名 機能

Request
Clear

Request Clear Registerの bit31-1の中で 1がセットされるとそれに対応する保持され
ていた割り込み要求が 0になる．writeのみ．

8.1.5 Mask Register

31 1
Mask Register

0
MI

8.2. 動作/使用方法 415

bit名 機能

Mask 31-1ビットが割り込みチャネルの 31-1に対応し，1をセットすることで割り込みをマ
スクできる．ただし，Maskが 1の場合でもRequest Sense Register はセットされる．

MI 0ならば，IRLOUTに割り込みレベルラッチの内容を出力．1ならばマスクし，IRLOUT
には “L”を出力

8.1.6 IRL Latch/Clear

31 6
26’h0

5
CL

4 0
IRL Latch

bit名 機能

IRL Latch 割り込みレベルラッチの内容を出力

CL 1を書き込むことで，割り込みレベルラッチの内容をクリアし，次の割り込みレベル
をラッチする．

8.1.7 IRC Mode Register

31 1
31’h0

0
Mode

bit名 機能

Mode 1 ならば端子 IRLIN を IRQIN[31:27] として使用．0 ならば端子 IRLIN をそのまま
IRLOUTに出力．

8.2 動作/使用方法

8.2.1 IRC

IRCモードレジスタが 1に設定されると，入力端子 IRLIN[4:0](IRQIN[31:27]), IRQIN[26:1]に入力さ
れた割り込み信号はトリガモードレジスタに設定されたトリガモードに従ってその割り込みを保持します．

保持された割り込みはMASKレジスタでマスクされていないもののうちでプライオリティが一番高いも
のがコード化されて割り込みレベルラッチ (IRL Latch)に保持されます．保持された IRL Latchのデータ
はMASKレジスタのMIビットが (ビット 0)が 0の場合，端子 IRLOUT[4:0]に出力されます．

IRCモードレジスタが 0に設定されると，端子 IRLIN[4:0]に入力されたデータがそのまま IRLOUT[4:0]
に出力されます．

416 第 8章 例外処理

表 8.1: 割り込みマップ

IRQ31 Bus Error

IRQ30 Address Error

IRQ29 Watch Dog Timer Error

IRQ28 Link

IRQ27 DMAC3

IRQ26 DMAC2

IRQ25 DMAC1

IRQ24 DMAC0

IRQ23 PCI

IRQ22 Reserved

IRQ21 IEEE1394

IRQ20 Ether MAC

IRQ19 SPI 1

IRQ18 SPI 0

IRQ17 PWM Input 2

IRQ16 Reserved

IRQ15 Pulse Counter 2

IRQ14 Pulse Counter 1

IRQ13 Pulse Counter 0

IRQ12 UART 1

IRQ11 UART 0

IRQ10 External IO 1

IRQ9 External IO 0

IRQ8 PWM Input 1

IRQ7 PWM Input 0

IRQ6 GPIO

IRQ5 RTC (MRMTP1から)

IRQ1-4 Lowに固定

8.2.2 RMT固有機能

• IRL Unit
割り込みが入る度に実行中の全てのスレッドが割り込みハンドラを起動するのでは，非効率的であ

り，割り込みに対するレスポンス時間の増加を招いてしまいます．そのため，RMTでは IRL Unit
という IRLを各スレッドに割り当てる機構を持ちます．

IRL Unit にはスレッド毎に Interruption Wait Register が用意されています．Interruption Wait
Registerの各ビットは IRLに対応しています．IRCが出力した IRLを受け取り，Interruption Wait
Register の IRLに対応するビットが 1のとき，割り込みを受け付け，Exception Unit に外部割り込
みが発生したこととその IRLを通知します．

Interruption Wait Registerはコンテキストスイッチの際にレジスタセットと同様にバックアップ及
びリストアされるために，コンテキストスイッチの度に設定する必要はありません．

8.2. 動作/使用方法 417

• 割り込みによるスレッド起動
外部イベントによるスレッド制御の際のレスポンス時間を短縮するために，停止状態にあるスレッド

(Status Registerの STATEフィールドが 0010 or 0011) に対して外部割り込みがかかった場合はそ
のスレッドを実行状態にします．

ただし，この際に Interruption Wait Registerの対象とする割り込みに対応するビットが 1である必
要があります．

8.2.3 例外処理プロセス

タイマ割り込み，ハードウェア割り込み (外部割り込み)，ソフトウェア割り込みが発生すると，Exception
Cause Registerの対応するPending Registerが 1にセットされます．また，外部割り込みの場合はException
Cause Registerの HIRLに通知された IRL をセットします．これらの割り込みが通常通り発生するには
Status Registerの Interruption Mode(bit0) が 0, Interruption Mask(bit11-8)の対応するビットが 0であ
る必要があります．

これらの割り込みやRMTPUで例外が発生した場合，Status Registerの Exception Level(bit1) が 0な
らば通常通り例外処理が発生します．Exception UnitではCPU coreの exception信号やException Cause
Registerの Pending Registerを参照し，実際に例外処理を行います．例外処理の優先度は例外，タイマ割
り込み，ハードウェア割り込み，ソフトウェア割り込みの順です．

例外処理が発生すると，次の動作が行われます．

• Status Registerの Exception Levelを 1にセット

• その時点のモードを保持し，カーネルモードへ移行

• 例外を生じた命令，もしくは例外が発生した時点で最後にコミットされたPCをException PC Register
に保持

• Exception Code Registerの CODEフィールドに例外を識別するコード (表 8.2)を書き込む

• Status Registerの Exception Base Address Enableが 1ならば Exception Base Address Registerの
値に例外の内容に従ったオフセットの値を加えた番地に制御が移る

Exception Base Address Enableが0ならば固定番地 (Exception Vector Locationが1ならば0xbfc00200,0
ならば 0x80000000)に制御が移る

外部割り込みが起こった際に，対象となるスレッドが停止状態にある場合は通常の例外処理と異なり，ス

レッドが実行状態へ移行する処理のみ行われます．

外部割り込みに対する例外処理ルーチンでは処理に対応した IRCに保持されている割り込み要求をクリ
アし，IRL Latchをクリアする必要があります．その結果次の保持されている割り込みを IRL Latchに保
持することができ，Exception Cause Registerの対応する Pendingフィールドが更新されます．タイマ割
り込みやソフトウェア割り込みの場合は明示的に Exception Cause Registerの対応する Pendingフィール
ドをクリアする必要があります．

例外処理の終了時には ERET命令を実行することで次の動作が行われます．

• Status Rergisterの Exception Levelを 0にセット

• モードを例外発生時のものに戻す

• Exception PC Registerに格納された番地に制御が移る

418 第 8章 例外処理

表 8.2: Exception Code, Offset

種類 コード オフセット

I-TLB SPR Address Miss 0x01 0x010

I-TLB All Entry Locked 0x02 0x020

I-TLB No Entry Matched 0x03 0x030

I-TLB Thread Mode Error 0x04 0x040

I-TLB Protection Error 0x05 0x050

D-TLB SPR Address Miss 0x06 0x060

D-TLB All Entry Locked 0x07 0x070

D-TLB No Entry Matched 0x08 0x080

D-TLB Thread Mode Error 0x09 0x090

D-TLB Protection Error 0x0a 0x0a0

Coprocessor Unusable 0x0b 0x0b0

Reserved (Invalid) Instruction 0x0c 0x0c0

Sytem Call 0x0d 0x0d0

Break Point 0x0e 0x0e0

Integer Overflow 0x0f 0x0f0

Divide By Zero 0x10 0x100

Trap 0x11 0x110

Data Address Miss Align (Load) 0x12 0x120

Data Address Miss Align (Store) 0x13 0x130

Floating Point Overflow 0x14 0x140

Floating Point Underflow 0x15 0x150

Floating Point Divide By 0 0x16 0x160

Floating Point Inexact 0x17 0x170

Floating Point Invalid Operation 0x18 0x180

Reserve 0x19 0x190

Vector Integer Exception 0x1a 0x1a0

Vector Floating Exception 0x1b 0x1b0

Timer Interruption 0x1c 0x1c0

Hardware Interruption 0x1d 0x1d0

Software Interruption 0x1e 0x1e0

Software Interruption 0x1f 0x1f0

419

9
クロックジェネレータ

9.1 接続図

FIN_A
PLL_A

FOUT_A

Link

CPU

SDRAM

Outer

Counter

PWM

CPU, I/O

SDRAM

Outer

Link

Counter

PWM

F_A,R_A,OD_A,
BP_A,OEB_A

1/4

1/2

PWM Input PWM Input

Link SDRAM Link SDRAM1/2

図 9.1: クロック生成部

420 第 9章 クロックジェネレータ

ピン名 概要 デフォルト値

FIN A クロック入力 -

FOUT A PLL出力 -

F A PLLの逓倍数を制御する 16

R A PLLの逓倍数を制御する 3

OD A PLLの逓倍数を制御する 0

PD A PLL Power Down Mode (1:Power Down) 0

BP A PLL Bypass Mode (1: Bypass) 0

OEB A PLL Output Enable (0:Enable) 0

デフォルトでは FIN Aより 75MHzのクロックを入力し，PLL Aから 800MHzが出力される．これら
を分周器で分周し各モジュールにクロックを供給する．

9.2 制御レジスタ

初期アドレス: 0xffffa000

9.2.1 Clock Enable

オフセット: 0x0000
各クロックを有効/無効にする．対応するビットを 1で無効，0で有効になる．初期値は全て 0．

31 22
Reserve

21 0
Enable

bit名 機能

Enable 21: Link Sdram, 20: PWM Input, 19: Link, 18: Outer, 17: PWM, 16: Counter,
15: SDRAM, 14: Vector Floating-Point, 13: Vector Integer, 12: Synchronize, 11:
Floating-Point Reservation Station, 10: SIMD, 9: FPU, 8: Complex INT, 7: Context
Cache, 6: PCI, 5: USB, 4: IEEE1394, 3: DMAC2, 2: DMAC1, 1: DMAC0, 0: CPU

9.2.2 Soft Reset

オフセット: 0x0004
各モジュールにリセットをかける．対応するビットを 0にするとリセットがかかる．ビットを 1に戻さ

ない限りリセット状態が続く (CPUを除く)．

31 22
Reserve

21 0
Reset

9.2. 制御レジスタ 421

bit名 機能

Reset 21: Link Sdram, 20: PWM Input, 19: Link, 18: Outer, 17: PWM, 16: Counter,
15: SDRAM, 14: Vector Floating-Point, 13: Vector Integer, 12: Synchronize, 11:
Floating-Point Reservation Station, 10: SIMD, 9: FPU, 8: Complex INT, 7: Context
Cache, 6: PCI, 5: USB, 4: IEEE1394, 3: DMAC2, 2: DMAC1, 1: DMAC0, 0: CPU

9.2.3 Divider Ratio

オフセット: 0x0008～0x001c, 0x0028, 0x002c
各クロックの分周率を設定する．対応する分周器のアドレスと初期値は以下の通り．

分周器 デフォルト値 アドレスオフセット

CPU 1/2 0x0008

SDRAM 1/4 0x000c

Counter 1/8 0x0010

PWM 1/512 0x0014

Outer 1/8 0x0018

Link 1/1 0x001c

PWM Input 1/512 0x0028

Link SDRAM 1/4 0x002c

31 17
Reserve

16
T

15 0
Ratio

bit名 機能

T 分周せずにクロックをスルーする (1/1指定時)

Ratio クロックの分周率を指定する．指定した数値の半分 (小数点以下切捨て)でクロックが
立ち下がり，指定した数値でクロックが立ち上がる．1を指定した場合の動作は保証
外．1/1の場合は Tビットを 1にすること．

9.2.4 Clock Synchronization

オフセット: 0x0020
1を指定したクロックの立ち上りエッジを CPUのクロックにそろえる．次のクロックで自動的に値はリ

セットされる．

31 8
Reserve

7 1
Sync

0
-

422 第 9章 クロックジェネレータ

bit名 機能

Sync 7: Link SDRAM, 6: PWM Input, 5: Link, 4: Outer, 3: PWM, 2: Counter, 1:
SDRAM

9.2.5 All Reset

オフセット: 0x0024
このアドレスに書き込みを行うと全てにリセットをかける．

423

10
スレッド制御

Responsive Multithreaded Processorにおけるスレッド制御方法について述べる．

10.1 スレッドの種類

RMT Processorのスレッドは 2つに分類される．

• アクティブスレッド

• キャッシュスレッド

アクティブスレッドとはレジスタファイルやプログラムカウンタなどの資源が確保され，プロセッサ内

ですぐにでも実行可能なスレッドを示す．キャッシュスレッドとはコンテキストキャッシュ内に保持されて

いるスレッドを示す．RMT Processorが実行するスレッドはアクティブスレッドで実行状態にあるスレッ
ドのみである．リセット時，スレッド IDが 0のスレッドが優先度 0でアドレス 0から実行される．

10.2 スレッド制御命令

10.2.1 作成・削除

新しくスレッドを作成する場合はmkth命令を用いる．また，アクティブスレッドをコピーして新しい
スレッドを作成することも可能である．

• mkth

新しくアクティブスレッドを作成する．rsでスレッド ID，rtでスタートアドレスを設定する．mkth
命令はアクティブスレッドを作成するだけで実行は開始しない．つまり mkth命令で作成されたス
レッドはストップ状態にある．実行を開始するためには runth命令を使用する．スレッドの作成に成
功すると rdに 1が返り，失敗すると 0が返る．

424 第 10章 スレッド制御

• delth

アクティブスレッドを削除する．rsで削除するスレッドの IDを指定する．スレッドの削除に成功す
ると rdに 1が返り，失敗すると 0が返る．この命令が成功すると指定されたスレッドはプロセッサ
から削除される．

• cpthtoa

アクティブスレッドを別のアクティブスレッドとしてコピーする．rsでコピー元のスレッド ID，rt
で新たに作成するスレッドの IDを指定する．cpthtoa命令はアクティブスレッドのコピーを新しい
アクティブスレッドとして作成する．作成したコピーはストップ状態にあり，実行を開始するために

は runth命令を使用する．スレッドのコピーに成功すると rdに 1が返り，失敗すると 0が返る．

• cpthtom

アクティブスレッドを別のキャッシュスレッドとしてコピーする．rsでコピー元のスレッド ID，rt
で新たに作成するスレッドの IDを指定する．cpthtom命令はアクティブスレッドのコピーを新しい
キャッシュスレッドとして作成する．作成したコピーはコンテキストキャッシュ内にあるため，実行

を開始するためには rstrth命令などでアクティブスレッドにしなければならない．スレッドのコピー
に成功すると rdに 1が返り，失敗すると 0が返る．

10.2.2 状態制御

アクティブスレッドは実行・停止のいずれかの状態にある．これらの状態は以下の命令を用いて制御する．

• runth

停止状態のアクティブスレッドを実行状態にする．rsでスレッド IDを指定する．指定されたスレッ
ドは実行状態になり，優先度に従って実行が開始される．実行開始に成功すると rdに 1が返り，失
敗すると 0が返る．

• stopth

実行状態のアクティブスレッドを停止状態にする．rsでスレッド IDを指定する．指定されたスレッ
ドは停止状態になり，命令実行のスケジューリングからはずされる．再び実行するためには runth命
令を実行する．停止に成功すると rdに 1が返り，失敗すると 0が返る．

• stopslf

自分自身を停止状態にする．停止に成功すると rdに 1が返り，失敗すると 0が返る．

• chgpr

スレッドの優先度を変更する．rsで変更するスレッドの ID，rtで新しい優先度を指定する．優先度
の変更に成功すると rdに 1が返り，失敗すると 0が返る．優先度が変更されると，つぎのクロック
から新しい優先度で命令実行が制御される．

10.2.3 転送

RMT Processorはコンテキストキャッシュを持ち，コンテキストスイッチにおけるオーバヘッドを軽減
している．以下にコンテキストキャッシュとの転送命令を示す．

10.3. 状態遷移 425

• bkupth

アクティブスレッドをコンテキストキャッシュに退避する．rsで退避するアクティブスレッドの ID
を指定する．指定されたアクティブスレッドは実行を停止し，コンテキストキャッシュに退避される．

退避に成功すると rdに 1が返り，失敗すると 0が返る．

• bkupslf

自分自身をコンテキストキャッシュに退避する．退避に成功すると rdに 1が返り，失敗すると 0が
返る．

• rstrth

キャッシュスレッドをアクティブスレッドとして復帰する．rsで復帰するスレッドの IDを指定する．
指定されたキャッシュスレッドはコンテキストキャッシュから読み込まれ，停止状態になる．復帰に

成功すると rdに 1が返り，失敗すると 0が返る．

• swapth

アクティブスレッドとキャッシュスレッドを入れ換える．rsで退避するアクティブスレッドの ID，rt
で復帰するキャッシュスレッドの IDを指定する．指定されたアクティブスレッドは実行を停止し，コ
ンテキストキャッシュに退避される．同時に指定されたキャッシュスレッドがコンテキストキャッシュ

から読み込まれ，実行状態になる．入れ換えに成功すると rdに 1が返り，失敗すると 0が返る．

• swapslf

自分自身とキャッシュスレッドを入れ換える．rtで復帰するキャッシュスレッドの IDを指定する．自
分自身の実行を停止し，コンテキストキャッシュに退避する．同時に指定されたキャッシュスレッド

がコンテキストキャッシュから読み込まれ，実行状態になる．入れ換えに成功すると rdに 1が返り，
失敗すると 0が返る．

10.3 状態遷移

RMT Processorにおけるスレッドの状態遷移を図 10.1に示す．

Active Thread
RUN

Active Thread
STOP

Cache Thread

mkth,
cpthtoa

delth

delth

cpthtom

runth

stopth,
stopslf

bkupth,
bkupslf,
swap(rs),
swapslf

bkupth,
swap(rs)

swap(rt),
swapslf(rt)

rstrth

図 10.1: スレッドの状態遷移

図 10.1において Active Thread RUN状態のスレッドのみ優先度に従ってプロセッサで実行される．

427

11
同期

11.1 共有レジスタ

31個 (レジスタ番号 32は設定レジスタ)の共有レジスタ (64bit)を持ち，そのレジスタにロックをかけ
ることで同期を取ることが可能です．

共有レジスタには次の 3bitとスレッド IDが割り当てられ，その共有レジスタの使用権利をどのスレッ
ドが持つのか意味します．

• Full/Empty bit

• Exclusive / Producer-Consumer bit

• Barrier bit

Full/Empty bitが現在このレジスタにロックがかかっているかを示し，他 2bitはどの種類のロックがか
かっているかを示します．

11.2 同期命令

共有レジスタには次の命令を用いてアクセス可能です．

• RGPEX, WGPEX, RFPEX, WFPEX
Read命令は対象となる共有レジスタの F/E bitが 0のときに実行され，共有レジスタの値をデス
ティネーションレジスタに書き込みます．Read命令が成功すると，対象のレジスタの F/E bitが 1
にし，自分のスレッド IDを書き込みます．

Write命令は対象の共有レジスタの F/E bitが 1でなおかつ自分のスレッド IDが共有レジスタの権
利を所持しているスレッド ID と等しい場合に実行されます．成功すると，ソースレジスタの値を共
有レジスタに書き込み，F/E bitを 0にすることでロックを開放します．ロックが掛かっていない場
合には NOPとなります．

• GPCO, GPPR, FPCO, FPPR
Write命令は対象となる共有レジスタの F/E bitが 0のときに実行され，ソースレジスタの値を共有

428 第 11章 同期

レジスタに書き込みます．成功すると対象のレジスタの F/E bitを 1にします．また，同時にスレッ
ド IDを命令で指定し，その IDをロックをかけた対象の共有レジスタの権利者として書き込みます．

Read命令は対象となる共有レジスタの F/E bitが 1でなおかつ共有レジスタの権利を所持している
スレッド IDが自分のスレッド IDと一致する場合に実行され，共有レジスタの値をデスティネーショ
ンレジスタに読み出します．命令の終了時には F/E bitを 0にします．

• RGPSH, WGPSH, RFPSH, WFPSH
ロックをかけない共有レジスタアクセス命令です．対象の F/E bitが 1のときは実行できません．

• BAR
バリア命令です．共有レジスタは到着スレッド数を数えるのに使用されます．ソースレジスタは対象

となるスレッド数を示します．初めて実行される場合，対象の共有レジスタの F/E bitが 0 のとき
に実行できます．成功すると共有レジスタの値を 1にし，F/E bitを 1にします．2番目以降のバリ
ア命令では共有レジスタの値を incrementしソースレジスタの値と等しくなるまで，そのスレッドは
ストールします．ソースレジスタの値と等しくなると，全てのスレッドのストールを解除します．

共有レジスタアクセス命令の実行条件を表 11.1に示します．

表 11.1: 共有レジスタアクセスの実行条件

命令種別 実行条件 実行後 注釈

F/E E/P bar F/E E/P bar

EX READ E x x F E 0

EX WRITE F E 0 E x x TH ID一致，条件以外では NOP

CON READ F P 0 E x x 対象 TH IDと一致

PRO WRITE E x x F P 0

SH READ E x x E x x

SH WRITE E x x E x x

BARRIER E x x F x 1 バリアに初めに到着する命令

F x 1 F x 1 バリア待ち

E x 0 バリア解放

同期命令の失敗時にはデッドロックの回避のために，対象のスレッドのパイプライン中の命令を全て開

放し，フェッチを止めることでストールさせます．対象のレジスタのロックが開放される (CON READで
は書き込みが起こる)とストールが解除され，再び実行されます．
また，同期命令の失敗時に次のスレッド IDを調べ，そのスレッドがコンテキストキャッシュ内に退避さ

れている場合は同期命令を失敗したスレッドと入れ換えます．

• 対象の共有レジスタにロックが掛かっている場合
ロックを獲得しているスレッド

• Read Consumer命令が値が書き込まれておらず失敗した場合
Read Consumer命令で指定する相手スレッド

また，バリア命令により他の到着スレッドを待つ場合には，同じバリア命令を実行するグループのス

レッドを調べます．その際，そのスレッドが属するグループを設定する命令としてPBAR命令があります．
PBAR命令はバリアに使用する共有レジスタを指定します．バリア待ちのスレッドは現在使用している共

11.2. 同期命令 429

有レジスタ番号と同じ値を PBAR命令で設定されたスレッドがコンテキストキャッシュ内にあるか調べ，
存在する場合は自分と入れ換えます．

この同期命令失敗時のスレッド切替え機能は共有レジスタの 31番に 0以外の値を書き込むことで有効に
なります．defaultでは無効化されています．

431

12
Vector Unit

12.1 概要

RMT Processorの Vector Unitのブロック図を図 12.1 に示す。Vector Integer Unit、Vector Floating
Point Unit共に大きく 3つの部分から成る。

Status
Register

Vector Register
Controller

Vector
Compound
Instruction

Buffer

Vector Control
Unit

Vector
Register Unit
Scalar Register

Vector Register

Vector Execution
Unit 0

Execution
Controller

Vector Execution
Unit 1

Execution
Controller

from Reservation Station

to Common Data Bus to Common Data Busto Memory Unit

図 12.1: Vector Unitのブロック図

• Vector Control Unit

演算ユニットの制御、命令発行を行い、後述する Vector Registerの割り当て、解放を行う。Vector
Length、Mask Bitなどの Vector Unitによる演算に必要な制御情報を管理する。

• Vector Register Unit

432 第 12章 Vector Unit

ベクトル演算を行うためのレジスタを持つ。このレジスタはVector Execution Unitとの接続ポート
の他にMemory Unitとの接続ポートを持ち、Memoryとのデータ転送が行われる。RMT Processor
は 512個のレジスタを持つ。

• Vector Execution Unit

Vector Register Unitからベクトル要素を取り出し、ベクトル演算を行い、結果を Vector Register
Unitに格納する。

12.1.1 Vector Execution Unit

Vector Execution Unitのブロック図を図 12.2 に示す。

Execution Controller

VINT VINT DIV

Accumulator MUX

Reg. ID

Data

Reg. ID,
Data

Op, Reg. ID, Immediate

to CDB

Execution Controller

VFP VFP FDIV

Shifter MUX

Reg. ID

Data

Reg. ID,
Data

Op, Reg. ID, Immediate

to CDB

Vector Integer Unit Vector Floating Point Unit

(a) Vector Integer Unit (b) Vector Floating Point Unit

VINT: Ineger Unit
DIV: Divider
MUX: Multiplexer
VFP: Floating Point Unit
FDIV: Floating Point Divider
CDB: Common Data Bus

図 12.2: Vector Execution Unitのブロック図

Execution Controllerは Vector Register Unitから必要なベクトルデータを取り出し、Vector Integer (
Floating Point) Unitへ送る。

RMT Processorではベクトル演算性能を向上させるために、Vector Integer Unitは 8つ、Vector Floating
Point Unitは 4つの演算器を持つ。それぞれの演算器はパイプライン化され、1クロックに 1つの演算を
開始する。

割り算は使用頻度が低いため、RMT Processorでは Vector Divide Unitを 2つある Vector Execution
Unitのうちの片方のみ除算回路を持つ。

12.1.2 命令フォーマット

ベクトル演算命令のフォーマットはR-Typeを拡張したものを用いる。OpecodeフィールドにはVector
Integer命令用に 011110 (Word)、0x110110 (Paired HalfWord)、111110 (Quad Byte)、Vector Floating
Point命令用に 011111 (Double / Single)、111111 (Paired Single)を用いる。図 12.3 にベクトル演算命令
のフォーマットを示す。

rs、rtフィールドはベクトル演算の Source Register、rdフィールドはDestination Registerを指定する。
functionフィールドにはベクトル演算の種類を指定する。subfuncフィールドはベクトル演算命令により

12.2. Reserve/Release命令 433

31 26 25 21 20 16 15 1110 6 5 0
011110 rs rt rd subfunc function

(a) Vector Integer Instruction Format

31 26 25 21 20 16 15 1110 6 5 0
011111 rs rt rd function

(b) Vector Floating Point Instruction Format

VINT

VFP

subfunc

図 12.3: ベクトル演算命令フォーマット

用途が異なり、ベクトル - スカラ演算を行う際に用いる scalar bitや比較命令において比較条件を指定す
る cond bit、命令の順序制御を行う sync bitが含まれる。

12.2 Reserve/Release命令

ベクトル演算を行うためには大きなベクトルレジスタが必要になる。これを各スレッドに持たせるとゲー

トサイズが大きくなり、また、ベクトル演算を行わないスレッドがある場合にはレジスタが無駄になる。

よって 1つのベクトルレジスタを用意し、それを複数のスレッドで共有して使用することによりベクトル
演算を行う。ベクトルレジスタを必要な量だけ確保して使うことにより、複数のスレッドでベクトルレジス

タを共有する。ベクトルレジスタの共有は、図 12.4 のようにベクトルレジスタを 4つの領域に分け、128
エントリ、256エントリ、512エントリの固定サイズで確保する。スカラレジスタも同様に 4つの領域に分
け、確保したベクトルレジスタの大きさに応じて使用できるスカラレジスタの大きさが決定する。

Vector Register

128entry

128entry

128entry

128entry

256entry

256entry

0

128

256

384

512entry

8entry

8entry

8entry

8entry

16entry

16entry

32entry

Scalar Register

図 12.4: ベクトルレジスタのサイズ

確保したベクトルレジスタは、必要なベクトル長により分割される。ベクトル長は、8length、16length、
32length、64lengthの中から選択する。図 12.5 に RMTProcessorで選択できるベクトルレジスタの構成
を示す。

(a)は 128個のベクトルレジスタを確保した場合の構成を示している。この場合、選択できる構成は、ベ
クトル長 8のレジスタを 16個、もしくはベクトル長 16のレジスタを 8個のどちらかとなる。(b)は 256
個のベクトルレジスタを確保した場合の構成で、ベクトル長 8のレジスタを 32個、ベクトル長 16のレジ
スタを 16個、ベクトル長 32のレジスタを 8個持つ構成の中から選択する。(c)は 512個のベクトルレジ

434 第 12章 Vector Unit

8length16 8

16length

(a) Register Configuration of 128 Entry

8length32 16

16length

8

32length

(b) Register Configuration of 256 Entry

32

16length

32length

16 8

64length

(c) Register Configuration of 512 Entry

図 12.5: ベクトルレジスタの構成

スタを確保した場合で、ベクトル長 16のレジスタを 32個、ベクトル長 32のレジスタを 16個、ベクトル
長 64のレジスタを 8個といった構成の中から一つを選択する。

Vector Unitで演算を行う場合、ベクトル演算を行う前にまず使用する分だけベクトルレジスタを確保
する。ベクトルレジスタの確保は Vector Reserve命令で行う。また Vector Unitで演算を行い、これ以上
Vector Unitを使用しなくなった場合は Vector Release命令で確保していたベクトルレジスタを開放する
ことにより、別のスレッドが新たに Vector Unitで演算を行うことが可能となる。Reserve、Release命令
を用いたプログラム例を図 12.6 に示す。

addu $11, $0, 0x000A # 256 Entry (32Depth x 8) Mode

virsv $10, $11 # Reserve Instruction

== Vector Execution ==

virls $10 # Release Instruction

図 12.6: ベクトル演算のプログラム例

Vector Reserve命令のオペランド (rs)で図 12.5 のどの構成でベクトルレジスタを使用するのかを指定
する。指定する値 (Mode)は表 12.1 の中から選択する。値は上位 2bitが確保するレジスタの大きさ、下

12.3. Status Register 435

位 2bitがベクトル長を示す。Vector Reserve命令はベクトルレジスタの確保が成功すると rdに 1を返す。
rsで指定されたサイズのベクトルレジスタが確保できない場合は rdに 0を返す。

表 12.1: Vector Register Modeの指定

(128 Entry)
8 Depth × 16 0x4
16 Depth × 8 0x5

(256 Entry)
8 Depth × 32 0x8

16 Depth × 16 0x9
32 Depth × 8 0xA

(512 Entry)
16 Depth × 32 0xD
32 Depth × 16 0xE
64 Depth × 8 0xF

Vector Reserve命令によりベクトルレジスタが確保されると、Vector Control Unitの Vector Register
Controller内にある Register Status Tableに、確保したベクトルレジスタの情報を書きこむ。図 12.7 に
Vector Status Tableのフォーマットを示す。

Busy Start Mode

1bit 2bit 4bit

図 12.7: Vector Status Table

Busy Bitはそのスレッドがベクトルレジスタを確保しているかどうかを示す。Start Addressは図 12.4に
示した 4つに分割したベクトルレジスタのどの部分からベクトルレジスタを確保しているのかを示す。Mode
は Vector Reserve命令の rsで指定されたベクトルレジスタの構成を格納する。

Vector Release命令を実行すると、確保していたベクトルレジスタを開放し、rd に 1を返す。ベクトル
レジスタを確保していない時に Vector Release命令を実行すると rdに 0を返す。

12.3 Status Register

Status Registerはベクトル演算を行うために必要な以下の情報を各スレッドごとに保持する。
Status Registerへのアクセスは vimfc, vfmfc (読み込み)、vimtc, vfmtc(書き込み)命令を用いて行う。

12.4 複合演算命令

本ベクトル演算器では、ユーザが複合演算命令を定義し、複合演算実行命令 1 命令で定義された複合
演算命令を処理することにより Vector Unitの使用率を向上させる。複合演算は Vector Control Unitの
Compound Instruction Controller内のCompound Instruction Bufferに定義する。Compound Instruction
Bufferはベクトルレジスタやスカラレジスタと同じように 4つに分割し、確保したベクトルレジスタと同

436 第 12章 Vector Unit

Address Name Description

0x00 Mask (Low) ベクトルレジスタの要素 (下位)に対応し、1を立てることにより
演算をマスクする。マスクは最下位ビットが 1番目の要素、最上位
ビットが 32番目の要素に対応する。

0x01 (Int) Mask (High) ベクトルレジスタの要素 (上位)に対応し、1を立てることにより演
算をマスクする。マスクは最下位ビットが 33番目の要素、最上位
ビットが 64番目の要素に対応する。

0x01 (FP) Rouding Mode 浮動小数点の丸めモードを指定する (0: Round to Nearest, 1:
Round to 0, 2: Round to +∞, 3: Round to -∞)

0x02 Length 演算を行うベクトル長 (実際に指定するのはベクトル長 - 1)を指定
する

0x03 Stride Load / Store時のアドレスのストライドを指定する。実際には各要
素の間隔をワード数で指定する。0を指定した場合は連続した番地
からベクトル要素を読み込む。1を指定すると 1ワードおきに要素
を読み込む。

じ領域を使うようにする。Compund Instruction Buffer全体を 32エントリであるため、ベクトルレジス
タを 128個確保した場合、使用できるエントリ数は 8個、256個確保した場合は、使用できるエントリ数
は 16個、512個確保した場合は使用できるエントリ数は 32個となる。
図 12.8 に Compound Instruction Bufferのフォーマットを示す。

31
N

30 29
SIMD

28 23
Rd

22 17
Rt

16 11
Rs

10 0
Op

図 12.8: Compound Instruction Bufferのフォーマット

一つのエントリに一つの命令を定義し、それを複数合わせることにより複合演算命令を定義する。Next(N)
bitは次のエントリに複合命令が続くことを示す。複合命令の最後の命令はNext Bitを 0にする。Next Bit
を 0にして複合命令を区切ることにより、複数の複合命令を定義することができる。

SIMDフィールドには SIMD演算を行う場合のビット幅を指定する。整数演算の場合、0x0で 32bit演
算 (SIMD演算を行わない)、0x1で 16bit × 2演算、0x2で 8bit × 4演算を行う。浮動小数点演算の場合、
0x0で通常の演算 (SIMD演算を行わない)、0x1で 32bit × 2演算を行う。

Rs, Rtはソースレジスタ、Rdはデスティネーションレジスタを指定する。レジスタの指定は以下の通り
である。

5
V

4 0
ID

図 12.9: レジスタの指定

ベクトルレジスタを使用する場合、Vビットを 1にする。スカラレジスタを使用する場合、Vビットを 0

12.4. 複合演算命令 437

にする。IDには使用するレジスタの IDを指定する。図 12.5で指定した構成に従って IDの中で有効とな
るビット幅が決定する。例えば 8length × 16個の構成では IDのうち下位 4ビットが有効となる。16length
× 32個の構成では IDの 5ビットが有効となる。
実際に使用される rs、rt、rdは次に述べる VIECI、VFECI命令で指定された rs、rt、rdのオフセット

値として用いられる。例えば VIECI命令の rsが 1で Compound Instruction Bufferの rsの IDが 3の場
合、実際に指定される Register IDは 1 + 3の 4となる。

operationには演算を行う命令を指定する。以下に整数演算の場合のフォーマットを示す。

10 9
ACC

8
S

7 4
SUB OP

3 0
OP

図 12.10: Operationのフォーマット (整数演算)

OPには以下を指定する。

• NOP (0x0)

何も行わない。

• AND (0x1)

論理積を計算する。

• OR (0x2)

論理和を計算する。6ビット目 (SUB OP)を 1にすると NORオペレーションとなる。

• XOR (0x3)

排他的論理和を計算する。

• ADD (0x4)

加算する。6ビット目 (SUB OP)を 1にすると減算となる。

• MULT (0x5)

乗算する。4ビット目 (SUB OP)を 1にすると符号なし演算となる。6ビット目 (SUB OP)を 1に
すると演算結果 (64bit中)の上位 32ビットを返す。

• SHIFT (0x6)

シフト演算を行う。4ビット目 (SUB OP)が 0の場合は左シフト、1の場合は右シフトとなる。6ビッ
ト目 (SUB OP)が 1の場合は算術シフトとなる。5ビット目 (SUB OP)が 1の場合はシフトではな
くローテーションとなる。

• COMPARE (0x7)

比較演算を行う。4ビット目 (SUB OP)が 1の場合はオペランドを符号無し数値として扱う。5-7ビッ
ト目 (SUB OP)で比較条件を指定する。比較条件は 0x0: 常に偽、0x1: =、0x2: >=、0x3: >、0x4:
常に真、0x5: �=、0x6: <、0x7: <=となる。

• THROUGH (0x8)

rsの値を返す。

438 第 12章 Vector Unit

• MADD (0x9)

Multiply and ADD演算を行う。6ビット目 (SUB OP)が 1の場合減算となる。

• DIV (0xf)

除算を行う。4ビット目 (SUB OP)が 1の場合、値を符号無しとして扱う。6ビット目 (SUB OP)が
1の場合、剰余演算となる。

Sビットを 1にすると、SIMD演算の場合にスカラ演算を行う。例えば 8bit × 4演算の場合、Sビット
を 1にすると rtの下位 8bitを全てのフィールドで使用する。

ACCフィールドに 0x2を指定すると、各ベクトル要素の演算結果を加算する。この場合、Rdはスカラ
レジスタを指定する必要がある。

以下に浮動小数点演算の場合のフォーマットを示す。

10 9
-

8
S

7
D

6 3
SUB OP

2 0
OP

図 12.11: Operationのフォーマット (浮動小数点演算)

OPには以下を指定する。

• NOP (0x0)

何も行わない。

• THROUGH (0x1)

rsの値を返す。3ビット目 (SUB OP)を 1にすると符号反転を行なう。4ビット目 (SUB OP)を 1に
すると絶対値を求める。

• ADD (0x2)

加算する。4ビット目 (SUB OP)を 1にすると減算となる。

• MULT (0x3)

乗算する。

• CONVERT (0x4)

フォーマット変換を行う。4-3ビット目 (SUB OP)で変換後のフォーマットを指定する。0x0: 単精
度、0x1: 倍精度、0x2: 整数へ変換を行う。6ビット目が 1 の場合ソースオペランドを整数値として
扱う。

• COMPARE (0x5)

比較を行う。5-3 ビット目 (SUB OP) で比較条件を指定する。0x0: False、0x1: Unorderd、0x2:
Equal、0x3: Unorderd or Equal、0x4: Ordered or Less Than、0x5: Unordered or Less Than、0x6:
Ordered or Less Than or Equal、0x7: Unorderded or Less Than or Equal。

• MADD (0x6)

Multiply and Add演算を行う。4ビット目 (SUB OP)が 1の場合減算となる。

12.4. 複合演算命令 439

• DIV (0x7)

除算を行う。

Dビットが 1の場合、オペランドを倍精度として扱う。Dビットが 0の場合、オペランドを単精度とし
て扱う。

Sビットを 1にすると、SIMD演算の場合にスカラ演算を行う。例えば 32bit × 2演算の場合、Sビット
を 1にすると rtの下位 32bitを全てのフィールドで使用する。
複合演算命令はVIDCI、VFDCI命令を用いてCompound Instruction Bufferに定義する。そしてVIECI、

VFECI命令により複合命令の演算を開始する。それぞれの命令フォーマットを図 12.12 に示す。

31 26 25 21 20 16 15 1110 6 5 0
011110 rs 00000 rd 00000 101110

VINT VIDCI

VIDCI (Vector Integer Define Compound Instruction)

31 26 25 21 20 16 15 1110 6 5 0
011110 rs rt rd no 101111

VINT VIECI

VIECI (Vector Integer Execute Compound Instruction)

31 26 25 21 20 16 15 1110 6 5 0
011111 rs 00000 rd 00000 101110

VFP VFDCI

VFDCI (Vector Floating Point Define Compound Instruction)

31 26 25 21 20 16 15 1110 6 5 0
011111 rs rt rd no 101111

VFP VFECI

VFECI (Vector Floating Point Execute Compound Instruction)

図 12.12: 複合演算命令のフォーマット

複合演算定義命令では rsに図 12.8に従ったデータが入ったレジスタを指定し、rdに格納するCompound
Instruction Bufferの IDを指定する。複合演算実行命令では rs、rtに Source Register、rdにDestination
Registerを指定し、noに実行を開始する Compound Instruction Bufferの位置を指定する。
複合演算実行命令が発行されると、Compound Instruction Controllerは Compound Instruction Buffer

から noに指定されたエントリの命令を読み出し、Register IDの変換を行ってからVector Execution Unit
へ読み出した命令を渡す。読み出した命令の Next Bit を見て 1 が立っていたら Compound Instruction
Bufferの次のエントリから命令を読み出し演算を続ける。Next Bitが 0ならばそこで複合演算を終了し、
次の命令を受け付ける。

図 12.13 に複合演算命令の例を示す。例ではエントリの 0から 1でベクトルの加算をした後スカラレジ
スタの値で比較を行っている。また 2から 9で別の複合演算命令として、ベクトル変換命令を定義してい
る。複合演算実行命令で noに 0を指定するとベクトルの加算と比較を実行し、2を指定するとベクトル変
換命令を実行する。

440 第 12章 Vector Unit

Next Rd
1 V0 VADD

Rt
V0

Rs
V0

Operation

0 V1 VCMPS0 V1
1 S0 VMACV0 V0

0
1
2

1 S1 VMACV1 V13
1 S2 VMACV2 V24
1 S3 VMACV3 V35
1 S4 VMACV4 V46
1 S5 VMACV5 V57
1 S6 VMACV6 V68
0 S7 VMACV7 V79

図 12.13: 複合演算の定義例

441

13
Responsive Link

13.1 概要

Responsive Linkは，各種ロボット，自動車，プラント，ホームオートメーション等の種々の分散制御を
実現するために必要なハードリアルタイム通信，及び，画像，音声等のマルチメディアデータを滑らかに

伝送するために必要なソフトリアルタイム通信の両方を同時に可能にするように設計を行っている．特に，

リアルタイムの理論をそのまま応用可能なように，パケットの追い越し機能を実現している．

Responsive Linkは柔軟なリアルタイム通信を実現するために，

• 通信パケットに優先度を付け，高い優先度の通信パケットが低い優先度の通信パケットを通信ノード
毎に追い越し

• ハードリアルタイム通信（データリンク）とソフトリアルタイム通信（イベントリンク）の分離

• 全く同じネットワークアドレス（送信元アドレス及び送信先アドレス）を持つ通信パケットの経路を
優先度によって別の経路に設定することによって専用回線や迂回路を設け実時間通信を制御

• 通信パケットの優先度を通信ノード毎に付け替え可能にすることによってパケットの加減速を分散管
理で制御

• ハードウェアによるフレーム単位のエラー訂正

という方法を組み合わせることによって，分散管理を用いて大規模かつ量子時間の小さい実時間通信を実

現する．さらに，

• 通信速度を動的に変更可能

• トポロジーフリー，

• Hot-Plug&Play

等の様々な機能を実現する．

Responsive Linkは国内では情報処理学会試行標準 (IPSJ-TS 2003:0006)として標準化されており，国際
的にはでは ISO/IEC JTC1 SC25 WG4において標準化作業が行われている．

442 第 13章 Responsive Link

13.2 Responsive Linkのインタフェース

ソフトリアルタイム通信（以下，単にデータと呼ぶ）のデータサイズ（画像データ，音声データ等）は大

きく，それに対してハードリアルタイム通信（以下，単にイベントと呼ぶ）のデータサイズ（制御コマン

ド，同期信号等）は非常に小さい．従って，従来型の 1系統の通信路で全ての通信を行う方法では，同時
に通信すべき通信データとして，大量のデータパケットと，ごくわずかではあるが分散リアルタイム制御

用途には非常に重要なイベントパケットが同一種類のパケットとして存在する．データとイベントを，共

有された同一の通信線を通して時分割に通信を行う従来方式ではイベント伝達の時間が正確にバウンドで

きないので，ハードリアルタイムシステムは実現困難であると考えられる．

また，複数のモジュールでひとつの通信チャネルを共有するシリアルバスでは，同時に何台のモジュー

ルが通信するかによってバンド幅が動的に変化し時間をバウンドすることが困難であり，実効速度も出に

くい．

さらに，リアルタイム通信におけるトレードオフとして，ソフトリアルタイム通信は主にバルク的なマ

ルチメディアデータの通信等に用いられ，ハードリアルタイム通信は主に制御等に用いられるので，

• ソフトリアルタイム：バンド幅保証 ⇒
スループットをできるだけ上げたい

• ハードリアルタイム：レイテンシ保証 ⇒
レイテンシをできるだけ小さくしたい

という要求がある．しかしながらパケットサイズを大きくするとスループットは高くなるが，同時にレイ

テンシも長くなる．逆にパケットサイズを小さくするとレイテンシは短くなるが，オーバヘッドが大きく

なりスループットが低くなる．

従って，Responsive Linkでは，データラインとイベントラインを分離し，かつ各ラインの結合形態を
point-to-pointの双方向シリアル通信として設計されている（図 13.1参照）．以下，それぞれをデータリ
ンク，イベントリンクと呼ぶ．データリンクではパケットサイズを固定長かつ大きめにしてソフトリアル

タイム通信に使用し，イベントリンクではパケットサイズを固定長かつ小さめにしてハードリアルタイム

通信に使用する．

Tx Data+

Tx Data-

Rx Data+

Rx Data-

Responsive Link Cable
(Enhanced Category 5)

Responsive Link Connector
(RJ-45)

Tx Event+

Tx Event-

Rx Event+

Rx Event-

Event Link

Data Link

4

3

2

5

6

7

8

1

4

3

2

5

6

7

8

1
Tx Data+

Tx Data-

Rx Data+

Rx Data-

Tx Event+

Tx Event-

Rx Event+

Rx Event-

Responsive Link Connector
(RJ-45)

図 13.1: Responsive Linkインタフェース

13.3. パケットフォーマット 443

13.3 パケットフォーマット

図 13.2に Responsive Linkのパケットフォーマットを示す．通信パケットは，ヘッダ部，ペイロード部，
トレイラ部から構成する．ヘッダ部は優先度付のネットワークアドレスから構成し，トレイラ部は制御情

報とステータスから構成される．

通信パケットは固定長で，ハードリアルタイム通信用のイベントリンクのパケットサイズは 16バイト
（ペイロード：8バイト）と小さく，ソフトリアルタイム通信用のデータリンクのパケットサイズは 64バ
イト（ペイロード：56バイト）と大きい．

Source Addr. Destination Addr.

Event Packet Format (16B)Data Packet Format (64B)

Source Addr. Destination Addr.

Payload

Redundancy bitsData bits

1 bit

1 byte

Serial Number (Cnt.)CorrectFatalInt.Start End

0 Full Data Length

Dirty0 Dirty1 Dirty2 Dirty3 Dirty4 Dirty5 Dirty6 Dirty7

Dirty8 Dirty9 Dirty10 Dirty11 Dirty12 Dirty13 Dirty14Dirty15

Control & Status Format (32bits)

Control & Status

Control & Status

0

1

2

3

Payload

Frame Format (12bits)

図 13.2: Responsive Linkのパケットフォーマット

444 第 13章 Responsive Link

図 13.2の通信パケットのヘッダ部に対して，図 13.3に示すようにネットワークアドレスに優先度を付
加する．256レベル (8bit)の優先度を有し，優先度は 0が一番低く，数字が大きくなるにしたがって高く
なる．

31 16 15 0

Priority[7-4] Priority[3-0]Source Address Destination Address

図 13.3: Responsive Linkのヘッダフォーマット

Responsive Linkの最大通信ノード数は，ネットワークアドレス長に制限され，優先度を使用しない場
合，理論的には 232 ノードとなる (図 13.3参照)．Responsive Linkの規格で推奨している使用法（ノード
毎にノードアドレスを割り当て，12bitの送信元アドレス，12bitの送信先アドレス，8bitの優先度を用い
てルーティングを行う）の場合には，212 = 4096ノードとなる．4096よりノード数が大きなシステムを
構築する際には，経路にアドレスを割り当てる（24bitのネットワークアドレスと 8bitの優先度を用いて
ルーティングを行う）ことにより 224 = 16Mノードまでのノード数をサポートする．

13.3.1 固定長（64B）のデータパケット

レスポンシブリンクのスイッチ部はカットスルー型のスイッチを採用している．データパケットは固定

長 (64byte)で，パケットに優先度が付加されている．データパケットはアドレス（ソースとデスティネー
ション），ペイロード，ステータスから構成される．カットスルー型のスイッチなので，衝突が起きない限

りデータはノードを経由して転送されるが，あるノードで衝突が起こった場合は，優先度の高いパケット

が低いパケットを追い越すことができるようになっている．この機能によって従来までの集中管理型では

なく分散管理型のリアルタイム通信を実現している．　　　　　　　　　　　　　　　　

データパケットは，2byteの送信元アドレス・2byteの送信先アドレス・56byte のペイロード・4byteの
制御・状態データの計 64byteより構成される．4byteの制御・状態データは以下のフォーマットをとる．
　　　　　　　　　　

UD ユーザ定義フラグ（任意に設定可能）

Full ペイロード 56byteがすべて有効データで埋められているとき 1，それ以外は 0

Data Length ペイロードの有効データ長．1から 56の値をとる．

Dirty0-15 パケットのどのワード（4byte）にエラーが存在するかを示すビット．パケットの
2ワード目にエラーがある場合はDirty1が 1となる．（ハードウェアによりセットされる）

Start このパケットがスタートパケットであるとき 1，それ以外は 0

End このパケットがエンドパケットであるとき 1，それ以外は 0

Int このパケットを受け取る際に割り込みを生じるときは 1，それ以外は 0

Fatal このパケットに致命的なエラーが存在するときは 1，それ以外は 0（ハードウェアによりセットされる）

Correct このパケットの一部分にエラーが存在し，それが修復されたときは 1，
それ以外は 0（ハードウェアによりセットされる）

Serial Number パケットのシリアルナンバ．スタートパケットが 0，以降 0から 7までを繰り返す．

13.3. パケットフォーマット 445

13.3.2 固定長（16B）のイベントパケット

イベントパケットも固定長 (16byte)で，送信元アドレス，送信先アドレス，ペイロード，ステータスか
ら構成される．イベントの場合もノードで衝突がない限り，直接ノードを経由してルーティングされるが，

衝突が生じた場合はデータの場合と同様に，優先順位に従ってパケットの追い越しを行なう．

4byteの制御・状態データは以下のフォーマットをとる．

UD ユーザ定義フラグ（任意に設定可能）

Full ペイロード 8byteがすべて有効データで埋められているとき 1，それ以外は 0

Data Length ペイロードの有効データ長．1から 8の値をとる．

Dirty0-15 パケットのどのバイトにエラーが存在するかを示すビット．パケットの

2バイト目にエラーがある場合は Dirty1が 1となる．（ハードウェアによりセットされる）

Start このパケットがスタートパケットであるとき 1，それ以外は 0

End このパケットがエンドパケットであるとき 1，それ以外は 0

Int このパケットを受け取る際に割り込みを生じるときは 1，それ以外は 0

Fatal このパケットに致命的なエラーが存在するときは 1，それ以外は 0（ハードウェアによりセットされる）

Correct このパケットの一部分にエラーが存在し，それが修復されたときは 1，
それ以外は 0（ハードウェアによりセットされる）

Serial Number パケットのシリアルナンバ．スタートパケットが 0，以降 0から 7までを繰り返す．

13.3.3 優先度による追い越し機構

優先度を用いたパケットの追い越し機構を実現するために，追い越し用バッファと退避用外部記憶を有

したネットワークスイッチを搭載している．図 13.4は 5入力 5出力で一つの入力部当たり追い越し用バッ
ファが 4 パケット分あるネットワークスイッチの構成を示している．（実際に RMTP に実装されている
Responsive Linkには 8パケット分の追い越し用バッファが実装されている．）図 13.4において，最後の数
字はポート番号を示している．入力ポート (In0～4)から入力された通信パケットは，通信ノードで衝突し
ない場合，そのまま出力ポート (Out0～4)へ出力を行う．異なる入力ポートから入力された通信パケット
が同じ出力ポートに出力を行なう場合，通信パケットに付加された優先度に従い，低い優先度の通信パケッ

トを追い越し用バッファ（意味的には追い越され用バッファ）に貯めて出力を待たし，高い優先度の通信

パケットを先に出力させる．高い優先度の通信パケットの出力の後に低い優先度の通信パケットを追い越

し用バッファから出力ポートに出力し，優先度に従った通信パケットの追い越しを行う．

この際，内部のスイッチングは，ヘッダ部受信のオーバヘッド及びルーティングテーブルの参照時間を

隠蔽するために図 13.4のように 8bitパラレル（byte単位）で行うように設計されている．
上記の通信パケットの追い越しを実現するために通信パケットの大きさと等しい追い越し用バッファを 8

本入力ポート側に搭載している．さらに，出力が待たされ続けている時に入力が入り続けバッファが溢れそ

うになった場合に，追い越し用バッファの内容を一時的に退避するための退避用外部記憶 (DDR SDRAM)
を設けることができるようになっている．

図 13.5は図 13.4のネットワークスイッチのひとつの入力部の詳細を示している．図 13.5において，最
後の数字はポート番号を示している．通信パケットの追い越しを行うために，まず，入力ポート (In)から
入力された通信パケットを，入力ポインタ (In-Pointer)で指し示されている追い越し用バッファ0から追い
越し用バッファ3のうち使用されていない空バッファに書き込む．入力パケットのヘッダ部分は必ず全て
受信し追い越し用バッファに書き込み，その受信されたヘッダを元に図 13.6のようなルーティングテーブ
ルを参照し出力ポート番号と優先度を得る．得られた出力ポート番号は図 13.5のリンクストローブ (L0～

446 第 13章 Responsive Link

L4)に書き込む．例えば L2ビットが有効であればその入力パケットの出力先は出力ポート 2であることを
示す．

Out0 Out1 Out2 Out3 Out4

Fifo00
Fifo01
Fifo02
Fifo03

Fifo10
Fifo11
Fifo12
Fifo13

Fifo20
Fifo21
Fifo22
Fifo23

Fifo30
Fifo31
Fifo32
Fifo33

Fifo40
Fifo41
Fifo42
Fifo43

SDRAM
 I/F

32bit

8bit

SDRAM

SDRAM
Arbitor

In0

In1

In2

In3

In4

Priority
Arbitor0 MUX0 Priority

Arbitor1 MUX1 Priority
Arbitor2 MUX2 Priority

Arbitor3 MUX3 Priority
Arbitor4 MUX4Routing

 Table
Table
Arbitor

MPU

図 13.4: Responsive Linkのネットワークスイッチ

図 13.5: Responsive Linkの追い越し用バッファ

図 13.5において L0から L4までの複数ビットが有効であればマルチキャストを意味し，全て有効であ
ればブロードキャストを意味する．入力部の出力側は出力ポート毎 (Out0～Out4)にそれぞれ独立に各追

13.4. フレームフォーマット 447

い越し用バッファのリンクストローブを参照し，自出力ポートのリンクストローブが有効な場合，出力側

ポート側に配置された当該優先度調停器 (図 13.4の Priority ArbitorN)に対して優先度と共に出力要求を
行なう．図 13.5の PriorityNは図 13.4の Priority ArbitorNに接続されている．優先度調停器は，出力要
求が一つの入力ポートからだけある場合はただちに出力許可を与え，出力要求が複数ある場合は優先度の

一番高いものに出力許可を与えるようにする．一番優先度の高い要求が複数ある場合は，ラウンドロビン

方式で出力許可を与える．

通信パケットの衝突がない場合や，衝突があってもその時点での最高優先度の通信パケットの場合は，

ヘッダの受信とルーティングテーブル参照の遅延時間後に直ちに出力を開始する．入力部の各出力ポート

側ではパケットの送信終了直後に対応するリンクストローブを無効にし，全てのリンクストローブが無効

になったらそのバッファが空であることを意味する．

例えば，In-pointerが追い越し用バッファ1を指している場合，入力ポート In から入力されたパケット
は，まずヘッダ部が追い越し用バッファ1に入る．次にそのヘッダを元にルーティングテーブルを引き，リ
ンクストローブと優先度を得る．例えば，L1と L3が有効だった場合，Out-pointer1とOut-pointer3は共
にその追い越し用バッファ1を指し，Out1とOut3側が出力要求と共にその優先度をそれぞれ Priority1と
Priority3に出力する．例えば，Out3にすぐに出力可能であれば，出力許可が Priority Arbitor3から与え
られるので，直ちに追い越し用バッファ1からOut3に出力を開始する．出力が終われば，Out3側が追い
越し用バッファ1の L3をクリアする．また，Out1には直ちに出力許可がおりなかったとすると，出力許可
が得られるまで出力要求と優先度を Priorty1に出力し続ける．ここで，Out1への出力待ちの状態で，同
じくOut1へ出力したい高優先度パケットが新たに追い越し用バッファ2に入ってきた場合，Out-pointer1
はより優先度の高いパケットの入っている追い越し用バッファ2を指すようになり，その高優先度パケット
の出力要求と優先度を Priority1に出力するようになる．後から到着した高優先度パケットの出力が終わる
と，他に Out1に出力したい高優先度パケットがない場合，Out-pointer1は再び追い越し用バッファ1を
指して，同様に出力を継続しようとする．このように，同一系路上の先行する低優先度パケットが待たさ

れている際にも，後続の高優先度パケットが追い越していくことを可能にする．

図 13.5において，空バッファが少なくなっていき残り 1本になってしまった場合，次の入力パケットは
退避用外部記憶 (DDR SDRAM)に退避を行うようになっている．出力が進んで空バッファの残りが多くな
り 2本以上になると，退避用外部記憶に退避されていた入力パケットを優先度を考慮して追い越し用バッ
ファに書き戻すことにより，出力を継続する．

また，退避用外部記憶が溢れそうになると，そのノードのプロセッシングコアに対して割り込みをかけ

られるようになっている．退避用外部記憶が溢れる場合は，アドミッションコントロールを行ってパケッ

トの破棄を行ったり，送信元に送信データの一時停止を行うように制御する等の方法が考えられるが，そ

のプロトコル自身は Responsive Linkの規格では定めていない．それらは上位のプロトコルで行うことに
なるので，上記割り込みをかける閾値を設定可能にするように設計している．

リアルタイム通信を実現するために，優先度によるパケットの追い越しをこのように再送を行なわなな

くてよいように設計されている．

13.4 フレームフォーマット

1byteは，図 13.2の Frame Formatような冗長ビットを含めたフレームとしてシリアルに送受信される．
詳細は低レベル通信の節を参照．

Data bits 8bitのデータ

Redundancy bits byte毎にRedudancy bits（冗長ビット）を付加することで，CRC等とは異なり，パ
ケット全てを受信し終わらなくても byte毎にエラー訂正が可能

448 第 13章 Responsive Link

13.5 ルーティング・テーブル

Responsive Linkの経路制御は，図 13.6に示すようなルーティングテーブル（経路制御表）を設定する
ことによって行う．ルーティングテーブルは，Responsive Linkコントローラ内に置き，そのノードのロー
カルプロセッサから読み書きできるようになっている．図 13.6において，Reference部はパケットのヘッ
ダと同一であり，Referent部に当該パケットに関する設定を行う．EEビット及びDEビットは，それぞれ
そのラインがイベントリンク用の設定かデータリンク用の設定かを示す．両方とも設定されていれば，両

リンクとも同様の設定になる．L[4-0]は，前述のリンクストローブビットであり，出力ポート（複数可）を
指し示す．

ルーティングテーブルの大きさ（エントリ数）は実装依存で有限となるため，非常に大きな分散システム

を構築する際には溢れてしまう可能性がある．ルーティングテーブルに入りきらない大規模なシステムを構

築する際には，ローカルノードプロセッサの主記憶上に完全なルーティングテーブルを用意し，Responsive
Linkコントローラ上のルーティングテーブルはキャッシュとして用いるようにする．つまり，TLB付きの
MMUとページテーブルを用いたメモリ管理と同様な管理手法を行うようにする．
そのために，ルーティングテーブルにヒットしないエントリがあった際には，ローカルノードのプロセッ

サに対して割り込みをかけると同時に，該当パケットを一時的に前述の退避用外部記憶に退避する．割り

込みをかけられたプロセッサは，主記憶上の完全なルーティングテーブルをソフトウォークしてエントリ

を検索し，そのエントリを Responsive Linkコントローラ上のルーティングテーブルの適切なエントリと
スワップするようにする．（多くの場合，最近使用されていないエントリとスワップすると考えられるが，

それはRT-OSのポリシ依存である．）Responsive Linkコントローラ側は，イベントリンクとデータリンク
それぞれについて，LRUエントリアドレスが分かるように設計し，RT-OSに対してヒントを与えるよう
にする．その後，退避していたパケットを追い越しバッファに書き戻すことによって継続的にルーティン

グを実現する．

上記のような機構により，大規模な分散リアルタイムシステムが構築可能である．ただし，コントロー

ラ内のルーティングテーブルに収まる範囲の規模でないと，厳密にハードリアルタイム性を維持するのは

困難となる．

また，分散リアルタイムシステムの規模が大きくなればなるほど（つまりルーティングテーブルのサイ

ズが大きくなればなるほど）通信のジッタは大きくなり，リアルタイム性の時間粒度も大きくなるが，近

傍で激しく通信している経路をキャッシュに置き，そうでないものは主記憶上のルーティングテーブルに

置く等の方法をとることにより，運用が可能であると考えられる．

EE DE P1 P0 PE L4 L3 L2 L1 L0
Priority[7-4] Priority[3-0]Source Address (16bit) Destination Address (16bit)

0
1
2
3

Priority[7-0] : Priority
EE : Event Enable
DE : Data Enable
PE : Priority exchange Enable
P[7-0] : New Priority
L[4-0] : Output Port Number

EE DE P1 P0 PE L4 L3 L2 L1 L0
EE DE P1 P0 PE L4 L3 L2 L1 L0
EE DE P1 P0 PE L4 L3 L2 L1 L0

Reference Referent

P7 P6

P7 P6
P7 P6
P7 P6

P5 P4

P5 P4
P5 P4
P5 P4

P3 P2

P3 P2
P3 P2
P3 P2

図 13.6: Responsive Linkのルーティングテーブル

13.6. パケットの加減速制御 449

13.6 パケットの加減速制御

リアルタイム通信パケットの制御を外部から行うことができるようにするために，通信ノード毎にパケッ

トの優先度の付け替えができるようにして，分散管理型でのリアルタイム通信の制御を実現している．

優先度の付け替えは，図 13.6のルーティングテーブルを用いることによって行なう．図 13.6において，
ネットワークアドレスと優先度を元にルーティングテーブルを参照し出力ポート番号を決定する際に，優

先度を付け替えないモード（図 13.6の優先度付替ビット PEが無効）の場合は優先度はそのままであるが，
優先度を付け替えるモード（優先度付替ビット PEが有効）の場合，出力ポートから出力する際に優先度
(Priority[7-0])を新優先度 (P7～P0)に置き換える．つまり，現ノードでの通信パケットの優先度は入力パ
ケットのヘッダに付加されている優先度で決定され，その優先度に従って追い抜きやルーティングが決定

されるが，次ノード以降での通信パケットの優先度を制御することができる．ルーティングテーブルの設

定はソフトウェア（分散リアルタイムオペレーティングシステム等）で行ない，ルーティング（経路制御）

自身はハードウェアで行なうようになっている．

このパケットの加減速制御機構により，例えば，リアルタイム通信の流量やレイテンシを監視するミド

ルウェアを用いて，リアルタイム通信の制御を可能とする．リアルタイム性の低い通信パケットがバルク

的に流れていて，そのパケットが他のリアルタイム性の高いパケットの通信のリアルタイム性を阻害して

いたとしたら，通信監視ミドルウェアが当該パケットの優先度を下げることによって，リアルタイム性の

制御を行うことができる．あるいは，あるノードでデッドラインミスが発生してしまった場合，その通信

パケットの優先度を途中の経路で上げることにより（特にホットスポットで優先度を上げると効果的），次

回からのデッドラインミスを防ぐことが可能となる．

13.7 優先度に従った経路制御

優先度に従って専用回線や迂回路を設けたり，データの流量の制御を行なうことができるように，全く

同じネットワークアドレスを持つ通信パケットの経路を優先度によって別の経路に設定することができる

ようにしている．そのために，基本的にはネットワークアドレスと優先度の組でルーティングテーブルを

参照する．

優先度ごとに必ずルーティングテーブルを設定しなければならないと煩雑であるので，デフォルトルー

トを設けることができる．ネットワークアドレスは同じであるが優先度が一致する組合わせ（経路）がルー

ティングテーブル上に無い場合には，最も優先度の低い優先度 0の経路がデフォルト経路となるようになっ
ている．つまり，

1. ネットワークアドレスと優先度の両方が一致すればその経路が第一優先

2. ネットワークアドレスは一致するが優先度が一致しない場合，優先度 0の経路

となる．ここで，優先度 0の経路はデフォルト経路となるので，途中で経路が消滅してしまわないように
ルーティングテーブルに必ず登録する必要がある．

図 13.7は，2次元格子の交点に通信ノードがあるとし，全く同じ送信元から送信先に対して異なる優先
度の通信パケットを同時に通信している状態を示す．例えば，優先度 0のイベントリンクの経路上は別の
通信ノードからの通信パケットも同じ経路を通って送信先に通るように設定しておき，優先度 3の経路は
送信元と送信先の優先度 3の通信パケットしか通らないように設定しておくことにより，他の通信パケッ
トと衝突が起きない専用回線を実現することができる．Responsive Linkには優先度による追い越し機構が
あるが，衝突があると追い越しのために多少のオーバヘッドが生じてしまうので，このように優先度を用

いてパケットの衝突が全くない専用回線を設定することにより，非常にレイテンシ及びジッタが小さいリ

アルタイム経路の実現を可能とする．また，優先度が異なる経路を複数設定することによってマルチリン

クを実現し，バンド幅を広げることも同時に可能とする．

450 第 13章 Responsive Link

Source

Destination

Data (Priority0)

Event (Priority3)

Data (Priority1)

Event (Priority0)

図 13.7: Responsive Linkの優先度付経路

制御用の分散システムでは図 13.8のような木構造を採る場合が多い．図 13.8において通信ノード 0か
ら通信ノード 5に通信する場合，優先度 0の通信パケットは途中に通信ノード１と通信ノード 2という中
間ノードを経由して通信を行なうが，優先度 1の通信パケットは通信ノード 0から直接通信ノード 5へ通
信を行なうことができる．これは，例えばヒューマノイドロボットを開発した際に，当初は頭モジュール，

肩モジュール，肘モジュール，指モジュールと接続しそれらの経路をホップして通信を行っていたが，設

計後にどうしても頭モジュールと指モジュール間の通信レイテンシが間に合わないと判明した場合，後付

で頭モジュールと指モジュールを直接接続し優先度を変えて通信することにより，容易に通信経路（この

場合は専用回線）の増設を可能とする．この機能は，実システムを構築する際に手助けとなる．

13.8. 低レベル通信 451

Source

Destination

Data (Priority0)

Node0

Node1

Node2 Node3 Node4

Node5 Node6 Node7 Node8 Node9 Node10

Data (Priority1)

図 13.8: Responsive Linkの優先度付木構造経路

13.8 低レベル通信

Responsive Linkは分散制御用途であるので，必ずエラー訂正を行わなければならない．その際，できる
だけエラー訂正によってリアルタイム性が損なわれないようにする必要がある．

ここで，パケット単位でCRCを付加しエラー訂正を行う方法では，パケット全体を受信しないとエラー
訂正できない．その場合，ホップ毎にレイテンシが積算されていくので，リアルタイム通信用のエラー訂

正としては好ましくない．そこで，レスポンシブリンクでは 1ホップごとにフレーム（図 13.2参照）単位
でエラー訂正を行い，1フレーム (8bitデータ+4bit冗長符号) につき 1bitのエラーであれば，再送するこ
となしにハードウェアで誤り訂正を行うようにする．

13.8.1 CODEC

Responsive Link の CODEC は，8bitの情報ビット列に，誤り訂正用の 4bitの冗長ビット列を加えた
12bitを 1フレームとして通信を行う．本 CODECで行われる符合化は，以下のような流れとなる．

1. 巡回組織ハミング符合化（冗長ビット列を加える誤り訂正符合化）

2. Bit Stuffing（連続した 1の符合に 0を挿入）

3. NRZI符合化

以下，各符合化について説明を行う．

13.8.2 巡回組織ハミング符号化

誤り訂正符合として，生成多項式が x4 + x + 1の巡回組織ハミング符合を採用する．この符合化では，
8bitデータの下位 (LSB)側に 4bitの冗長ビット列を付加することで，12bit中の任意の 1bitの誤りを受信

452 第 13章 Responsive Link

側で訂正することを可能にし，表 13.1より誤りの位置を特定できる．送信時には，これら 12bitのビット
列は，MSB側から 1bitずつ送信を行う．

表 13.1: シンドロームとエラーの位置
Syndrome Error Position (4 Meaning

redundancy bits)

0000 00000000 0000 No error

0001 00000000 0001 Redundancy-bit error

0010 00000000 0010 Redundancy-bit error

0100 00000000 0100 Redundancy-bit error

1000 00000000 1000 Redundancy-bit error

0011 00000001 0000 0bit error

0110 00000010 0000 1bit error

1100 00000100 0000 2bit error

1011 00001000 0000 3bit error

0101 00010000 0000 4bit error

1010 00100000 0000 5bit error

0111 01000000 0000 6bit error

1110 10000000 0000 7bit error

13.8.3 Bit Stuffing

1が長時間連続することによって引き起こされるリンクへの直流成分が発生や，受信側のビット同期へ
の支障を回避するために，通信データ中に 5つの連続した 1が現れた場合には，その後ろに 0を挿入する．

13.8.4 NRZI符合化

最終的に送信される際に NRZI(Non Return to Zero Inverted) 符合化を行う．NRZI符合化は，0を送
る場合にはリンクのデータビットを反転し，1を送る場合にはデータビットの状態を前のまま保持する．

13.8.5 セットアップパターン

電源投入直後や，予期できないバースト的なリンクエラーなどの後は，送受信インタフェース間でフレー

ム同期がとれない場合がある．そのような場合，明示的にリンクの初期化を行うようにする．具体的には，

以下に示すセットアップパターンを受信側に送信する．

セットアップパターン：000001111110

このパターンは，連続した 1が 6個以上は連続しないという bit stuffingの規則に反しているため，いか
なる通常のパケットとも区別される．受信側では，このパターンを受信するとその後，最初に認識したフ

レームを，新しいパケットの第 1フレームとして解釈する．

13.8. 低レベル通信 453

表 13.3: 通信速度とケーブル
Speed (Mbaud) 100 200 400

Maximum Length (m) 100 80 60

Recommendable Cable Cat5e Cat5e Cat6

13.8.6 DPLLを用いたビット同期

受信側に DPLL(Digital Phase Lock Loop)機構を設計し，受信用クロックの立ち上がりエッジに同期
して受信信号をサンプリングする．1bit転送あたりのサンプリング数はソフトウェアの設定によって可変
(4,8,16,32,64,128,256)にする．DPLLでは設定された周期ごとに受信用クロックを生成し，受信信号のエッ
ジを検出することにより，信号のエッジ間の中央で受信用クロックが立ち上がるように，受信用クロック

の周期を微調整を行う．表 13.2に DPLLのモードを示す．

モード名 p mode2 p mode1 p mode0 d clk周期/1bit転送

Mode2 1 1 1 2

Mode4 0 0 0 4

Mode8 0 0 1 8

Mode16 0 1 0 16

Mode32 0 1 1 32

表 13.2: DPLLモードの設定

13.8.7 エラーの取扱い

Responsive Linkでは，誤り訂正符合化によって 1[bit/frame]の誤りまでは自動的にエラー訂正を行うこ
とができる．エラーの箇所を受信側で特定するために，図 13.2のトレイラ部のDirtyビットを立てる．具
体的には，データリンクの場合ワード (4byte)単位で，イベントリンクの場合バイト単位で，エラーのあっ
た場所のDirtyビットを立てる．エラーがハードウェアによって訂正されても，訂正しきれなくてもDirty
ビットは立てるようにする．また，そのパケット中に 1箇所でもエラー訂正が行われハードウェアで訂正
しきれた場合，トレイラ部の Correctビットを立てる．エラー訂正不可能だった場合，Fatalビットを立て
る．受信側のアプリケーションでは，これらを参考にし，例えば，受信データを本当に制御に使用してよ

いかどうか等を判断することを可能にする．

13.8.8 通信速度

Responsive Linkの通信（変調）速度は，様々な環境（コンフィギュレーション，アプリケーション）を
想定し，400, 200, 100, 50, 12.5, 6.25 [Mbaud] の範囲で段階的に可変とする．
表 13.3に，通信速度と最大通信距離，推奨ケーブルの関係を示す．例えば，最大変調速度 400[Mbaud]

で通信する場合，ケーブルにはCategory6を使用し，最大通信距離は 60[m]以内である．この場合，DPLL
の基準周波数にはデューティ比が 1対 1の 800[MHz]のアップダウンエッジを使用し，サンプリング数 4
で DPLLを行うことによって実現する．

454 第 13章 Responsive Link

レスポンシブプロセッサは組み込み用途を想定しているので，消費電力が大きな問題となる．一般に通

信速度（動作周波数）を速くすれば消費電力が大きくなり，遅くすれば小さくなる．通信速度の変更は，受

信クロックを変更するのではなくDPLLのサンプリング数を変更することによって行う．従って，通信速
度が遅い場合の通信は，通信速度が遅くなることによる安定性の増加とDPLLのサンプリング数が増加す
ることによる安定性の増加という 2重の恩恵を受ける．

13.9 メモリマップ

レスポンシブリンク部のアドレスマップは以下の通りである．

デコードアドレス 接続される I/O

0xFFFE 0xxx レスポンシブリンク内部レジスタ

0xFFFE 1xxx レスポンシブリンク用 IRC (r/w)

0xFFFE 2xxx ルーティングテーブルアドレス部 (r/w)

0xFFFE 3xxx ルーティングテーブルリンク部 (r/w)

0xC0xx xxxx イベント入力用DPM (r)

0xC4xx xxxx イベント出力用DPM (r/w)

0xC8xx xxxx データ入力用DPM (r)

0xCCxx xxxx データ出力用DPM (r/w)

初期アドレス: 0xfffe0000

13.10 レジスタマップ

13.10.1 SDRAMモードレジスタ

オフセット: 0x0000

31 2
30’h0

1 0
SDMODE

Responsive Linkは，パケット追い越し用に外付けの SDRAMを付けることができる．SDMODE(SDram
MODE)レジスタは，パケット追い越し用外付けDDR SDRAMの有無と大きさを示す．外付け SDRAM
を搭載しない場合は，内蔵の追い越しバッファ（各リンク 8パケット分）のみで優先度付きパケットの追
越を行う．

13.10. レジスタマップ 455

bit名 機能

29’h0 0

SDMODE Default 000
000 : 外付け SDRAMなし
001 : 外付け SDRAMあり，容量： 8MB
010 : 外付け SDRAMあり，容量： 16MB
011 : 外付け SDRAMあり，容量： 32MB
100 : 外付け SDRAMあり，容量： 64MB
101 : 外付け SDRAMあり，容量： 128MB
110 : 外付け SDRAMあり，容量： 256MB
111 : 外付け SDRAMあり，容量： 512MB

13.10.2 レスポンシブリンク速度設定レジスタ

オフセット: 0xFFFE 0004
属性 リード／ライト

31 28
-

27 25
Data4

24 22
Data3

21 19
Data2

18 16
Data1

15 12
-

11 9
Event4

8 6
Event3

5 3
Event2

2 0
Event1

RSL(Responsive Link Speed): Default 000
本レジスタはレスポンシブリンクの変調速度を示す．
111 : 800 Mbaud
000 : 400 Mbaud
001 : 200 Mbaud
010 : 100 Mbaud
011 : 50 Mbaud

bit名 機能

Data4 Data Link 4用 RSL

Data3 Data Link 3用 RSL

Data2 Data Link 2用 RSL

Data1 Data Link 1用 RSL

Event4 Event Link 4用 RSL

Event3 Event Link 3用 RSL

Event2 Event Link 2用 RSL

Event1 Event Link 1用 RSL

13.10.3 レスポンシブリンク初期化レジスタ

オフセット: 0xFFFE 0008

456 第 13章 Responsive Link

属性 リード／ライト

31 21
-

20 17
DLINIT

16
D s

15 5
-

4 1
ELINIT

0
E s

RLINIT(Responsive Link INITialization)レジスタはレスポンシブリンクのスイッチの初期化およびエ
ンコーダ／デコーダ部分の初期化を行なう．
0: 通常動作

1: 初期化

bit名 機能

DLINIT Data linkの各エンコーダ／デコーダの初期化
DLINIT[4]: RLINIT[20]: Data link4の初期化
DLINIT[3]: RLINIT[19]: Data link3の初期化
DLINIT[2]: RLINIT[18]: Data link2の初期化
DLINIT[1]: RLINIT[17]: Data link1の初期化

D s Data link switchの初期化

ELINIT Event linkの各エンコーダ／デコーダの初期化
ELINIT[4]: RLINIT[4]: Event link4の初期化
ELINIT[3]: RLINIT[3]: Event link3の初期化
ELINIT[2]: RLINIT[2]: Event link2の初期化
ELINIT[1]: RLINIT[1]: Event link1の初期化

E s Event link switchの初期化

13.10.4 レスポンシブリンク割り込みクリアレジスタ

オフセット: 0xFFFE 000C 属性 リード／ライト

31 7
-

6 1
RLIC

0
-

RLIC(Responsive Link Irq Clear)レジスタはイベントリンクの割り込み要求のクリアを行なう．
Default 0
0: 通常動作

1: クリア

13.10. レジスタマップ 457

bit名 機能

RLIC[1] Data-Out EOP(End Of Packet) IRQ Clear: データパケットがDPMの設定した範囲
から送信された場合に生じる割り込みのクリア

RLIC[2] Event-Out EOP IRQ Clear: イベントパケットが DPMの設定した範囲から送信され
た場合に生じる割り込みのクリア

RLIC[3] Data-In EOP IRQ Clear: データパケットが DPMの設定した範囲に受信された場合
に生じる割り込みのクリア

RLIC[4] Event-In EOP IRQ Clear: イベントパケットがDPMの設定した範囲に受信された場
合に生じる割り込みのクリア

RLIC[5] Data Packet-In IRQ Clear: 割り込みビットの設定されたデータパケットが到着した
場合に生じる割り込みのクリア

RLIC[6] Event Packet-In IRQ Clear: 割り込みビットの設定されたイベントパケットが到着し
た場合に生じる割り込みのクリア

13.10.5 レスポンシブリンク送信停止割り込みクリアレジスタ

オフセット: 0xFFFE 0010 属性 リード／ライト

31 21
-

20 16
DWIRQC

15 5
-

4 0
EWIRQC

Responsive Linkはパケット追い越し用 SDRAMを使用している際には追い越し用 SDRAMが溢れそう
になると送信停止割り込みを自動生成する．同様に，追い越し用 SDRAMを使用していない際には，追い
越し用バッファが溢れそうになると送信停止割り込みを自動生成する．本WIRQC(Wait IRQ Clear)レジ
スタはレスポンシブリンク送信停止割り込み要求のクリアを行なう．

Default 0
0: 通常動作

1: クリア

458 第 13章 Responsive Link

bit名 機能

DWIRQC Data link WIRQC
DWIRQC[4]: WIRQC[20]: Data link4
DWIRQC[3]: WIRQC[19]: Data link3
DWIRQC[2]: WIRQC[18]: Data link2
DWIRQC[1]: WIRQC[17]: Data link1
DWIRQC[0]: WIRQC[16]: Data link0(CPU)

EWIRQC Event link WIRQC
EWIRQC[4]: WIRQC[4]: Event link4
EWIRQC[3]: WIRQC[3]: Event link3
EWIRQC[2]: WIRQC[2]: Event link2
EWIRQC[1]: WIRQC[1]: Event link1
EWIRQC[0]: WIRQC[0]: Event link0(CPU)

13.10.6 レスポンシブリンク継続割り込みクリアレジスタ

オフセット: 0xFFFE 0014 属性 リード／ライト

31 21
-

20 16
DCIC

15 5
-

4 0
ECIC

Responsive Linkは，SDRAMに退避されたパケットがスイッチに書き戻された（再度送信された）際に
レスポンシブリンク継続割り込み CI(Coutinuous Irq) を発生する．CIC(Continuous Irq Clear)レジスタ
はその割り込み要求 CIのクリアを行なう．
Default 0
0: 通常動作

1: クリア

13.10. レジスタマップ 459

bit名 機能

DCIC Data CIC
DCIC[4]: CIC[20]: Data link4
DCIC[3]: CIC[19]: Data link3
DCIC[2]: CIC[18]: Data link2
DCIC[1]: CIC[17]: Data link1
DCIC[0]: CIC[16]: Data link0(CPU)

ECIC Event CIC
ECIC[4]: CIC[4]: Event link4
ECIC[3]: CIC[3]: Event link3
ECIC[2]: CIC[2]: Event link2
ECIC[1]: CIC[1]: Event link1
ECIC[0]: CIC[0]: Event link0(CPU)

13.10.7 レスポンシブリンク致命的エラー割り込みクリアレジスタ

オフセット: 0xFFFE 0018 属性 リード／ライト

31 21
-

20 16
DFIC

15 5
-

4 0
EFIC

Responisve Linkは，各リンクの受信パケットにハードウェアで回復不可能なエラーがあった場合にレ
スポンシブリンク致命的エラー割り込み FI(Fatal Irq)を発生する．FIC(Fatal Irq Clear)レジスタは，そ
の割り込み要求 FIのクリアを行なう．
Default 0
0: 通常動作

1: クリア

460 第 13章 Responsive Link

bit名 機能

DFIC Data FIC
DFIC[4]: FIC[20]: Data link4
DFIC[3]: FIC[19]: Data link3
DFIC[2]: FIC[18]: Data link2
DFIC[1]: FIC[17]: Data link1
DFIC[0]: FIC[16]: Data link0(CPU)

EFIC Event FIC
EFIC[4]: FIC[4]: Event link4
EFIC[3]: FIC[3]: Event link3
EFIC[2]: FIC[2]: Event link2
EFIC[1]: FIC[1]: Event link1
EFIC[0]: FIC[0]: Event link0(CPU)

13.10.8 レスポンシブリンクルーティングテーブル割り込みクリアレジスタ

オフセット: 0xFFFE 001C 属性 リード／ライト

31 2
-

1 0
RTIRQC

Responsive Linkは，ルーティングテーブルにマッチするエントリが無かった場合にレスポンシブリンク
ルーティングテーブル割り込み (RTIRQ)を発生する．RTIRQC(Routing Table IRQ Clear)レジスタは，
その割り込み要求 RTIRQのクリアを行なう．
Default 0
0: 通常動作 (r)／割り込みクリア (w)
1: 割り込み状態 (r)／割り込み発生（デバッグ用）(w)

bit名 機能

RTIC[0] Event Routing Table IRQ Clear

RTIC[1] Data Routing Table IRQ Clear

13.10.9 レスポンシブリンク SDRAMバスリクエストレジスタ

オフセット: 0xFFFE 0020 属性 リード／ライト

31 1
-

0
RLSDBREQ

13.10. レジスタマップ 461

Responsive Linkの追い越し用 SDRAMのバスには，Responsive Linkとプロセッサバスの 2つのバスマ
スタが接続されている．通常，プロセッサ側から追い越し用 SDRAMにアクセスする際には，データのト
ランザクション毎に，バス権の調停が行われている．プロセッサ側からバースト的に追い越し用 SDRAM
をアクセスしたい場合には，本ビットを有効にすることで，追い越し用 SDRAMバスのバス権をプロセッ
サ側（プロセッサや DMAC等）が常に得ることができる．（本ビットを設定しなくてもアクセス可能であ
る．）Responsive Link側が追い越し用 SDRAMバスを参照できなくなる (パケットの退避・復帰ができな
くなる)という副作用がある．

bit名 機能

RLSDBREQ RLSDBREQ (Responsive Link SDram-Bus REQuest) : Default 1
本ビットはレスポンシブリンクの SDRAMバスへの明示的なバスリクエストを行なう．
0: バスリクエストイネーブル

1: バスリクエストディスエーブル

13.10.10 レスポンシブリンク SDRAMバスグラントレジスタ

オフセット: 0xFFFE 0024 属性 リード／ライト

31
MSG

30 21
-

20 16
DSG

15 5
-

4 0
ESG

RLSDBGRNT(Responsive Link SDram Bus GRaNT)レジスタは，追い越し用 SDRAM バスのバスグ
ラント（どのバスマスタがバス権を有しているか）を示す．

0: バス権獲得

1: バス権開放

462 第 13章 Responsive Link

bit名 機能

MSG Mpu Sdram bus Grant: MPUがバス権を得ている

DSG Data link Sdram bus Grant: Data Linkがバス権を得ている
DSG[4]: RLSDBGRNT[20]: Data link4
DSG[3]: RLSDBGRNT[19]: Data link3
DSG[2]: RLSDBGRNT[18]: Data link2
DSG[1]: RLSDBGRNT[17]: Data link1
DSG[0]: RLSDBGRNT[16]: Data link0(CPU)

ES Event link Sdram bus Grant: Event Linkがバス権を得ている
ESG[4]: RLSDBGRNT[4]: Event link4
ESG[3]: RLSDBGRNT[3]: Event link3
ESG[2]: RLSDBGRNT[2]: Event link2
ESG[1]: RLSDBGRNT[1]: Event link1
ESG[0]: RLSDBGRNT[0]: Event link0(CPU)

13.10.11 レスポンシブリンクルーティングテーブルバスリクエストレジスタ

オフセット: 0xFFFE 0028 属性 ライト

31 1
-

0
BRQ

Responsive Linkのルーティングテーブルのバスには，Responsive Linkとプロセッサバスの 2つのバス
マスタが接続されているが，デフォルトのバスマスタは Responsive Linkである．プロセッサ側からルー
ティングテーブルをアクセスしたい場合には，本ビットを有効にすることで，ルーティングテーブルバス

のバス権をプロセッサ側（プロセッサやDMAC等）が得ることができる．Responsive Link側がルーティ
ングテーブルを参照できなくなる（パケットのルーティングができなくなる）という副作用がある．

bit名 機能

BRQ RLTBLBREQ (Responsive Link rouging TaBLe Bus REQuest): Default 1
本ビットはレスポンシブリンクのルーティングテーブルバスへのバスリクエストを行

なう．
0: バスリクエストイネーブル

1: バスリクエストディスエーブル

オフセット: 0xFFFE 0028 属性 リード

13.10. レジスタマップ 463

31
MRR

30 21
-

20 16
DRR

15 5
-

4 0
ERR

本ビットはプロセッサバス側からレスポンシブリンクのルーティングテーブルバスへのバスリクエスト

を示す．
0: バスリクエスト有

1: バスリクエスト無

bit名 機能

MRR Mpu Routing table bus Request

DRR Data link Routing table bus Request
DRR[4]: RLTBLBREQ[20]: Data link4
DRR[3]: RLTBLBREQ[19]: Data link3
DRR[2]: RLTBLBREQ[18]: Data link2
DRR[1]: RLTBLBREQ[17]: Data link1
DRR[0]: RLTBLBREQ[16]: Data link0(CPU)

ER Event link Routing table bus Request
ERR[4]: RLTBLBREQ[4]: Event link4
ERR[3]: RLTBLBREQ[3]: Event link3
ERR[2]: RLTBLBREQ[2]: Event link2
ERR[1]: RLTBLBREQ[1]: Event link1
ERR[0]: RLTBLBREQ[0]: Event link0(CPU)

13.10.12 レスポンシブリンクルーティングテーブルバスグラントレジスタ

オフセット: 0xFFFE 002C 属性 リード

31
MRG

30 21
-

20 16
DRG

15 5
-

4 0
ERG

RLTBLBGRNT (Responsive Link routing TaBLe Bus GRaNT) レジスタは，レスポンシブリンクの
ルーティングテーブルバスのバスグラント（どのバスマスタがバス権を有しているか）を示す．

0: バス権獲得

1: バス権開放

464 第 13章 Responsive Link

bit名 機能

MRG Mpu Routing table bus Grant: MPUがバス権を得ている

DRG Data link Routing table bus Grant: Data Linkがバス権を得ている
DRG[4]: RLTBLBGRNT[20]: Data link4
DRG[3]: RLTBLBGRNT[19]: Data link3
DRG[2]: RLTBLBGRNT[18]: Data link2
DRG[1]: RLTBLBGRNT[17]: Data link1
DRG[0]: RLTBLBGRNT[16]: Data link0(CPU)

ERG Event link Routing table bus Grant: Event Linkがバス権を得ている
ERG[4]: RLTBLBGRNT[4]: Event link4
ERG[3]: RLTBLBGRNT[3]: Event link3
ERG[2]: RLTBLBGRNT[2]: Event link2
ERG[1]: RLTBLBGRNT[1]: Event link1
ERG[0]: RLTBLBGRNT[0]: Event link0(CPU)

13.10.13 イベントリンクLRUアドレスレジスタ

オフセット: 0xFFFE 0030 属性 リード

31 10
-

9 0
ELLRUA

bit名 機能

ELLRUA ELLRUA (Event Link LRU Address) レジスタはイベントリンクのルーティングテー
ブル中で，最も近くに使用されたテーブルの格納されているアドレスを示す．

13.10.14 データリンクLRUアドレスレジスタ

オフセット: 0xFFFE 0034 属性 リード

31 10
-

9 0
DLLRUA

bit名 機能

DLLRUA DLLRUA (Data Link LRU Address) レジスタはデータリンクのルーティングテーブ
ル中で，最も近くに使用されたテーブルの格納されているアドレスを示す．

13.10. レジスタマップ 465

13.10.15 レスポンシブリンク用割り込みコントローライネーブルレジスタ

オフセット: 0xFFFE 0038 属性 リード

31 1
-

0
RLICE

bit名 機能

RLICE RLICE (Responsive Link Interrupt Controller Enable) レジスタはレスポンシブリン
ク用割り込みコントローラ RLIRCのイネーブルビットを示す．1のとき，RLIRCは
出力を行っている．

13.10.16 イベントリンク用 SDRAMループカウントレジスタ

オフセット: 0xFFFE 0040 属性 リード／ライト

31 8
-

7 0
ELSDCNT

追い越し用 SDRAMに退避されたイベントパケットを Responsive Linkイベントスイッチに再度送信し
てよいかどうかを調べる間隔を指定する．短すぎると消費電力が大きくなり，長すぎるとリアルタイム性

が損なわれる．

bit名 機能

ELSDCNT ELSDCNT (Event Link SDram loop CouNTer)レジスタの設定により，追い越し用
SDRAMに退避されているイベントパケットをイベントスイッチに再送しようとする
リトライの間隔を 1パケット分の送信時間を単位として指定する．(1 - 40)
Default: 32

13.10.17 データリンク用 SDRAMループカウントレジスタ

オフセット: 0xFFFE 0044 属性 リード／ライト

31 4
-

3 0
DLSDCNT

追い越し用 SDRAMに退避されたデータパケットをResponsive Linkデータスイッチに再度送信してよ
いかどうかを調べる間隔を指定する．短すぎると消費電力が大きくなり，長すぎるとリアルタイム性が損

なわれる．

466 第 13章 Responsive Link

bit名 機能

DLSDCNT DLSDCNT (Data Link SDram loop CouNTer) レジスタの設定により，追い越し用
SDRAMに退避されているデータパケットをデータスイッチに再送しようとするリト
ライの間隔を 1パケット分の送信時間を単位として指定する．(1 - 95)
Default: 4

13.10.18 レスポンシブリンクスイッチモードレジスタ

オフセット: 0xFFFE 0048 属性 リード／ライト

31 2
-

1 0
RLSM

RLSM(Responsive Link Switch Mode)レジスタの設定により，レスポンシブリンクのスイッチの動作を
変更する．

0: Cut Through Mode レイテンシ的に有利であるがパケットの追い越しをしにくい

1: Store and Forward Mode レイテンシ的に不利であるがパケットの追越しをしやすい
Default: 0

bit名 機能

RLSM[0] Event Link Switchの設定

RSLM[1] Data Link Switchの設定

13.10.19 レスポンシブリンク用オフラインレジスタ

オフセット: 0xFFFE 004c 属性 リード

31 21
-

20 16
DRLOL

15 5
-

4 0
ERLOL

Responsive Linkは Plug&Playをサポートするために，リンクアップしていたリンクがリンクダウンす
るとオフライン割り込みを発生し，リンクダウンしていたリンクがリンクアップするとオンライン割り込

みを発生する．

RLOL(Responsive Link OffLine)レジスタをリードすることにより，どのリンクがオフライン／オンラ
インかを調べることができる．

1: Offline
0: Online

13.11. DPM (Dual Port Memory) 467

bit名 機能

DRLOL Data linkの RLOLレジスタ
DRLOL[4]: RLOL[20]: Data link4
DRLOL[3]: RLOL[19]: Data link3
DRLOL[2]: RLOL[18]: Data link2
DRLOL[1]: RLOL[17]: Data link1
DRLOL[0]: RLOL[16]: Data link0(CPU)

ERLOL Event linkの RLOLレジスタ
ERLOL[4]: RLOL[4]: Event link4
ERLOL[3]: RLOL[3]: Event link3
ERLOL[2]: RLOL[2]: Event link2
ERLOL[1]: RLOL[1]: Event link1
ERLOL[0]: RLOL[0]: Event link0(CPU)

オフセット: 0xFFFE 004c 属性 ライト

31 2
-

1 0
RLOL

本ビットの設定により，レスポンシブリンクのオフライン割り込み及びオンライン割り込みをクリアで

きる．
1: 割り込みクリアを行わない

0: 割り込みクリア

bit名 機能

RLOL[0] Responsive Link Down IRQ Clear: オフライン割り込みのクリア

RLOL[1] Responsive Link Wakeup IRQ Clear: オンライン割り込みのクリア

13.11 DPM (Dual Port Memory)

Responsive Linkとプロセッサは基本的にDPMを介してデータの送受信を行う．DPMはその名の通り
2portを有しており，片方はプロセッサバスに接続され，もう片方はResponsive Linkの Link0に接続され
ている．

Data in/out control registerおよび，Event in/out control registerを設定することでパケットの送信/
受信方法を決定することができる．イベントパケットの送信および，受信には Event packet in/out専用の
DPMを用い，データパケットの送信および，受信には Data packet in/out専用の DPMを使用する．
以下に Event in/out，Data in/outそれぞれの DPMについて説明する．

468 第 13章 Responsive Link

13.11.1 Event Output

図 13.9にイベントリンク出力用 DPMの構成を示す．Event out control register（図 13.10参照）に対
して，開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word
address)を設定することにより，複数パケットを一度に送信できる．From Addrと To Addrは人間に分
かりやすいようにこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意され

ている．From Addr, To Addr共に，設定された word address − 1のアドレスにDPM のプロセッサバス
側からデータが書かれた瞬間に，DPMから Link0に対して出力を開始する．
例えば，Mode0を使用し，From Addrを 0x00に設定し To Addrを 0x07 (byte address: 0x1c)に設定

したとする．プロセッサバス側からDMACもしくはプロセッサによってPayload0, Payload1の順にDPM
にデータが書かれたとすると，DPMのプロセッサ側から 0x06番地にデータが書かれた瞬間にDPMから
Responsive Linkの Link0に出力を開始する．（この場合，実際には From Addrには意味がない．）
あるいは，Mode0 を使用し，From Addr を 0x1f(byte address 0x3c) に設定し To Addr を 0x2f(byte

address: 0x7c)に設定し，さらにDMACを continuous modeで使用すると，Payload0～3の領域とPayload4
～7の領域を使用して，主記憶等に用意したDPMよりも大きな連続データをハードウェアのみで自動送信
することができる．（DPMのアドレスデコードの範囲内では，シャドウアドレスでも CSが生成されDPM
にアクセスできるように設計しているため．）

13.11. DPM (Dual Port Memory) 469

DPM for Event Output

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 4

Control & Status

Source Addr. Destination Addr.

Payload 5

Control & Status

Payload 0

Payload 1

Payload 2

offset address
 0xC400_00XX

0x00

0x10

0x20

0x00

0x08

0x10

0x60

Source Addr. Destination Addr.

Payload 3

Control & Status

Source Addr. Destination Addr.

Payload 6

Control & Status

Source Addr. Destination Addr.

Payload 7

Control & Status

0x30

0x40

0x50

0x60

0x70

Payload 3

Payload 4

Payload 5

0x18

0x20

0x28

Payload 6

Payload 7

0x30

0x38

0x40

0x48

0x50

0x58

0x68

0x70

0x78

Payload 8

Payload 9

Payload 10

Payload 11

Payload 12

Payload 13

Payload 14

Source Addr. Destination Addr.

Control & Status

図 13.9: DPM for Event Output

470 第 13章 Responsive Link

Control Register
for Event Output

offset address
 0xFFFE_F40X

From Addr. To Addr.

DMA Counter

Current Packet Number

mode dreq int

0x0

0x4

0x8

図 13.10: Event Out Control Register

DPM制御レジスタ

DPMの制御レジスタ（図 13.10参照）に以下を設定することで，送信の制御を行う．

制御レジスタ (r/w)

• Mode0: mode bitに 0を設定．すべてのパケットに headrと trailerを付加する．

• Mode1: mode bitに 1を設定．最後に共通の headerと trailerを付加する (すべてのパケットの
宛先が同一となる)．

• Int: 本ビットを 1に設定すると，終了時に EOP(End Of Packet) 割り込みを生成する．

• Dreq: 本ビットを 1に設定すると，DMA Counterに設定した回数分だけ DMAを行う．

• From Addr: 設定された word address − 1のアドレスにDPM のプロセッサバス側からデータ
が書かれた瞬間に DPMから Link0に対して出力を開始する．

• To Addr: 設定された word address − 1のアドレスにDPM のプロセッサバス側からデータが
書かれた瞬間に DPMから Link0に対して出力を開始する．

DMA Counter (r/w) DMAの回数を指定する

Current Packet Number (r)現在送信されているパケット番号（図 13.9の payload番号に相当）を示す

13.11.2 Event Input

図 13.11にイベントリンク入力用 DPMの構成を示す．Event in control register（図 13.12参照）に対
して，開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word
address)を設定することにより，複数パケットを一度に受信できる．From AddrとTo Addrは人間に分か
りやすいようにこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されて

いる．From Addr, To Addr共に，設定された word address − 1のアドレスに DPM の Responsive Link
側からデータが書かれた瞬間に，DPMからプロセッサバス側に対して出力 (DMA転送)を開始する (dreq
bitが設定されている場合）．int bitの割り込みを利用して，ソフトウェアで受信することもできる．
例えば，Mode0 を使用し，From Addr を 0x00 に設定し To Addr を 0x07 (byte address: 0x1c) に設

定したとする．Responsive Link 側から Payload0, Payload1の順に DPMに受信データが書かれていく．
Responsive Link側からDPM の 0x06番地にデータが書かれた瞬間にDPMからプロセッサバス側に出力
（DMA転送）を開始する．（この場合，実際には From Addrには意味がない．）

13.11. DPM (Dual Port Memory) 471

あるいは，Mode0 を使用し，From Addr を 0x1f(byte address 0x3c) に設定し To Addr を 0x2f(byte
address: 0x7c)に設定し，さらにDMACを continuous modeで使用すると，Payload0～3の領域とPayload4
～7の領域を使用して，主記憶等に用意したDPMよりも大きなメモリ領域（サイクリックバッファ等）に
対して，受信データをハードウェアのみで連続的に自動受信することができる．（DPMのアドレスデコー
ドの範囲内では，シャドウアドレスでもCSが生成されDPMにアクセスできるように設計しているため．）

472 第 13章 Responsive Link

DPM for Event Input

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 4

Control & Status

Source Addr. Destination Addr.

Payload 5

Control & Status

Payload 0

Source Addr. Destination Addr.

Control & Status

Payload 1

Payload 2

offset address
 0xC000_00XX

0x00

0x10

0x20

0x00

0x08

0x10

0x60

Source Addr. Destination Addr.

Payload 3

Control & Status

Source Addr. Destination Addr.

Payload 6

Control & Status

Source Addr. Destination Addr.

Payload 7

Control & Status

0x30

0x40

0x50

0x60

0x70

Payload 3

Payload 4

Payload 5

0x18

0x20

0x28

Payload 6

Payload 7

0x30

0x38

Source Addr. Destination Addr.

Control & Status

0x40

Source Addr. Destination Addr.

Control & Status

0x48

Source Addr. Destination Addr.

Control & Status

0x50

Source Addr. Destination Addr.

Control & Status

0x58

Source Addr. Destination Addr.

Control & Status

0x68

Source Addr. Destination Addr.

Control & Status

0x70

Source Addr. Destination Addr.

Control & Status

0x78

図 13.11: DPM for Event Input

13.11. DPM (Dual Port Memory) 473

Control Registers
 for Event Input

From Addr. To Addr.

Current Packet Number

mode dreq int

0x0

0x4

0x8

Packet Valid Status0xC

offset address
 0xFFFE_F00X

図 13.12: Event in control register

DPM制御レジスタ

DPMの制御レジスタ（図 13.12参照）に以下を設定することで，受信の制御を行う．

制御レジスタ (r/w)

• Mode0: mode bitに 0を設定．すべてのパケットそれぞれに headerと trailerが付加された状
態で DPMに受信される．

• Mode1: mode bitに 1を設定．ヘッダとペイロードを図 13.11のように分離して受信．

• Int: 本ビットを 1に設定すると，受信終了時にプロセッサに受信完了割り込みを発生する．

• Dreq: 本ビットを 1に設定すると，From Addrか To Addrに設定した word address − 1にパ
ケットを受信した際に，DMAに対して DREQを発生する．

• From Addr: 設定された word address − 1のアドレスにDPM の Responsive Link側からデー
タが書かれた瞬間に DPMからプロセッサバス側に対して出力を開始する．

• To Addr: 設定された word address − 1のアドレスに DPM の Responsive Link側からデータ
が書かれた瞬間に DPMからプロセッサバス側に対して出力を開始する．

Current Packet Number (r) 現在送信されているパケット番号（図 13.11の payload番号に相当）を
示す

Packet Valid Status ハードウェアデバッグ用レジスタ

13.11.3 Data Output

図 13.13にデータリンク出力用DPMの構成を示す．Data out control register（図 13.14参照）に対して，
開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word address)
を設定することにより，複数パケットを一度に送信できる．From Addrと To Addrは人間に分かりやす
いようにこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されている．

From Addr, To Addr共に，設定された word address − 1のアドレスに DPM のプロセッサバス側から

データが書かれた瞬間に，DPMから Link0に対して出力を開始する．
例えば，Mode0を使用し，From Addrを 0x000に設定し To Addrを 0x01f (byte address: 0x07c)に

設定したとする．プロセッサバス側からDMACもしくはプロセッサによって Payload0, Payload1の順に

474 第 13章 Responsive Link

DPMにデータが書かれたとすると，DPMのプロセッサ側から word address 0x01e番地にデータが書か
れた瞬間に DPM から Responsive Linkの Link0に出力を開始する．（この場合，実際には From Addrに
は意味がない．）

あるいは，Mode0を使用し，From Addrを 0x0ff(byte address 0x3fc)に設定し To Addrを 0x1ff(byte
address: 0x7fc) に設定し，さらに DMAC を continuous mode で使用すると，Payload0～15 の領域と
Payload16～31の領域を使用して，主記憶等に用意した DPMよりも大きな連続データをハードウェアの
みで自動送信することができる．（DPMのアドレスデコードの範囲内では，シャドウアドレスでも CSが
生成され DPMにアクセスできるように設計しているため．）

DPM for Data Output

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 30

Control & Status

Source Addr. Destination Addr.

Payload 31

Control & Status

Payload 0

Source Addr. Destination Addr.

Control & Status

Payload 1

Payload 2

Payload 34

Payload 35

offset address
 0xCC00_0XXX

0x000

0x040

0x080

0x0C0

0x780

0x7C0

0x000

0x038

0x070

0x770

0x7A8

0x7E0

0x7F8

0x7FC

図 13.13: DPM for Data Output

13.11. DPM (Dual Port Memory) 475

Control Register
for Data Output

offset address
 0xFFFE_FC0X

From Addr. To Addr.

DMA Counter

Current Packet Number

mode dreq int

0x0

0x4

0x8

図 13.14: Data Out Control Register

DPM制御レジスタ

DPMの制御レジスタ（図 13.14参照）に以下を設定することで，送信の制御を行う．

制御レジスタ (r/w)

• Mode0: (r/w) mode bitに 0を設定．すべてのパケットに headrと trailerを付加する．

• Mode1: (r/w) mode bitに 1を設定．最後に共通の headerと trailerを付加する (すべてのパ
ケットの宛先が同一となる)．

• Int: (r/w) 本ビットを 1に設定すると，終了時に EOP(End Of Packet) 割り込みを生成する．

• Dreq: (r/w) 本ビットを 1に設定すると，DMA Counterに設定した回数分だけ DMAを行う．

• From Addr: (r/w) 設定された word address − 1のアドレスにDPM のプロセッサバス側から
データが書かれた瞬間に DPMから Link0に対して出力を開始する．

• To Addr: (r/w)設定されたword address − 1のアドレスにDPMのプロセッサバス側からデー
タが書かれた瞬間に DPMから Link0に対して出力を開始する．

DMA Counter (r/w) DMAの回数を指定する

Current Packet Number (r) 現在送信されているパケット番号（図 13.13の payload番号に相当）を
示す

13.11.4 Data Input

図 13.15にデータリンク入力用DPMの構成を示す．Data in control register（図 13.16参照）に対して，
開始アドレス From Addr (byte addressではなく word address)と終了アドレス To Addr (word address)
を設定することにより，複数パケットを一度に受信できる．From Addrと To Addrは人間に分かりやす
いようにこのような名前を付けられているが，実際には全く同じ機能のレジスタが二つ用意されている．

From Addr, To Addr共に，設定された word address − 1のアドレスにDPM の Responsive Link側から
データが書かれた瞬間に，DPMからプロセッサバス側に対して出力 (DMA転送)を開始する (dreq bitが
設定されている場合）．int bitの割り込みを利用して，ソフトウェアで受信することもできる．
例えば，Mode0を使用し，From Addrを 0x000に設定し To Addrを 0x01f (byte address: 0x07c)に設

定したとする．Responsive Link側から Payload0, Payload1,...の順にDPMに受信データが書かれていく．

476 第 13章 Responsive Link

Responsive Link側からDPMの word address 0x1e番地にデータが書かれた瞬間にDPMからプロセッサ
バス側に出力（DMA転送）を開始する．（この場合，実際には From Addrには意味がない．）
あるいは，Mode0を使用し，From Addrを 0x0ff(byte address 0x3fc)に設定し To Addrを 0x1ff(byte

address: 0x7fc) に設定し，さらに DMAC を continuous mode で使用すると，Payload0～15 の領域と
Payload16～31の領域を使用して，主記憶等に用意したDPMよりも大きなメモリ領域（サイクリックバッ
ファ等）に対して，受信データをハードウェアのみで連続的に自動受信することができる．（DPMのアド
レスデコードの範囲内では，シャドウアドレスでも CSが生成され DPMにアクセスできるように設計し
ているため．）

DPM for Data Input

Mode0 Mode1
Source Addr. Destination Addr.

Payload 0

Control & Status

Source Addr. Destination Addr.

Payload 1

Control & Status

Source Addr. Destination Addr.

Payload 2

Control & Status

Source Addr. Destination Addr.

Payload 30

Control & Status

Source Addr. Destination Addr.

Payload 31

Control & Status

Payload 0

Source Addr. Destination Addr.

Control & Status 31

Payload 1

Payload 2

offset address
 0xC800_0XXX

0x000

0x040

0x080

0x0C0

0x780

0x7C0

0x000

0x038

0x070

0x7F8

0x7FC

Source Addr. Destination Addr.

Control & Status 1

0x708

Source Addr. Destination Addr.

Control & Status 0

0x700

Payload 31
0x070

0x0A8

図 13.15: DPM for Data Input

13.12. 通信方法 477

Control Registers
 for Data Input

From Addr. To Addr.

Current Packet Number

mode dreq int

0x0

0x4

0x8

Packet Valid Status0xC

offset address
 0xFFFE_F80X

図 13.16: Data In Control Register

DPM制御レジスタ

DPMの制御レジスタ（図 13.16参照）に以下を設定することで，受信の制御を行う．

制御レジスタ (r/w)

• Mode0: mode bitに 0を設定．すべてのパケットそれぞれに headerと trailerが付加された状
態で DPMに受信される．

• Mode1: mode bitに 1を設定．ヘッダとペイロードを図 13.15のように分離して受信．

• Int: 本ビットを 1に設定すると，受信終了時にプロセッサに受信完了割り込みを発生する．

• Dreq: 本ビットを 1に設定すると，From Addrか To Addrに設定した word address − 1にパ
ケットを受信した際に，DMAに対して DREQを発生する．

Current Packet Number (r) 現在送信されているパケット番号（図 13.15の payload番号に相当）を
示す

Packet Valid Status ハードウェアデバッグ用レジスタ

13.12 通信方法

13.12.1 手順

1. 通信速度の設定—Responsive Link速度設定レジスタ

2. リンクの初期化—Responsive Link初期化レジスタ

3. ルーティングテーブルのバスリクエスト—Responsive Link　バスリクエストレジスタ

4. ルーティングテーブルの設定

5. ルーティングテーブルのバスリリース—Responsive Link　バスリクエストレジスタ

6. DPMの設定—Event in/out control レジスタおよび，Data in/out control レジスタ

7. DPMにデータを書き込む　→　パケット送信

478 第 13章 Responsive Link

DMAを用いた送信

DPMの容量には当然限界がある．しかし，レスポンシブリンクでは，DMAとDPMが協調して動作す
ることで，DPMの容量を越えるような大きなデータを一度に送信することが可能である．その際の手順
は以下の通りである．ただし，総データ量は N packet分であることを仮定する．

DPMの設定

1. Nの約数のうち最大のものを fとする．ただし，データリンクでは f¡36，イベントリンクでは f¡15で
あるとする．

2. DPMの DMA Counterを (N/f)-1に設定する．

3. DPMの MODE1 HEADER及び MODE1 TRAILERに宛先およびパケットの持つべき性質 (受信
側での割込みなど)を設定する．

4. DPMのコントロールレジスタをmode 1,from(0),to(f*0xe+0xd),DREQに設定する．(mode 0で送
信する場合，DMAの転送元にはパケットの形でデータが存在している必要がある．ただし，この場
合手順３は必要無い．)

DMAの設定

1. DMAの送信元を送信したいデータの格納されているメモリの先頭アドレスに設定する．

2. DMAの送信先を送信用 DPMの先頭のアドレスにする．

3. DMAの送信先を送信用 DPMの先頭のアドレスにする．

4. DMAのコントロールレジスタは SAU, RL, MTM, STをONにする． (この STによる起動がDMA
Counterの設定時に差し引いた 1回に相当する)

13.12.2 相互通信の際の注意点

　相互通信をする際に注意すべきは，二つのボードをつなげてから，まずそれぞれのボードにおいて「通

信速度の設定」を行い，さらに，それぞれのボードにおいて「リンクの初期化」を行う．

当然，通信速度は同じでなければならない．また，リンクの初期化はボードをつなげてから行わないと

相互通信ができないので注意すること．その他の設定は個別に各ボードで行う．（モニタでの相互通信には，

リンクの初期化モジュールを作成し，ボードをつなげたあと，そのモジュールを実行することにより相互

通信を行う．）

479

14
DMAC

• 32/16/8 bit I/F

• 入力チャネル：４

• 優先順位：固定優先度及びラウンドロビン

• Memory to memory転送機能

• Bus sizing機能 (8, 16bit I/O用)

• Bus swapping機能 (8, 16bit I/O用)

14.1 レジスタマップ

DMAC 初期アドレス

DMAC0 FFFF0000

DMAC1 FFFF1000

DMAC2 FFFF2000

offset 31 24 23 16 15 8 7 0
0x800 - PRI

0x804 - IC

0x40*(x)+0x04 PSA<31:0>
0x40*(x)+0x08 MDA<31:0>
0x40*(x)+0x18 LN<31:0>
0x40*(x)+0x0c ID<31:0>
0x40*(x)+0x10 - DASSAUBM RL PCIMTMMR32P16P 8P S16 S8 IERIED ST

0x40*(x)+0x14 L0 L1 L2 L3 - ER ED

480 第 14章 DMAC

14.1.1 DMA制御レジスタ

ライト／リード

オフセット: 0x800

31 1
-

0
PRI

bit名 機能

PRI PRIority :Default 0 本ビットは DMAチャネルのプライオリティを示す 0:プライオ
リティはラウンドロビン 1:プライオリティは ch0>ch1>ch2>ch3

14.1.2 DMA割り込みクリアレジスタ

オフセット: 0x804

31 1
-

0
IC

bit名 機能

IC Interrupt Clear 本ビットは DMA割り込みのクリアを行う． 0:割り込みクリア

14.1.3 ポート／ソースアドレスレジスタ

オフセット: 0x40*(x) +0x04

31 0
PSA<31:0>

bit名 機能

PSA<31:0> Port/Source Address :Default X チャネル xのDMAに対し，本ビットはメモリから
I/Oへの転送の時（MODEレジスタのMTMビットが０）ポートアドレスを示し，メ
モリからメモリへの転送の時（MODEレジスタのMTMビットが１）ソースアドレス
を示す．

14.1. レジスタマップ 481

14.1.4 メモリ／デスティネーションアドレスレジスタ

オフセット: 0x40*(x) +0x08

31 0
MDA<31:0>

bit名 機能

MDA<31:0> Memory/Destination Address :Default X チャネル xのDMAに対し，本ビットはメ
モリから I/Oへの転送の時（MODEレジスタのMTMビットが０）メモリアドレス
を示し，メモリからメモリへの転送の時（MODEレジスタのMTMビットが１）デス
ティネーションアドレスを示す．

14.1.5 転送レングスレジスタ

オフセット: 0x40*(x) +0x18

31 0
LN<31:0>

bit名 機能

LN<31:0> transfer LeNgth :Default X チャネル xの DMAに対し，本レジスタは転送レングス
を示す．単位はバイトである．

14.1.6 データバッファレジスタ

オフセット: 0x40*(x) +0x0c

31 0
ID<31:0>

bit名 機能

ID<31:0> Internal Data :Default X チャネル xの DMAに対し，DMA転送時一度内部のデー
タバッファにてメモリにライトするデータを組み立てるが，そのデータバッファの値

が読める．どのロケーションに有効なデータがあるかはステータスレジスタを見る必

要がある．

482 第 14章 DMAC

14.1.7 転送モード制御レジスタ

オフセット: 0x40*(x) +0x10

31 15
-

14
DAS

13
SAU

12
BM

11
RL

10
PCI

9
MTM

8
MR

7
32P

6
16P

5
8P

4
S16

3
S8

2
IER

1
IED

0
ST

ライト／リード

14.1. レジスタマップ 483

bit名 機能

DAS Destination Address Update :Default X 0:メモリアドレスレジスタで設定したアドレ
スが次の転送にも使用される． 1:メモリアドレスレジスタの値は，最後に転送を行っ
たアドレスより１ワード先を示す．

SAU Source Address Update :Default X 0:ポートアドレスレジスタで設定したアドレスが
次の転送にも使用される． 1:ポートアドレスレジスタの値は，最後に転送を行ったア
ドレスより１ワード先を示す．

BM Burst Mode :Default X 0:バースト転送しない． 1:バースト転送する．

RL Responsive Link :Default X 1:レスポンシブリンク用 DPMに対する DMA転送を行
う．

PCI PCI :Default X 1:PCIに対して DMA転送を行う．

MTM Memory To Memory transfer :Default X 0:ポートアドレスレジスタで設定した I/O
とメモリ間のDMA転送であることを示す．転送方向はMRビットにて指定する． 1:
ソースアドレスからデスティネーションアドレスへ，レングスレジスタで設定したバ

イト数のデータを DMA転送を行う．アドレスカウンタは UP方向のみのカウントと
する．また，4バイトバウンダリでない転送領域及びレングスのDMA転送はMemory
To Memoryではサポートしない．

MR MR Memory Read :Default X 0:I/Oからメモリへの転送であることを示す． 1:メモ
リから I/Oへの転送であることを示す．

32P 32bit I/O Port :Default X 0:don ’t care 1:MTMビットが 0の時 32bitの I/Oポー
トとの転送であることを示す．この時，ポートアドレスのビット 1，0は無視される．

16P 16P 16bit I/O Port :Default X 0:don ’t care 1:MTMビットが 0の時 16bitの I/O
ポートとの転送であることを示す．この時，ポートアドレスのビット 0 は無視され，
ビット１によりどのデータバスに接続されるか（D31-16 or D15-0）を示す．

8P 8P 8bit I/O Port :Default X 0:don’t care 1:MTMビットが 0の時 8bitの I/Oポー
トとの転送であることを示す．この時，ポートアドレスのビット 1，0によりどのデー
タバスに接続されるか（D31-24 or D23-16 or D15-8 or D7-0）を示す．

S16 Swap at 16bit :Default X 0:don ’t care 1: 16bit単位でデータのスワップを行う．

31 A B C D 0 → 31 C D A B 0

S8 Swap at 8bit :Default X 0:don ’t care 1: 8bit 単位でデータのスワップを行う．

31 A B C D 0 → 31 B A D C 0
S16=1,S8=1をセットすると以下のようにスワップされる．

31 A B C D 0 → 31 D C B A 0

IER Interrupt enable of ER-bit :Default 0 0:割込みを発生しない． 1:割込み発生を許可す
る．

IED Interrupt enable of ED-bit :Default 0 0:割込みを発生しない． 1:割込み発生を許可す
る．

ST Start :Default 0 0:DMA転送を停止させる．0 をライト後 DMACは初期化される．
1:DMA転送を起動する．

本レジスタで設定できるモードは次ページの通りであり，それ以外の設定では動作の保証はしない．

484 第 14章 DMAC

転送モード スワップなし スワップあり スワップあり リトルエンディアン

(S16=0,S8=0) (S16=0,S8=1) (S16=1,S8=0) (S16=1,S8=1)

メモリ (32bit) メモリ (32bit) ○ × × ○

メモリ (32bit) I/O 32bit(D31-0) ○ ○ ○ ○

I/O 16bit(D31-16) ○ × × ○

I/O 16bit(D15-0) ○ × × ○

I/O 8bit(D31-24) ○ × × ○

I/O 8bit(D23-16) ○ × × ○

I/O 8bit(D15-8) ○ × × ○

I/O 8bit(D7-0) ○ × × ○

メモリ (D31-16) I/O8bit(D31-24) ○ × × ○

14.1.8 ステータスレジスタ

オフセット: 0x40*(x)+0x14 ライト／リード

31
L0

30
L1

29
L2

28
L3

27 2
-

1
ER

0
ED

bit名 機能

L0 Location 0 :Default 0 0:内部データレジスタのD31-24は有効なデータでない． 1:内
部データレジスタの D31-24は有効なデータである．

L1 Location 1 :Default 0 0:内部データレジスタの D23-16は有効なデータでない． 1:内
部データレジスタの D23-16は有効なデータである．

L2 Location 2 :Default 0 0:内部データレジスタのD15-8は有効なデータでない． 1:内部
データレジスタの D15-8は有効なデータである．

L3 Location 3 :Default 0 0:内部データレジスタの D7-0は有効なデータでない． 1:内部
データレジスタの D7-0は有効なデータである．

ER Error :Default 0 0:don’t care 1:DMA転送中にエラーが発生してDMA転送が停止
したことを示す．本ビットは 0をライトするとクリアされる．

ED END :Default 0 0:don’t care 1:DMA転送が終了すると 1に設定される．本ビット
は 0をライトするとクリアされる．

485

15
バスサイジング機能付きDMA

15.1 本DMAの特徴

256 bit ⇔ 32 bitのバスサイジングをしながら転送する。

15.2 制御レジスタ

表 15.1: 制御レジスタ一覧
アドレス レジスタ名 用途

0xFFFFD000 PSA 転送元アドレスを指定 (32 bit)

0xFFFFD004 MDA 転送先アドレスを指定 (32 bit)

0xFFFFD008 LENGTH 転送データ数を指定 (byte)

0xFFFFD00C MODE 転送モード指定、転送開始指定

15.3 制御レジスタ詳細

15.3.1 PSAレジスタ

アドレス: 0xFFFFD000
DMA転送先のアドレスを 32 bitで指定する。Read/Write可能。

31 0
PSA

486 第 15章 バスサイジング機能付き DMA

15.3.2 MDAレジスタ

アドレス: 0xFFFFD004
DMA転送元のアドレスを 32 bitで指定する。Read/Write可能。

31 0
MDA

15.3.3 LENGTHレジスタ

アドレス: 0xFFFFD008
DMA転送するデータ数を byte単位で指定する。Read/Write可能。

31 0
LENGTH

15.3.4 MODEレジスタ

アドレス: 0xFFFFD00C

31 7
0

66
DAU

5
SAU

4 1
MODE

0
START

15.4. 注意事項 487

bit名 機能

DAU DMA転送開始時に転送先として設定されているアドレス。Writeのみ可能。

設定値 動作

0 MDAに設定したアドレス

1 前回の転送先の続き

SAU DMA転送開始時に転送元として設定されているアドレス。Writeのみ可能。

設定値 動作

0 MDAに設定したアドレス

1 前回の転送元の続き

MODE DMA転送元と転送先の対象を指定する。Read/Write可能。

設定値 転送先 転送元

0000 I/O I/O

0100 Memory I/O

0001 I/O Memory

0101 Memory Memory

1100 SDRAM I/O

1101 SDRAM Memory

0011 I/O SDRAM

0111 Memory SDRAM

1111 SDRAM SDRAM

• SDRAM : DDR SDRAM I/F (256 bit bus)

• Memory : 32 bit busに接続されたメモリ

• I/O : 32 bit bus に接続された I/O

START DMAの転送の開始を指定する。Read/Write可能。

設定値 動作

0 DMA転送終了状態

1 DMA転送開始/転送中

15.4 注意事項

• データ転送に指定するアドレスは 8word(32Byte)アラインにそろえる必要がある。

489

16
パルスカウンタ

16.1 パルスカウンタ概要

• 位相（2入力）による Up-Down Counter（いわゆるマウスカウンタ）

• Z相によるリセット／割り込み機能（ソフトウェアで選択可能）

• bit幅：32bit

• パルスカウント機能：カウント数がコンペアレジスタにあらかじめ設定されている数になるとパルス
（割り込み）を発生

• 上記パルス発生の許可レジスタ及びステータスレジスタ

• 外部入力

• チャネル数：9

16.2 レジスタインタフェース

16.2.1 パルスカウンタ制御レジスタ

アドレス パルスカウンタ制御レジスタ　

0xFFFF7000 PLSCTRL[0]

0xFFFF7020 PLSCTRL[1]

0xFFFF7040 PLSCTRL[2]

0xFFFF7060 PLSCTRL[3]

0xFFFF7080 PLSCTRL[4]

0xFFFF70a0 PLSCTRL[5]

0xFFFF70c0 PLSCTRL[6]

0xFFFF70e0 PLSCTRL[7]

0xFFFF7100 PLSCTRL[8]

490 第 16章 パルスカウンタ

リード／ライト時

31
INT

30 12
-

11
IPCE

10
IZE

9
ZF

8
RFZ

7
ST

6
TI

5
SEL

4 3
MD

2
IE

1
CLR

0
CE

bit名 機能

INT Interrupt :Default 0 ro 0:割込みの発生なし．1:割込みが発生している．割り込みはパ
ルスカウンタ割り込み，タイマ割り込み，Z相割り込みのいずれかの要因で発生する．
本レジスタをリードすると，パルスカウンタ割り込みとタイマ割り込みがクリアされ

る．

IPCE Int Pulse Counter Enable :Default 0 0：パルスカウンタによる割り込みを発生させな
い．1：パルスカウンタによる割り込みを発生させる．カウンタ値がコンペアデータレ
ジスタの値と等しくなると割り込みを発生する．

IZE Int Z Enable :Default 0 0：Z相入力があった際に，割り込みを発生させない．1：Z相
入力があった際に，割り込みを発生させる．

ZF Z Flag :Default 0 0：現状態は Z相ではない．1：Z相入力があった際に 1に設定され
る．クリアする際には 0を書く．Z相割り込み (IZE)を有効にしている場合，0を書く
と Z相割り込みをクリアする．

RFZ Reset Flag by phaze Z :Default 0 0：Z相入力によるカウンタのリセットを行わない．
1：Z相入力によるカウンタのリセットを行う．

ST START :Default 0 0：内部タイマをリセットして，停止させる．1：内部タイマを起動
させる．

TI Timer Interrupt :Default 0 0：内部タイマによる周期割り込みを発生させない．1：内
部タイマによる周期割り込みを発生させる．

SEL Select :Default 0 カウンタのラッチの動作モードの選択を行う．0：カウンタ値のラッ
チを行わない．1：内部タイマにより設定された値によって，周期的にカウンタ値をラッ
チする．

MD<4:3> Mode :Default 0 00：1逓倍でカウントアップする．01：2逓倍でカウントアップする．
10,11：4逓倍でカウントアップする．

IE Interrupt Enable :Default 0 0:割り込み禁止 1:割り込み許可

CLR counter CLear :Default 1 0:カウンタをクリアする 1:don ’t care

CE Count Enable :Default 0 0:カウンタを停止する 1:カウンタを起動する

16.2. レジスタインタフェース 491

16.2.2 コンペアデータレジスタ

アドレス コンペアデータレジスタ

0xFFFF7004 CMP[0]

0xFFFF7024 CMP[1]

0xFFFF7044 CMP[2]

0xFFFF7064 CMP[3]

0xFFFF7084 CMP[4]

0xFFFF70A4 CMP[5]

0xFFFF70C4 CMP[6]

0xFFFF70E4 CMP[7]

0xFFFF7104 CMP[8]

リード／ライト時

31 0
CMP<31:0>

bit名 機能

CMP<31:0> Compare Data :Default X カウンタ値と比較す比較データを格納する．SEL bitが 0
の場合，カウンタがこの値と等しくなると割込みを発生する．

16.2.3 カウンタレジスタ

アドレス カウンタレジスタ

0xFFFF7008 CNT[0]

0xFFFF7028 CNT[1]

0xFFFF7048 CNT[2]

0xFFFF7068 CNT[3]

0xFFFF7088 CNT[4]

0xFFFF70A8 CNT[5]

0xFFFF70C8 CNT[6]

0xFFFF70E8 CNT[7]

0xFFFF7108 CNT[8]

リード時

31 0
CNT<31:0>

492 第 16章 パルスカウンタ

bit名 機能

CNT<31:0> Count Data :Default X ラッチパルスが入力された時にカウンタの値が本レジスタに
ラッチされる．

16.2.4 タイマレジスタ

アドレス タイマレジスタ

0xFFFF700C TIMER[0]

0xFFFF702C TIMER[1]

0xFFFF704C TIMER[2]

0xFFFF706C TIMER[3]

0xFFFF708C TIMER[4]

0xFFFF70AC TIMER[5]

0xFFFF70CC TIMER[6]

0xFFFF70EC TIMER[7]

0xFFFF710C TIMER[8]

リード／ライト時

31 0
TIMER<31:0>

bit名 機能

TIMER<31:0> Timer Data :Default X 周期割り込みに使用するタイマ値を設定する．カウンタクロッ
クをカウントし本タイマ値と等しくなると，SEL bitが 1の場合，割り込みを発生さ
せる．

493

17
PWM発生器

17.1 PWM発生器概要

• PWM出力：内部レジスタの設定によってデューティ比の異なる矩形波を出力

• Bit幅：32bit

• ノコギリ波を用いて PWMを発生するノコギリ波モードと三角波を用いた三角波モード

• デッドタイムの設定

• 正論理、負論理の設定

• 汎用出力としても利用可能

• チャネル数：6

図 17.1にノコギリ波モード、図 17.2に三角波モードの PWM波形を示す。
デッドタイム付反転出力は、隣のPWM発生器から出力することができるようにサイクリックにカスケー

ド接続されている。具体的には、PWM発生器Nのデッドタイム付反転出力は、REV bitを立てることに
より、PWM発生器 N+1で利用することができる。

494 第 17章 PWM発生器

17.2 PWMコントロールレジスタ

アドレス CTRLレジスタ　

0xFFFF7200 PWMCTRL[0]

0xFFFF7220 PWMCTRL[1]

0xFFFF7240 PWMCTRL[2]

0xFFFF7260 PWMCTRL[3]

0xFFFF7280 PWMCTRL[4]

0xFFFF72A0 PWMCTRL[5]

リード／ライト

31 7
0

6
M

5
REV

4
DEN

3
D

2
P

1
CLR

0
CEN

bit名 機能

M Mode: Default 0
0: ノコギリ波で PWMを生成するノコギリ波モード
1: 三角波で PWMを生成する三角波モード

REV Reverse mode enable: Default 0
0: 本 PWM発生器で生成された PWM波を出力する通常モード
1: 本 PWM発生器より一つ若い番号の PWM発生器で生成された PWM波のデッド
タイム付反転出力を出力するモード（本 PWM発生器内のカウンタは使用しない）
DENより優先度が高い

DEN Data Enable: Default 0
0: 生成した PWM波を出力する
1: D bitに設定された値（一定値）を出力する
REVより優先度が低い

D Data: Default 0
DENが 1の時、本 D bitに設定された値（一定値）を出力する

P Positive: Default 0
PWM波の論理を決定する（図 17.1, 17.2参照）。
0: 負論理
1: 正論理

CLR Counter clear: Default 0
0: 通常動作
1: カウンタをクリアする

CEN Count Enable: Default 0
0: カウンタを停止する
1: カウンタを起動する

17.3. PWM周期制御レジスタ 495

17.3 PWM周期制御レジスタ

アドレス PWM正転制御レジスタ

0xFFFF7204 FWCNT[0]

0xFFFF7224 FWCNT[1]

0xFFFF7244 FWCNT[2]

0xFFFF7264 FWCNT[3]

0xFFFF7284 FWCNT[4]

0xFFFF72A4 FWCNT[5]

リード／ライト

31 0
FWCNT<31:0>

bit名 機能

FWCNT Forward Counter: Default 0
PWMの周期を決定するカウンタレジスタである。
Modeが 0(ノコギリ波モード)の時には、PWMの周期を決定する。PWM用カウンタ
が 0から FWCNTまでカウントアップすると、次のクロックで 0に戻るようなノコギ
リ波を生成する（図 17.1参照）。
Modeが 1(三角波モード)の時には、PWMの半周期を決定する。PWM用カウンタが
0から FWCNTまでカウントアップすると、次のクロックから 0にカウントダウンす
るような三角波を生成する（図 17.2参照）。

496 第 17章 PWM発生器

17.4 PWM反転制御レジスタ

アドレス PWM反転制御レジスタ

0xFFFF7208 REVCNT[0]

0xFFFF7228 REVCNT[1]

0xFFFF7248 REVCNT[2]

0xFFFF7268 REVCNT[3]

0xFFFF7288 REVCNT[4]

0xFFFF72A8 REVCNT[5]

リード／ライト

31 0
REVCNT<31:0>

bit名 機能

REVCNT Reverse Counter: Default 0
PWM出力を反転する時間を決定するレジスタである。カウンタ値が本レジスタ値と
同じになったら PWM出力は反転する（図 17.1, 17.2参照）。

17.5 デッドタイムレジスタ

アドレス デッドタイムレジスタ

0xFFFF720C DT[0]

0xFFFF722C DT[1]

0xFFFF724C DT[2]

0xFFFF726C DT[3]

0xFFFF728C DT[4]

0xFFFF72AC DT[5]

リード／ライト

31 16
0

15 0
DT<15:0>

bit名 機能

DT<15:0> Reverse Counter :Default 0
デッドタイムを指定するレジスタである。カウンタ値が本レジスタ値と同じになった

ら PWM出力は反転する（図 17.1, 17.2参照）。

17.5. デッドタイムレジスタ 497

図 17.1: ノコギリ波モード

498 第 17章 PWM発生器

図 17.2: 三角波モード

499

18
PWM入力器

18.1 PWM入力器概要

• PWM入力のデューティ比を Highカウンタと Lowカウンタの比に数値化

• Bit幅：32bit

• チャネル数：2

• クロックジェネレータ（9章参照）で生成した基準クロックによってカウント

• 複数周期のデューティ比を求めて平均化する機構

• 割り込み発生機能

18.2 PWMINコントロールレジスタ

アドレス PWMINコントロールレジスタ　

0xFFFF7400 PWMINCTRL[0]

0xFFFF7420 PWMINCTRL[1]

リード／ライト

31 10
-

9 6
LP

5 2
LPO

1
CLR

0
IEN

500 第 18章 PWM入力器

bit名 機能

IEN Interrupt Enable :Default 0 r/w 0: 割り込みを発生しない．1: 設定した周期分のデュー
ティ比をカウント後に毎回割り込みを発生させる．

CLR Interrupt Clear :Default 0 r/w 0:割り込みをクリアしない．1:割り込みをクリアする．
割り込みクリア完了後に 0にリセットされる．

LPO Loop Original :Default 1 r/w 何周期分のデューティ比を平均化するか，その周期を設
定する（1から 15まで，0は禁止）．

LP Loop :Default 1 ro 現在実行している周期を示す．

18.3 PWMIN HIGHレジスタ

アドレス PWMIN HIGHレジスタ

0xFFFF7404 HIGH[0]

0xFFFF7424 HIGH[1]

リード

31 0
HIGH<31:0>

bit名 機能

HIGH<31:0> High :Default X 指定した PWM周期分合計のHighの期間．単位は，クロックジェネ
レータでプログラマブルに設定した PWMIN用クロックのサイクル数．

18.4 PWMIN LOWレジスタ

アドレス PWMIN LOWレジスタ

0xFFFF7408 LOW[0]

0xFFFF7428 LOW[1]

リード／ライト

31 0
LOW<31:0>

bit名 機能

LOW<31:0> Low :Default X 指定した PWM周期分合計の Lowの期間．単位は，クロックジェネ
レータでプログラマブルに設定した PWMIN用クロックのサイクル数．

501

19
PCI I/F

初期アドレス: 0xffff3000

19.1 アドレスマップ

19.1.1 Local Bus

PCI I/F

offset 31 24 23 16 15 8 7 0
0x00 0x0000 temeee lte lts lme lms 0 pe ps le ls id 0
0x04 data 4’b0000 dreq bst rest data 4’b0000 dreq bst rest
0x08 MailboxA Higher (PCI → Local)
0x0c MailboxA Lower (PCI → Local)
0x10 MailboxB (Local → PCI)
0x14 Reserved
0x18 Local AD Mode Local AD
0x1c Reserved
0x20 Local Bus Acess Port(Local-BAP)
0x24 Reserved
0x28 PCI Bus Acess Port (PCI-BAP)
0x2c Reserved
0x30 Current Local AD
0x34 Reserved
0x38 Reserved
0x3c Reserved

DMA(Channel0)

502 第 19章 PCI I/F

offset 31 24 23 16 15 8 7 0
0x40 B/C AR Mode Base/Current Address Register(B/C AR)
0x44 B/C DCR 00 Base/Current Data Count Register(B/C DCR)
0x48 dsr 00000 cdcecaumas32 dsmr dmr
0x4c 00000000 dcr dmcr damr
0x50 16’h0000 fdcr 00 fdcr
0x54 rqpr 00 rqpr wqpr wqpr00
0x58 fsr mrber fsmr 8’h00
0x5c 8’h00 fcr fmcr famr

DMA(Channel0)

offset 31 24 23 16 15 8 7 0
0xc0 B/C AR Mode Base/Current Address Register(B/C AR)
0xc4 B/C DCR 00 Base/Current Data Count Register(B/C DCR)
0xc8 dsr 00000 cdcecaumas32 dsmr dmr
0xcc 00000000 dcr dmcr damr
0xd0 16’h0000 fdcr 00 fdcr
0xd4 rqpr 00 rqpr wqpr wqpr00
0xd8 fsr mrber fsmr 8’h00
0xdc 8’h00 fcr fmcr famr

PCI Configration Register

offset 31 24 23 16 15 8 7 0
0x100 VendorID DeviceID
0x104 Command Status
0x108 RevisionID ClassCode
0x10c CacheLineSize LatencyTimer HeaderType BIST
0x110 Base Address Register
0x114 Rerserved
0x118 Rerserved
0x11c Rerserved
0x120 Rerserved
0x124 Rerserved
0x12c SubsystemVendorID SubsystemID
0x130 Expansion ROM Base Address
0x134 Cap Ptr Reserved
0x138 Reserved
0x13c InterruptLine InterruptPin Min Gnt Max Lat

19.1.2 PCI Bus

PCI I/F

19.1. アドレスマップ 503

offset 31 24 23 16 15 8 7 0
0x00 pe ps le ls id 0 temeee lte lts lme lms 0 0x0000
0x04 dreq bst rest data 4’b0000 dreq bst rest data 4’b0000
0x08 MailboxA Lower (PCI → Local)
0x0c MailboxA Higher (PCI → Local)
0x10 MailboxB (Local → PCI)
0x14 Reserved
0x18 Local AD Mode
0x1c Reserved
0x20 Local Bus Acess Port(Local-BAP)
0x24 Reserved
0x28 PCI Bus Acess Port (PCI-BAP)
0x2c Reserved
0x30 Current Local AD
0x34 Reserved
0x38 Reserved
0x3c Reserved

DMA(Channel0)

offset 31 24 23 16 15 8 7 0
0x40 Base/Current Address Register(B/C AR) Mode
0x44 Reserved
0x48 Base/Current Data Count Register(B/C DCR) 00
0x4c Reserved
0x50 dmr dsmr 00000 cdcecaumas32 dsr
0x54 Reserved
0x58 damr dmcr dcr 00000000
0x5c Reserved
0x60 16’h0000fdcr 00
0x64 Reserved
0x68 rqpr 00wqpr 00
0x6c Reserved
0x70 fsrmrberfsmr8’h00
0x74 Reserved
0x78 8’h00fcrfmcrfamr
0x7c Reserved

DMA(Channel1)

504 第 19章 PCI I/F

offset 31 24 23 16 15 8 7 0
0xc0 Base/Current Address Register(B/C AR) Mode
0xc4 Reserved
0xc8 Base/Current Data Count Register(B/C DCR) 00
0xcc Reserved
0xd0 dmr dsmr 00000 cdcecaumas32 dsr
0xd4 Reserved
0xd8 damr dmcr dcr 00000000
0xdc Reserved
0xe0 16’h0000fdcr 00
0xe4 Reserved
0xe8 rqpr 00wqpr 00
0xec Reserved
0xf0 fsrmrberfsmr8’h00
0xf4 Reserved
0xf8 8’h00fcrfmcrfamr
0xfc Reserved

19.2 PCI I/F レジスタマップ

PCI BUS側は little endian．8bitのmemory space．

19.2.1 割り込み制御レジスタ

オフセット: 0x0000(Local)

31 16
0x0000

15
te

14
me

13
ee

12
lte

11
lts

10
lme

9
lms

8
0

7
pe

6
ps

5
le

4 3
ls

2 1
id

0
0

オフセット: 0x0000(PCI)

31
pe

30
ps

29
le

28 27
ls

26 25
id

24
0

23
te

22
me

21
ee

20
lte

19
lts

18
lme

17
lms

16
0

15 0
0x0000

19.2. PCI I/F レジスタマップ 505

bit名 機能

te Target abort interrupt Enable (Default:’b1)
Local:R, PCI R/W
Master動作時に Target Abortを受信した際の PCI BUSへの割り込み制御
1:割り込み許可 0:不許可

me Master Abort Interrupt Enable (Default:’b0)
Local:R, PCI R/W
Master動作時にMaster Abortを受信した際の PCI Busへの割り込み制御
1: 割り込み許可 0:不許可

ee End of Process Interrupt Enable (Default:’b0)
Local: R/W, PCI: R
DMAレジスタの CDCRが”0”になったときの Local Busへの割り込み制御
1: 割り込み許可 0:不許可

lte Target Abort Interrupt Enable for Local side (Default:’b0)
Local: R/W, PCI: R
Master動作時に Target Abortを受信した際の Local Busへの割り込み制御
1: 割り込み許可 0:不許可

lts Target Abort Interrupt Status for Local side (Default:’b0)
Local: R/W, PCI: R
Master動作の Target Abort受信用の割り込みレジスタ (Local Bus側) 受信時に”1”
にセットされ，Local Bus側から”1”を書込むことでリセット

lme Master Abort Interrupt Enable for Master side (Default:’b0)
Local: R/W, PCI: R
Master動作時にMaster Abortを受信した際の Local Busへの割り込み制御
1: 割り込み許可 0:不許可

lms Master Abort Interrupt Status for Master side (Default:’b0)
Local: R/W, PCI: R
Master動作のMaster Abort受信用の割り込みレジスタ (Local Bus側) 受信時に”1”
にセットされ，Local Bus側から”1”を書込むことでリセット

506 第 19章 PCI I/F

bit名 機能

pe PCI Bus Interrupt Enable (Default:’b1)
Local: R, PCI: R/W
MailboxBへの書込み時の PCI Busへの割り込み制御．
1: 割り込み許可 0: 不許可

ps PCI Bus Interrupt Status (Default:’b0)
Local: R, PCI: R/W
DoorbellB用の割り込みレジスタ，割り込み発生時に”1”にセット
PCI BUSから”1”を書込むことでリセット

le Local Bus Interrupt Enable (Default:’b1)
Local: R/W, PCI: R
MailboxAへの書込み時の LocalBusへの割り込み制御．High,Low一括で行なう．
1: 割り込み許可 0: 不許可

ls Local Bus Interrupt Status (Default:’b00)
Local: R/W, PCI: R
DoorbellA用の割り込みレジスタ，割り込み発生時に”1”にセット
MailBoxA(Lower) - LIS(Lower),bit3 MailBoxA(Higher) - LIS(Higher), bit4
Local Busから”1”を書込むことでそれぞれリセット．割り込み解除には双方リセット
する必要あり．

id ID0,ID1 (Default:’b00)
Local: R/W, PCI: R
LocalBusから任意の値を書込み可，PCIから読み込み可．
bit3: ID1, bit2: ID0

19.2.2 プログラム制御レジスタ

オフセット: 0x0004(Local)

31 28
data

27 24
4’b0000

23
dreq

22 21
bst

20 16
rest

15 12
data

11 8
4’b0000

7
dreq

6 5
bst

4 0
rest

オフセット: 0x0004(PCI)

31
dreq

30 29
bst

28 24
rest

23 20
data

19 16
4’b0000

15
dreq

14 13
bst

12 8
rest

7 4
data

3 0
4’b0000

Channel1: 0x0007, 0x0006
Channel0: 0x0005, 0x0004

19.2. PCI I/F レジスタマップ 507

bit名 機能

data FIFO data number for Master Transaction
Local: R, PCI: R
Master転送用の FIFO内のデータ数をバイト単位で出力

dreq DMA Request
Local: R, PCI: R
PCI I/Fからの dreq を出力

bst Burst Number
Local: R, PCI: R
PCI I/Fからの burst ack を出力
’b00: 8, ’b01: 4, ’b10: 2, ’b00: single

rest Remaining Number of Master Transaction
Local: R, PCI: R
Master転送時の残り転送数
’b10000 - 8以上, ’b01000 - 4-7 ’b00100 - 2-3, ’b00010 - 1 ’b00001 - 0

19.2.3 MailboxA

オフセット: 0x000c(Local), 0x0008(PCI)

31 0
MailboxA Lower (PCI → Local)

オフセット: 0x0008(Local), 0x000c(PCI)

31 0
MailboxA Higher (PCI → Local)

bit名 機能

MailboxA MailBoxA (PCI → Local)(Default: 64’h0)
Local: R, PCI: R/W
PCI Busから任意の値を書くことができ，Local Busから読み出すことが可能
32Bit PCI - ’h0cのみ, 64Bit PCI - ’h08, ’h0c

19.2.4 MailboxB

オフセット: 0x0010(Local), 0x0010(PCI)

508 第 19章 PCI I/F

31 0
MailboxB (Local → PCI)

bit名 機能

MailboxB MailBoxB (Local → PCI)(Default: 64’h0)
Local: R/W, PCI: R
Local Busから任意の値を書くことができ，PCI Busから読み出すことが可能

19.2.5 Local AD

オフセット: 0x0018(Local)

31 26
Local AD

25 24
Mode

23 0
Local AD

オフセット: 0x0018(PCI)

31 2
Local AD

1 0
Mode

bit名 機能

Local AD Address for Local Bus (Default: 32’h0)
Local: R, PCI: R/W
Target Transaction時に Local Busの address busに出力するアドレスを指定．転送
開始時にこの値を Current Local AD に読み込む．実際に出力する値は [Local AD,
2’b00]．

Mode Address Update Mode in Target Transaction (Default: 2’b0)
Local: R, PCI: R/W
Local ADの更新モードを指定．
2’b00: リニアインクリメント, その他: 固定

19.2.6 Local Bus Access Port

オフセット: 0x0020(Local), 0x0020(PCI)

31 0
Local Bus Acess Port(Local-BAP)

19.3. Master Transaction用 DMAレジスタマップ 509

bit名 機能

Local-BAP Local Bus Access Port
Local:不可, PCI: R/W
PCI Busから Local Busへのアクセスポート．このポートへアクセスすると Local Bus
の権利を取得して transactionを行う．

19.2.7 PCI Bus Access Port

オフセット: 0x0028, 0x00a8(Local), 0x0028, 0x00a8(PCI)

31 0
PCI Bus Acess Port (PCI-BAP)

bit名 機能

PCI-BAP PCI Bus Access Port
Local: R/W, PCI: 不可
Local Bus から PCI Busへのアクセスポート．このポートへアクセスすると Master
Transaction用の FIFOとの転送を行う．
’h28: Channel0, ’ha8: Channel1

19.2.8 Current Local AD

オフセット: 0x0030(Local), 0x0030(PCI)

31 0
Current Local AD

bit名 機能

C-Local AD Current Local AD
Local: R, PCI: R
Target Transaction時に Local Bus転送に用いられている現在のアドレスを出力．転
送開始時に Local ADに変更がある場合は Local ADの値を取り込む．

19.3 Master Transaction用DMAレジスタマップ

Channelごとに独立して用意．bit7 = Channel No.

510 第 19章 PCI I/F

19.3.1 Address Register

オフセット: 0x0040, 0x00c0(Local)

31 26
B/C AR

25 24
Mode

23 0
Base/Current Address Register(B/C AR)

オフセット: 0x0040, 0x00c0(PCI)

31 2
Base/Current Address Register(B/C AR)

1 0
Mode

bit名 機能

B/C AR Base/Current Address Register (Default: 30’h0)
Local: R/W, PCI: R/W
PCI Master動作時に PCI Busに出力するアドレスの指定．実際に出力されるアドレ
スは [AR,2’b00]．このポートへの書き込みはBARと CARを同時に変更するので，転
送中に明示的に BARを変更することは推奨しない．

Mode Address Update Mode in Master Transaction (Default: 2’b00)
Local: R/W, PCI: R/W
Master Transaction時のアドレス更新モードの指定
2’b00:リニアインクリメント, その他: 固定

19.3.2 Data Count Register

オフセット: 0x0044, 0x00c4(Local)

31 26
B/C DCR

25 24
00

23 0
Base/Current Data Count Register(B/C DCR)

オフセット: 0x0048, 0x00c8(PCI)

31 2
Base/Current Data Count Register(B/C DCR)

1 0
00

19.3. Master Transaction用 DMAレジスタマップ 511

bit名 機能

B/C DCR Base/Current Data Count Register (Default: 30’h0)
Local R/W, PCI R/W
Master Transaction時の転送バイト数の指定．64bit PCIでは 8, 32bit PCIでは 4ず
つ減少．Byte Enableに関わらず一定．このポートへの書き込みは BDCR,CDCR同
時に値を変更するので，転送中に値を明示的に変更することは推奨しない．

19.3.3 DMA Control Register

オフセット: 0x0048, 0x00c8(Local)

31 24
dsr

23 19
00000

18
cdce

17
cau

16
mas32

15 8
dsmr

7 0
dmr

オフセット: 0x0050, 0x00d0(PCI)

31 24
dmr

23 16
dsmr

15 11
00000

10
cdce

9
cau

8
mas32

7 0
dsr

512 第 19章 PCI I/F

bit名 機能

dsr DMA Status Register (Default: 8’h10)
Local: R, PCI: R
DMAの状態出力ポート．
[4]: pci req の値を出力．CoreへのMaster転送要求時に”0”．
[0]: tc(terminal count)の値を出力．cdcrが 0のとき”1”．

cdce Circulate Data Count Enable (Default: 1’b0)
Local: R/W, PCI: R/W
CDCRが 0に Local Bus側のDMAが転送を終了した際に自動的に転送を開始するか
を指定．開始する際には CDCRには BDCRの値がロードされる．
1’b1:自動開始, 1’b0: 待機

cau Current Address Update (Default: 1’b0)
Local: R/W, PCI: R/W
CDCE=1の場合の自動転送開始時における CARの設定方法の指定．
1’b1:最後の転送の次のアドレス (アドレス更新モードが固定ならば変更なし) 1’b0:BAR

mas32 Master 32Bit Mode (Default: 1’b0)
Local: R/W, PCI: R/W
Core-I/F間の転送モードの指定．PCI-BUS幅と同じ値の設定を推奨．
PCI-32bit, 64Bit Modeの場合はDisconnectやRetryの際にデータが消える恐れあり．

dsmr DMA Single Mask Register (Default: 8’h04)
Local: R/W, PCI: R/W
Master Transactionにおける PCI DMA転送開始シグナル (pci req)のマスク．
DSMR,DAMRの両方のマスクを解除する必要がある．bit[2]がマスク．

dmr DMA Mode Register (Default:8’h00)
Local: R/W, PCI R/W
Master Transaction時のコマンドの指定．下位 4bitが app cmdに出力．

19.3.4 DMA Stop/Reset Register

オフセット: 0x004c, 0x00cc (Local)

31 24
00000000

23 16
dcr

15 8
dmcr

7 0
damr

オフセット: 0x0058, 0x00d8 (PCI)

31 24
damr

23 16
dmcr

15 8
dcr

7 0
00000000

19.3. Master Transaction用 DMAレジスタマップ 513

bit名 機能

dcr DMA Clear Register
Local: W, PCI: W
ソフトウェアで DMAを初期化するポート．このポートへ書き込むとDMA(内部レジ
スタと status)が初期化される．

dmcr DMA Mask Clear Register
Local: W, PCI: W
このポートへ書き込むと DMA Mask(DSMR,DAMR)がクリアされる．

damr DMA All Mask Register (Default:8’h01)
Local: R/W, PCI: R/W
Channel0,1双方に効果のあるマスクレジスタ．どちらのChannelのポートへ書き込ん
でも同じ意味．

19.3.5 FIFO Data Register

オフセット: 0x0050, 0x00d0(Local)

31 16
16’h0000

15 10
fdcr

9 8
00

7 0
fdcr

オフセット: 0x0060, 0x00e0(PCI)

15 0
16’h0000

31 18
fdcr

17 16
00

bit名 機能

fdcr FIFO Data Count Register
Local: R, PCI: R
Master Transaction用 FIFOのデータ数 (byte count)．

19.3.6 FIFO Request Paremter Register

オフセット: 0x0054,0x00d4(Local)

31 26
rqpr

25 24
00

23 16
rqpr

15 10
wqpr

7 0
wqpr

9 8
00

オフセット: 0x0068,0x00e8(PCI)

514 第 19章 PCI I/F

15 2
rqpr

1 0
00

31 18
wqpr

17 16
00

bit名 機能

wqpr Write Request Parameter Register (Default: 14’h0)
Local: R/W, PCI: R/W
PCI busに write requestを出す閾値の設定．
byte countで設定し，FIFOのデータ数が上回ると要求を出す．

rqpr Read Request Parameter Register (Default: 14’0)
Local: R/W, PCI: R/W
PCI busに read requestを出す閾値の設定．
byte countで設定し，FIFOの空きデータ数が上回ると要求を出す．

19.3.7 FIFO Control Register

オフセット: 0x0058, 0x00d8(Local)

31 24
fsr

23 16
mrber

15 8
fsmr

7 0
8’h00

オフセット: 0x0070, 0x00f0(PCI)

7 0
fsr

15 8
mrber

23 16
fsmr

31 24
8’h00

bit名 機能

fsr FIFO Status Register
Local: R, PCI: R
FIFOの Status出力ポート．
[7] - Full, [6] - Empty, [5] - R/W , [4] - MREQ ,
[3] - MACK , [0] - EOP

mrber Master Read Byte Enable Register (Default: 8’h00)
Local: R, PCI: R/W
Master Read Transaction時に出力する Byte Enableの設定．

fsmr FIFO Single Mask Register (Default: 8’h04)
Local: R/W, PCI: R/W
対応するChannelの pci req のmask register．bit[2]がマスク．DMAと同様にFSMR
と FAMRの両方を解除する必要がある．

19.4. 動作/使用方法 515

19.3.8 FIFO Stop/Reset Register

オフセット: 0x005c, 0x00dc(Local)

31 24
8’h00

23 16
fcr

15 8
fmcr

7 0
famr

オフセット: 0x0078, 0x00f8(Local)

7 0
8’h00

15 8
fcr

23 16
fmcr

31 24
famr

bit名 機能

fcr FIFO Clear Register
Local: W, PCI: W
このポートへの書き込みは FIFO内のデータをクリアする．内部レジスタはクリアさ
れない．

fmcr FIFO Mask Clear Register
Local: W, PCI: W
このポートへの書き込みは対応する Channelの FSMR,FAMRを解除する．

famr FIFO All Mask Register (Default: 8’h01)
Local: R/W, PCI: R/W
両 Channelにマスクをかける．bit[0]がマスク．

19.4 動作/使用方法

19.4.1 Target Transaction (PCI → Local)

PCI Bus側から Local BUSをアクセスする際には転送前に Local ADを設定する必要があります．Local
ADの設定後，Local Bus Access Portにアクセスすると，PCI I/Fが Local Busの権利を要求し，CPU
busのバスマスタとして動作します．Local Bus側へ出力されるアドレスは Local ADです．各転送ごとに
アドレスは更新され，そのモードは Local ADの下位 2bitで決定されます．
データの転送の際には一時的に PCI I/F内にある FIFOにデータが格納されますが，転送自体は Local

Busの権利を獲得してから行なわれます．Local Busの権利を獲得するのに時間がかかるので，PCI Bus
の仕様にある 16clock ruleは無視し，初めのデータ転送に限り 255clockで retryをかけます．次のデータ
転送からは 8clock ruleを守ります．

• Target Write Transaction
Local Busの権利を取り，FIFOに空きがある場合のみ trdy がアサートされます．FIFOに空きが無
くなった場合は trdy をディアサートし続けます．ただし，8clockたった場合は disconnectします．
Local Bus側への転送は FIFOにデータが格納された時点で開始します．

516 第 19章 PCI I/F

• Target Read Transaction
Local Busの権利を取るとすぐに Local Busの転送を始めます．この転送は必ず Burst Access にな
り，複数データを一度に取ってこようとします．FIFOにデータが格納されると trdy がアサートさ
れます．FIFOにデータがない場合は 8clockたった時点で disconnect されます．常にデータを先に
取りに行くので，transaction終了時に FIFOはリセットされます．

• target initiated termination
terminationが起こる要因は次の 2つです．stopがアサートされるとともに configuration registerの
status registerがセットされます．

1. Clock Rule (Time up) 初めのデータについては 255clock(仕様では 16clock)，2つ目以降では
8clock 経過した場合に disconnetします．この場合は PCI仕様に従ってただちに転送を再開し
てください．

2. Local Bus Error Local Bus側の転送で Errorが起きた場合 (Addressが間違っているなど)に
target abortが発生します．masterへの通知は PCI仕様に従って起こるため，master側で対処
を行なってください．ただし，teをセットし，PCI Busに割り込みをかけてブリッジ側で対処
することも可能です．

19.4.2 Master Transaction(Local → PCI)

CPU Busから PCI Busにアクセスする場合は Local Busの DMAを使用します (しなくても可)．PCI
DMAのレジスタの設定の前には pci req と dreq にマスクをかけます．かならず動作停止時にレジスタの
変更を行なってください．設定するのは PCI Bus上での相手アドレス (BAR)，転送データ数 (BDCR), 転
送モード (DMR)が必須です．レジスタ設定後にmaskを解除してMaster転送を開始します．

• Write
BDCRが 1以上で，FIFOに 1つでも空きがあると dreq がアサートされます．dreq がアサートさ
れている状態で，PCI Bus Access Portへ dataが書込まれると FIFOに格納されます．

FIFOのデータ数が wqprで設定された閾値を上回ると pci req がアサートされます．PCI Busの権
利を獲得するとPCI Masterとなり，転送を始めます．1回の転送はFIFOが空になるか，CDCRが 0
になるまで行なわれます．FIFOが空になって転送が中断した場合は再度 FIFOのデータ数が，wqpr
を越えるか CDCR と一致するまで pci req をアサートしません．

• Read
BDCRが 1以上で，FIFOの空き数が rqprで設定された閾値を上回ると pci req がアサートされま
す．PCI Busの権利を獲得すると PCI Masterになり転送を始めます．この転送は FIFOが一杯にな
るか，CDCRが 0になるまで行なわれます．FIFOが一杯になって転送が中断した場合は再び空き領
域が rqprの閾値を越すか，CDCRと一致するまで pci req をアサートしません．FIFOにデータが
1つでもあると dreq がアサートされ，dreq がアサートされている状態で，PCI Bus Access Portへ
read accessが来ると，FIFOから dataが読み込まれます．

• Master Initiated Termination
Master動作時の Terminationは通常終了以外はMaster Abortのみです．PCI仕様通りに Configu-
ration ReigsterのMaster Abort受信 bitがセットされます．Masterでの対処を行なう場合は，lme
をセットして Local Bus側へ割り込みがかかるようにしてください．

517

20
IEEE1394

20.1 概要

本コアは、 IEEE1394 の標準 IEEE1394A-2000 に準拠した、ハイスピードシリアルパスのリンク層コ
ントローラです。

20.1.1 特徴

• IEEE1394-1995 及び IEEE1394A-2000 に準じた送信時のパッキング、受信時のアンパッキング

• サイクルマスターのサポート

• 32-bitCRC によるパリティ生成とエラー検出

• PHY チップとの DC 接続のインターフェースをサポート

• 100/200/400Mb/sec の 3 スピードのサポート

• バスタイムレジスタのサポート

• ドロップしたサイクルスタートメッセージの検出

• Asynchronous Stream パケットのサポート

• ホスト側のローカルアクセスと DMA 転送のサポート

20.1.2 関連資料

• IEEE Standard for a High Performance Serial Bus(IEEE1394-1995)

• IEEE Standard for a High Performance Serial Bus-Amendment1(IEEE1394A-2000)

• IEEE1212-1991 Command and Status Register Architecture

518 第 20章 IEEE1394

20.2 構成

20.2.1 全体構成

20.2. 構成 519

20.2.2 入出力端子説明

<ホストインターフェース>

端子名 入出力 本数 内容

H D D[31:0] 出力 32 ホストデータ出力バス:
レジスタ、データアクセス用データバス。

H D I[31:0] 入力 32 ホストデータ入力バス:
レジスタ、データアクセス用データバス。

H D OE 出力 1 ホストデータ出力イネーブル:
レジスタ、データアクセス用データバス出力イネーブル。

H A I[7:2] 入力 6 ホストアドレス:
レジスタ選択用ホストアドレス。

H BEX I[3:0] 入力 4 ホストデータバイトイネーブル:
バイトイネーブル信号です。

32ビットバスの為、レジスタライト時に対する有効バイトを
示します。レジスタリード時は、無効で、全バイト出力され

ます。本信号は、バスサイクル期間中のみ有効とされます。

H ASX I 入力 1 ホストアドレスストローブ:
アドレスストローブ信号です。

バスサイクル最初のサイクルで 1サイクル期間”L” が出力さ
れ、リード、ライト、アイドル期間に”H”が出力されます。

H RDWRX I 入力 1 ホストデータリードライトイネーブル:
データリードライトイネーブル信号です。

ライトの場合は、バスサイクル期間中、”L”が出力されます。
リードとアイドルサイクル中は、”H”が出力されます。

H READYX O 出力 1 ホストレディ:
レディ出力信号です。

バスサイクル終了時”L”を出力しますので、ホスト側は、こ
れを受け次のサイクルに移行してください。

H IREGCSX I 入力 1 レジスタ領域イネーブル:
本コア内部のレジスタへアクセスする際”L”を入力します。

H DREQX O[3:0] 出力 4 DMA リクエスト (4チャンネル):
DMA アクセスリクエストイネーブルです。
本コアからの DMA転送要求時、”L”を出力します。
DMA 転送要求がある限り”L”を出力します。
Bit0: Asynchronous 送信 DMA 転送チャンネル
Bit1: Asynchronous 受信 DMA 転送チャンネル
Bit2: Isochronous 送信 DMA 転送チャンネル
Bit3: Isochronous 受信 DMA 転送チャンネル

H DACKX I[3:0] 入力 4 DMA アクノリッジ (4チャンネル):
DMA アクセスアクノリッジです。
DMAC からの DMA アクノリッジ信号で、DMA 転送時
”L”を入力します。
DMA 転送要求がある限り”L”を出力します。

520 第 20章 IEEE1394

Bit0: Asynchronous 送信 DMA 転送チャンネル
Bit1: Asynchronous 受信 DMA 転送チャンネル
Bit2: Isochronous 送信 DMA 転送チャンネル
Bit3: Isochronous 受信 DMA 転送チャンネル

H EOPX I[3:0] 入力 4 DMA 転送エンドオフパケット (4チャンネル):
DMA 転送エンドオフパケットです。
DMACからのDMA転送エンドオフパケット信号で、DMAC
の転送動作終了時”L”を入力します。
Bit0: Asynchronous 送信 DMA 転送チャンネル
Bit1: Asynchronous 受信 DMA 転送チャンネル
Bit2: Isochronous 送信 DMA 転送チャンネル
Bit3: Isochronous 受信 DMA 転送チャンネル

H FLX I[3:0] 入力 4 DMA バッファフラッシュ (4チャンネル):
DMA バッファフラッシュです。
DMAC からの DMA バッファフラッシュ信号で、DMAC 内
のバッファフラッシュ終了時”L”を入力します。
Bit0: Asynchronous 送信 DMA 転送チャンネル
Bit1: Asynchronous 受信 DMA 転送チャンネル
Bit2: Isochronous 送信 DMA 転送チャンネル
Bit3: Isochronous 受信 DMA 転送チャンネル

H BMACKX O 出力 1 バーストアクノリッジ:
バーストアクセスアクノリッジです。

H BMREQX Iに対して、バーストアクセスが可能な際に”L”
を出力します。

H BMREQX I 入力 1 バーストリクエスト:
バーストリクエストです。

ホストからバーストアクセス要求時、”L”が入力されます。内
部レジスタでバースト設定されており、かつバースト転送可

能な場合、H BMACKX を”L”にして応答します。

H INIT O 出力 1 インターラプト:
割り込み出力です。

割り込み発生時”L”を出力します。

H CLK I 入力 1 ホストクロック:
ホストからのクロックを入力します。

本信号に同期してホストバスを制御します。

H RSTX I 入力 1 ホストリセット:
本信号が”L”の時、本コアを初期化します。

20.2. 構成 521

<PHY インターフェース>

端子名 入出力 本数 内容

PHY CTL O[1:0] 出力 2 PHY-LINK コントロール出力:
PHY チップとのインターフェース制御信号。
LLC がバスを駆動している時:
PHY CTL O[0:1]=00b: アイドル、バスは LLC によって開
放されている。

PHY CTL O[0:1]=01b: ホールド、LLCはバスをホールドし
ている。

PHY CTL O[0:1]=10b: 送信、LLC はデータ線経由で PHY
にパケットを送っている。

PHY CTL O[0:1]=11b: 未使用

PHY CTL I[1:0] 入力 2 PHY-LINK コントロール入力:
PHY チップとのインターフェース制御信号。
PHY がバスを駆動している時:
PHY CTL I[0:1]=00b: アイドル、動作なし
PHY CTL I[0:1]=01b: ステータス、PHY は LLC にステー
タス情報を送出している。

PHY CTL I[0:1]=10b: 受信、PHY は入ってきたパケットを
LLC にデータ線経由で転送している。
PHY CTL I[0:1]=11b: 許可、PHY は LLC にバスの使用を
許可している。

PHY CTL OE 出力 1 PHY-LINK コントロール出力イネーブル:
PHY チップとのインターフェース出力イネーブル。

PHY D O[7:0] 出力 8 PHY-LINK データバス出力:
PHY チップとのデータ送信用データバス。
100Mbps では [0..1]、200Mbps では [0..3]、400Mbps では
[0..7]を使用します。

PHY D I[7:0] 入力 8 PHY-LINK データバス入力:
PHY チップとのデータ送信用データバス。
100Mbps では [0..1]、200Mbps では [0..3]、400Mbps では
[0..7]を使用します。

PHY D OE 出力 1 PHY-LINK データバス出力イネーブル:
PHY チップとのデータ送受信用データバス出力イネーブル。

PHY LKON I 入力 1 PHY リンクオン:
PHY からのリンクパワーオンリクエスト

PHY LPS O 出力 1 PHY リンクパワーステータス:
リンクを起動時”H”を出力し、PHY へリンク状態を送りま
す。

PHY LREQ O 出力 1 PHY リンクリクエスト:
PHYチップないのレジスタアクセス、シリアルバス使用の為
に使用します。

PHY SCLK I 入力 1 PHY クロック:
PHY チップから出力される 49.152MHz のクロック

522 第 20章 IEEE1394

PHY CNA I 入力 1 PHY ケーブルノットアクティブ:
”H”時、ケーブル接続がされていないことを示します。

PHY PD O 出力 1 PHY パワーダウン:
”H”時 PHY チップをパワーダウンします。

PHY RSTX O 出力 1 PHY リセット:
”L”時 PHY チップをリセットします。

PHY PC O 出力 1 アイソクロナスクロック:
アイソレーション端子を制御します。

SYS 8KCLK I 入力 1 アイソクロナスクロック:
アイソクロナス外部ソースクロックです。

<テストポート>

端子名 入出力 本数 内容

SW [7:0] 入力 8 テスト用入力端子

0Ch: 通常モード
Others: テストモード

LED O[7:0] 出力 8 テスト用出力端子

TP0 O[15:0] 出力 16 テスト用出力端子

TP1 O[15:0] 出力 16 テスト用出力端子

TP2 O[15:0] 出力 16 テスト用出力端子

TP3 O[15:0] 出力 16 テスト用出力端子

20.2. 構成 523

20.2.3 内部構成図

524 第 20章 IEEE1394

20.2.4 構成図説明

• Host I/F
ホストインターフェースは、PARC lite バスライクな同期バスとなっております。バッファ状態に応
じて DMA 転送要求を行い高速にデータ転送を行うことが出来ます。

• Application Block

– Control(Interrupt Control, Sync Control)

– Internal Register

– Buffer Manager

• Link Core Block

– Link Tx
Asynchronous、Isochronous の両送信バッファからデータを読出し、IEEE1394 で定義される
各パケットフォーマットにして PHY インターフェースへパケットを送出します。
ノードがルートのときは、サイクルスタートパケットの送出も行います。

– Link Rx
PHY インターフェースからのパケットを受信し、そのパケットが自ノード宛かどうか判断しま
す。

Asynchronous パケットであれば、Asynchronous 受信バッファへ書き込みます。
Isochronous パケットであれば、Isochronous 受信バッファへ書き込みます。

– Cycle Timer
Isochronous サイクルスタートパケットの送出管理を行います。

– Cycle Monitor
Isochronous サイクルスタートパケットの監視を行います。

– CRC Generator
送信パケットの巡回冗長チェック用コードの生成を行います。

– CRC Check
受信パケットの巡回冗長チェック用コードのチェックを行います。

– PHY Interface
PHY チップを直接接続可能なインターフェースを有しています。
接続対象チップは、100Mbps、200Mbps、 400Mbps のいずれのチップも可能です。
本コアでは、DC 接続をサポートします。

20.3. レジスタ 525

20.3 レジスタ

20.3.1 レジスタ一覧

offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00h Version Revision

V
er

si
on

04h

C
T

L
C

Y
C

SR
C

C
T

L
C

Y
C

M
A

ST
E

R

C
T

L
C

Y
C

T
IM

E
N

C
T

L
R

E
N

C
T

L
T

E
N

C
on

tr
ol

08h

N
ID

ID
V
A

L

NID BUSID NID NODEID

N
od

e
Id

en
ti

fic
at

io
n

0Ch

R
E

T
D

M
A

R
E

T
L
IN

K

R
E

T
IR

F

R
E

T
IT

F

R
E

T
A

R
F

R
ST

A
T

F

R
es

et

10h

R
es

er
ve

d

14h

R
es

er
ve

d
18h

P
K

T
C

T
L

W
P

E
N

P
K

T
C

T
L

P
H

Y

P
K

T
C

T
L

SI
D

P
ac

ke
t

C
on

tr
ol

1Ch

L
C

R
D

IT
B

U
SY

L
C

R
D

A
T

B
U

SY

L
C

R
D

R
X

A
C

K
ST

L
C

R
D

R
X

A
C

K
ST

L
C

R
D

T
X

B
U

SY
ST

D
ia

gn
os

ti
c

St
at

us

526 第 20章 IEEE1394

20h

P
H

Y
P

D

P
H

Y
R

ST
X

P
H

Y
L
P

S

P
H

Y
P

C

P
H

Y
IS

O
X

P
H

Y
C

T
L

R
C

V
F
L
G

P
H

Y
C

T
L

P
R

R
E

G

P
H

Y
C

T
L

P
W

R
E

G

P
H

Y
C

T
L

PA
D

R

P
H

Y
C

T
L

P
W

D
T

P
H

Y
C

on
tr

ol

24h

A
T

R
R

E
T

R
Y

ST
O

P

A
T

R
R

E
T

R
Y

C
N

T

A
T

R
M

A
X

R
T

Y

A
T

x
R

et
ry

28h CYCT SECOND CYCT COUNT CYCT OFFSET

C
yc

le
T

im
er

2Ch

R
es

er
ve

d

30h

IC
F
G

IR
T
A

G

ICFG IRCHN

Is
oc

hr
on

ou
s

C
on

fig
ur

at
io

n

34h

R
es

er
ve

d

38h

R
es

er
ve

d

3Ch

R
es

er
ve

d

40h ATF Data

A
T

F
D

at
a

44h ARF Data

A
R

F
D

at
a

48h ITF Data

IT
F

D
at

a

20.3. レジスタ 527

4Ch IRF Data

IR
F

D
at

a

50h FECNT

B
SC

SE
L
F
F

IR
F

F
U

L
L

IR
F

E
M

P

IT
F

F
U

L
L

IT
F

E
M

P

A
R

F
F
U

L
L

A
R

F
E

M
P

A
T

F
F
U

L
L

A
T

F
E

M
P

B
uff

er
St

at
us

an
d

C
on

tr
ol

54h

P
H

Y
L
K

O
N

P
H

Y
C

A
N

IN
T

C
M

D
R

ST

IN
T

C
Y

A
R

B
F
L

IN
T

C
Y

L
O

S

IN
T

C
Y

D
O

N

IN
T

C
Y

ST
A

R
T

IN
T

C
Y

SE
C

IN
T

SE
N

T
R

J

IN
T

H
D

E
R

R

IN
T

T
C

E
R

R

IN
T
A

C
K

E
R

R

IN
T

P
H

Y
R

C
V

IN
T

B
U

SR
ST

IN
T

B
R

ST
F

IN
T

P
H

Y
IN

T

IN
T

IT
X

E
N

D

IN
T
A

T
X

E
N

D

IN
T

IR
X

E
N

D

IN
T
A

R
X

E
N

D

IN
T

IR
F
F
L
U

IN
T
A

R
F
F
L
U

IN
T

R
T

Y
E

X
P

In
te

rr
up

t

58h

P
H

Y
L
K

O
N

P
H

Y
C

A
N

IN
T

C
M

D
R

ST

IN
T

C
Y

A
R

B
F
L

IN
T

C
Y

L
O

S

IN
T

C
Y

D
O

N

IN
T

C
Y

ST
A

R
T

IN
T

C
Y

SE
C

IN
T

SE
N

T
R

J

IN
T

H
D

E
R

R

IN
T

T
C

E
R

R

IN
T
A

C
K

E
R

R

IN
T

P
H

Y
R

C
V

IN
T

B
U

SR
ST

IN
T

B
R

ST
F

IN
T

P
H

Y
IN

T

IN
T

IT
X

E
N

D

IN
T
A

T
X

E
N

D

IN
T

IR
X

E
N

D

IN
T
A

R
X

E
N

D

IN
T

IR
F
F
L
U

IN
T
A

R
F
F
L
U

IN
T

R
T

Y
E

X
P

In
te

rr
up

t
M

as
k

5Ch

IT
G

o

A
T

G
o

T
G

o

60h ATC PKTLEN

A
T

C
T

G
O

L
E

N

A
T

C
T

G
O

E
O

P

A
T

C
C

N
T

E
O

P

A
T

C
D

R
E

Q
F
L

A
T

C
D

R
E

Q
E

N

A
T

C
D

A
C

K
E

N

A
T

C
B

M
E

N

A
T

F
C

on
tr

ol

64h
A

R
C

D
R

E
Q

H
O

L
D

A
R

C
C

N
T

E
O

P

A
R

C
D

R
E

Q
F
L

A
R

C
D

R
E

Q
E

N

A
R

C
D

A
C

K
E

N

A
R

C
B

M
E

N

A
R

F
C

on
tr

ol

68h ITC PKTLEN

IT
C

T
G

O
L
E

N

IT
C

T
G

O
E

O
P

IT
C

C
N

T
E

O
P

IT
C

D
R

E
Q

F
L

IT
C

D
R

E
Q

E
N

IT
C

D
A

C
K

E
N

IT
C

B
M

E
N

IT
F

C
on

tr
ol

6Ch

IR
C

D
R

E
Q

H
O

L
D

IR
C

C
N

T
E

O
P

IR
C

D
R

E
Q

F
L

IR
C

D
R

E
Q

E
N

IR
C

D
A

C
K

E
N

IR
C

B
M

E
N

IR
F

C
on

tr
ol

528 第 20章 IEEE1394

20.3.2 レジスタ内容

Version Register

offset 31 24 23 16 15 8 7 0
00h Version Revision

初期値: XXXX XXXXh

本レジスタは、RTL のバージョン、 レビジョンナンバーを示すリードオンリーレジスタです。

Bit 15～0 : Revision

Bit 31～16 : Version

20.3. レジスタ 529

Control Register

offset: 04h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C
T

L
C

Y
C

SR
C

C
T

L
C

Y
C

M
A

ST
E

R

C
T

L
C

Y
C

T
IM

E
N

C
T

L
R

E
N

C
T

L
T

E
N

初期値: 0000 0000h

本レジスタは、チップの各動作のコンフィグレーション、イネーブル等の設定を行います。通常、電源

投入直後にこのレジスタの設定を行い、本コアのコンフィグレーションを決めておきます。

bit 名 機能
CTL TEN<0> Transmitter Enable ビット (RW - 初期値: 0b)

• 0 = トランスミッターをディスイネーブルにします。

• 1 = トランスミッターをイネーブルにします。

本レジスタのトランスミッターをイネーブルにするか否かを設定します。イネーブル時は以下の送信を行い
ます。

• Asynchronous パケット

• CycleMaster ビットがイネーブル時でのサイクルスタートパケット

• サイクルスタート時での Isochronous パケット

CTL REN<1> Receiver Enable ビット (RW - 初期値: 0b)

• 0 = レシーバーをディスイネーブルにします。

• 1 = レシーバーをイネーブルにします。

本コアのレシーバーをイネーブルにするか否かを設定します。イネーブル時は以下の受信を行います。

• 他のノードからこのノードにアドレスされた Asynchronous パケット

• 指定したチャンネルの Isochronous パケット

CTL CYCTIMEN<16>

Cycle Timer Enable ビット (RW - 初期値: 0b)

• 0 = サイクルタイマーをディスイネーブルにします。

• 1 = サイクルタイマーをイネーブルにします。

本コア 内部のサイクルタイマーをイネーブルにするか否かを設定します。
CTL CYCMASTER<17>

Cycle Master ビット (RW - 初期値: 0b)

• 0 = 他のルートノードからのサイクルスタートパケットを受信し、サイクルタイマーの管理を行い
ます。

• 1 = 自ノードがルートであり、かつこのビットが’1’ の時、本コアのサイクルタイマーがキャリーす
るたびに、サイクルスタートパケットを生成します。

CTL CYCSRC<18>

Cycle Sourcer ビット (RW - 初期値: 0b)

• 0 = PHY チップから供給されるクロックであるマスタークロックの 49.152MHz を 2 分周して
24.576MHz でサイクルタイマーをカウントして Isochronous サイクルを管理する．

• 1 = SYS 8KCLK I端子から入力される信号の立ち上がりでサイクルタイマーを更新して Isochronous
サイクルを管理します。Isochronous の時間管理を行っている、内部のサイクルタイマーの更新元を
設定します。

530 第 20章 IEEE1394

Node Identification Register

offset : 08h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N
ID

ID
V
A

L

NID BUSID NID NODEID

bit名 機能

NID NODEID<5:0>

Node Number ビット (RW - 初期値: 00h)
この値は IEEE1212 空間で定義される 6-bit のノードナンバーを設定します。送信時
IEEE1394 パケットフォーマットのヘッダー内のソース領域にこの値を使用します。ま
た、受信時は受信するパケットのデスティネーションのノードナンバーを見て、この

値と一致する場合は受信、そうでない場合はリジェクトします。通常はバスリセット

後の Self Identification フェイズの終了後、PHY チップからノードナンバーを読み出
し、このレジスタに設定します。

NID BUSID<15:6>

Bus Number ビット (RW - 初期値: 000h)
この値は IEEE1212 空間で定義される 10-bit のバスナンバーを設定します。送信時
IEEE1394 パケットフォーマットのヘッダー領域のソース領域にこの値を使用します。
また、受信時は受信するパケットのデスティネーションのバスナンバーを見て、この

値と一致する場合は受信、そうでない場合はリジェクトします。通常は、’3FFH’ に指
定します。

NID IDVAL<31>
ID Valid ビット (RW- 初期値: 00b)

• 0 = BusNumber の値が’3FFH’ でかつNodeNumber の値が’3Fh’ にアドレスさ
れたパケットのみを受信します。それ以外のパケットはリジェクトします。

• 1 = 以下の条件で上記レジスタで設定された、IEEE1212 アドレス空間にアド
レスされたパケットのみを受信します。ブロードキャストパケットもまた受信し

ます。

– BusNumber と NodeNumber の両方がレジスタ設定値と一致

– BusNumber がレジスタ設定と一致しかつ NodeNumber の値が’3FH’

– BusNumber の値が’3FFH’ でかつ NodeNumber がレジスタ設定と一致

– BusNumber の値が’3FFH’ でかつ NodeNumber の値が’3FH’

通常、バスリセット後の Self Identification フェイズの終了後にノードナンバーが決定
するため、その値をホストがNodeNumber レジスタに設定後、このビットをセットし
ます。

20.3. レジスタ 531

Reset Register

offset: 0Ch

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
ST

D
M

A

R
ST

L
IN

K

R
ST

IR
F

R
ST

IT
F

R
ST

A
R

F

R
ST

A
T

F

bit名 機能
RST ATF<0> Reset ATF ビット (RW - 初期値: 0b)

• 0 = 通常状態

• 1 = Asynchronous 送信用バッファ領域を初期化します。

Asynchronous送信用バッファ領域のみを初期状態に戻します。この時、その領域にあるデータ
はすべて失われます。また、このバッファのステータスフラグもすべて初期状態に戻ります。’1’
をセットすると、その後内部で初期化動作が完了すると自動的にこのビットは’0’ にセットされ
ます。

RST ARF<1> Reset ARF ビット (RW - 初期値: 0b)

• 0 = 通常状態

• 1 = Asynchronous 受信用バッファ領域を初期化

Asynchronous 受信用バッファ領域のみを初期状態に戻します。この時、その領域にあるデータ
はすべて失われます。また、このバッファのステータスフラグもすべて初期状態に戻ります。’1’
をセットすると、その後内部で初期状態が完了すると自動的にこのビットは’0’ にセットされま
す。

RST ITF<2> Reset ARF ビット (RW - 初期値: 0b)

• 0 = 通常状態

• 1 = Isochronous 送信用バッファ領域を初期化します。

Isochronous 送信用バッファ領域のみを初期状態に戻します。この時、その領域にあるデータは
すべて失われれます。また、このバッファのステータスフラグもすべて初期状態に戻ります。’1’
をセットすると、その後内部で初期状態が完了すると自動的にこのビットは’0’ にセットされま
す。

RST IRF<3> Reset IRF ビット (RW - 初期値: 0b)

• 0 = 通常状態

• 1 = Isochronous 受信用バッファ領域を初期化します。

Isochronous Configuration レジスタで指定された Isochronous のチャンネルの受信用バッファ
領域のみを初期状態に戻します。この時、その領域にあるデータはすべて失われます。また、こ
のバッファのステータスフラグもすべて初期状態に戻ります。’1’ をセットすると、その後内部
で初期状態が完了すると自動的にこのビットは’0’ にセットされます。

RST LINK<6> Reset Link Core ビット (RW - 初期値: 0b)

• 0 = 通常状態

• 1 = Link Core をリセットします。

LINK 制御部を初期化します。
RST DMA<7> Reset DMA ビット (RW - 初期値: 0b)

• 0 = 通常状態

• 1 = DMA 制御をリセットする．

DMA制御部を初期化します。

532 第 20章 IEEE1394

Packet Control Register

offset: 18h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
K

T
C

T
L

W
P

E
N

P
K

T
C

T
L

P
H

Y

P
K

T
C

T
L

SI
D

bit名 機能
PKTCTL SID<5>

Receive Self ID ビット (RW - 初期値: 0b)

• 0 = SelfID パケットをバッファへ挿入しません。

• 1 = SelfID パケットをバッファへ入力します。

バスリセット後の Self ID フェイズ中に受信される Self ID パケットを、受信 Async 用のバッ
ファ領域に入れるか入れないかを，このビットで設定します。

PKTCTL PHY<6>

Receive Phy Packet ビット (RW - 初期値:0b)

• 0 = Phy Packet をバッファへ挿入しません。

• 1 = PhyPacket をバッファへ入力します。

受信した PHY コントロールパケットを，受信 Async 用のバッファ領域に入れるか入れないか
を、このビットで設定します。
また，PHY Control Packetの反転データが異なっていた場合でも、そのPHY Controll Packet
は，ARF バッファには，格納されません。

PKTCTL WPEN<12>

Write Request Ack-Pending ビット (RW - 初期値: 0b)

• 0 = Write Requst Packet に対する Ack コードで正常受信の場合Ack-Complete を返し
ます。

• 1 = Write Requst Packet に対する Ack コードで正常受信の場合 Ack-Pending を返し
ます。

通常、Write Request Packetを受信した場合、正常に受信したら、AckコードはACK-Complete
を返し、バッファーの容量不足等で正常に受信できなかった場合は ACK-Busy を返します。こ
のビットを’1’ にセットすることで正常に受信したら、Ack コードは ACK-Pending を返しま
す。つまり、Write Request の Split Transaction を実行することになります。ホストはWrite
Requst 処理が完了したら，Write Responce Packet を送信しなければなりません。

20.3. レジスタ 533

Diagnostic Status Register

offset: 1Ch

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

L
C

R
D

IT
B

U
SY

L
C

R
D

A
T

B
U

SY

L
C

R
D

R
X

A
C

K
ST

L
C

R
D

R
X

A
C

K
C

O
D

L
C

R
D

T
X

B
U

SY
ST

bit名 機能
LC RDTXBUSYST<2>

Busy State ビット (R - 初期値: 0b) 受信時、このノードから返送したビジーステータスを示し
ます。

• 0 = ノンビジーステータスを返送しました。

• 1 = Ack busy X ステータスを返送しました。

LC RDRXACKCOD<11:8>

AT Ack ビット (R - 初期値: 0000b)

• 0000 = No ack

• 0001 = ack complete

• 0010 = ack pending

• 0011 = Reserved

• 0100 = ack busy X

• 0101 = ack busy A

• 0110 = ack busy B

• 0111～1100 = Reserved

• 1101 = ack data error

• 1110 = ack type error

• 1111 = Reserved

送信時、トランスミッターから送信されたパケットに対してのデスティネーションノードから
返送されたアクノリッジ (Ack コード) の内容がこのレジスタに反映されます。反映されるタイ
ミングは送信したい Asynchronous バッファ内のパケットの処理中を示す、ビジーフラグがネ
ゲートされたときです。次のパケット送信でそのビジーがネゲートされるまで、この値は保持さ
れます。

534 第 20章 IEEE1394

bit名 機能
LC RDRXACKST<13:12>

Ack Status ビット (R - 初期値: 00b)

• 00 = 正常に受信

• 01 = パリティーエラー

• 10 = パケットロスト (規定時間内でのアクノリッジパケットがこなかった)

• 11 = 予約

送信した Asynchronous パケットに対してデスティネーションノードから返送されてきたアク
ノリッジパケットのステータス状態を示します。

LC RDATBUSY<24>

AT Busy ビット (R - 初期値: 0b)

• 0 = ATGo の発行可能を示します。

• 1 = ATGo が発行できない状態を示します。現在直前に発行された ATGo によるパケッ
ト処理中を示します。

Asynchronous 送信時，ATGo の発行でアサートし，そのアクノリッジの返送をATAck レジス
タに設定したらネゲートします。ホストはこのビットがアサート中は次の ATGo を発行できま
せん。また発行しても無視されます。あるパケット送信がリトライ動作になった場合、そのリト
ライが終了するまで、このビットはネゲートされません。

LC RDITBUSY<25>

IT Busy ビット (R - 初期値: 0b)

• 0 = ITGo の発行可能を示します。

• 1 = ITGo が発行できない状態を示します。現在直前に発行された ITGo によるパケット
処理中を示します。

Isochronous 送信で、ITGo の発行でアサートし，パケットの送信終了でネゲートします。ホス
トはこのビットがアサート中は次の ITGo を発行できません。また発行しても無視されます。

20.3. レジスタ 535

Phy Control Register

offset: 20h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
H

Y
P

D

P
H

Y
R
T

X

P
H

Y
L
P

S

P
H

Y
P

C

P
H

Y
IS

O
X

P
H

Y
C

T
L

R
C

V
F
L
G

P
H

Y
C

T
L

P
R

R
E

G

P
H

Y
C

T
L

P
W

R
E

G

P
H

Y
C

T
L

PA
D

R

P
H

Y
C

T
L

P
W

D
T

bit名 機能

PHYCTL PWDT<7:0>
Register Data ビット (RW - 初期値: 00h)
ライト要求で PHY へ転送されるデータを格納します。また、リード要求で PHY か
ら転送されたデータが格納されます。このレジスタの内容を読み出す場合、Register
Data の内容は直前のリード要求にて PHY から読み出された値が読み込まれます。つ
まり、ホストから書き込んだ値をこのレジスタから直接読み出すことはできません。読

み出したい場合は PHY にリード要求して読み出す必要があります。

PHYCTL PADR<11:8>
Register Address ビット (RW - 初期値: 00h)
ライト要求でアクセスしたい PHY のレジスタのアドレス値を設定します。リード要
求で PHY から転送されたレジスタアドレスが格納されます。

PHYCTL PWREG<12>

Write Register ビット (RW - 初期値: 0b)

• 0 = 通常状態

• 1 = ライト要求発行

PHY のレジスタへのライト要求を発行します。そのライト要求を行った後このビット
をクリアします。

PHYCTL PRREG<13>

Read Register ビット (RW - 初期値: 0b)

• 0 = 通常状態

• 1 = リード要求発行

PHY のレジスタへのリード要求を発行します。そのリード要求を行った後このビット
をクリアします。

536 第 20章 IEEE1394

bit名 機能
PHYCTL RCVFLG<14>

Register Data Received ビット (R - 初期値: 0b)

• 0 = 通常状態

• 1 = リード要求発行後、Register Data に PHY からのデータが格納されたことを示す。

PHY のレジスタへのリード要求を発行後、Register Data に PHY からのデータが格納される
と’1’ が設定されます。その後に一度このレジスタを読み出すと’0’ にクリアされます。

PHY ISOX<25>

Isolation Control ビット (RW - 初期値: 1b)
LINK と PHY の接続方式を制御するビットです。

• 0 = LINK と PHY の間は、AC 手段で接続

• 1 = LINK と PHY の間は、DC 手段で接続

LINK と PHY の AC 接続がサポートされていない場合に、このビットは必ず’1’ に設定されま
す。

PHY PC<28:26>

Power Class ビット (RW - 初期値: 000b)
LINK と PHY のパワークラスを設定します。Bit26～28の設定時の説明:

• 000 = ノードはバス電力を必要とせず電力を転送しない。

• 001 = 自己給電でバスに (最小) 15W 供給する。

• 010 = 自己給電でバスに (最小) 30W 供給する。

• 011 = 自己給電でバスに (最小) 45W 供給する。

• 100 = ノードは PHY のためだけに (最大 3W) バスから受電してよい。またバスに電力
を供給してもよい。

• 101 = ノードはバスから受電して最大 3W 消費する。またバスに電力を供給してよい。
Link とそれより高位のレイヤー用の電力としてさらに最大 2W 必要。

• 110 = ノードはバスから受電して最大 3W 消費する。またバスに電力を供給してよい。
Link とそれより高位のレイヤー用の電力としてさらに最大 5W 必要。

• 111 = ノードはバスから受電して最大 3W 消費する。またバスに電力を供給してよい。
Link とそれより高位のレイヤー用の電力としてさらに最大 9W 必要。

PHY LPS<29> Link Power Status ビット (RW - 初期値: 0b)

• 0 = PHY の LPS へ、’0’ を出力

• 1 = PHY の LPS へ、’1’ を出力

PHY RSTX<30>

PHY Reset ビット (RW - 初期値: 0b)
PHY のリセット制御ビットです。

• 0 = PHY のリセット動作をします。

• 1 = PHY のリセット動作は行いません。

このビットを’0’ に設定して、PHY をリセットした後、正常動作をする前に、必ずこのビット
を’1’ に設定します。

PHY PD<31> PHY Power Down ビット (RW - 初期値: 1b)
PHY パワーを管理するためのビットです。

• 0 = PHY をパワーダウンしていません。

• 1 = PHY をパワーダウンしています。

PHYの動作を始める前に、必ずこのビットを’0’ に設定して、PHY をパワーオンします。

20.3. レジスタ 537

ATx Rretry Register

offset: 24h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A
T

R
R

E
T

R
Y

ST
O

P

A
T

R
R

E
T

R
Y

C
N

T

A
T

R
M

A
X

R
T

Y

bit名 機能

ATR MAXRTY<3:0>

Maximum Retry Count ビット (RW - 初期値: 00h)
デスティネーションノードからのビジーのアクノリッジに対して、最大リトライを何

回おこなうかを，このレジスタで設定します。

この設定値内にリトライフェイズが終了しない場合は，本コアが施行するリトライフェ

イズを終了します。その後，ATF バッファ内のパケットデータはフラッシュされます。
設定できる最大値は 15回です。また”0000” を設定すると本コアは自動的に
リトライフェイズを行いません。

この場合，ビジーアクノリッジに対してパケットデータをフラッシュします。また、リ

トライフェイズ中にエラーのAck コードが返送されたとき、その時点でリトライを中
断しバッファ内をフラッシュしてフラグ (AckErr)を立てて終了します。

ATR RETRYCNT<7:4>
Retry Count ビット (R - 初期値: 00h)
本コアがリトライ中に，その現在のリトライ回数を示します。

ATR RETRYSTOP<8>
Retry Stop ビット (RW - 初期値: 0b)
本コア が自動的にリトライフェイズに入り、そのリミット値にまだ到達せずリトライ

中のときにそのリトライの強制終了を行うビットです。

• 0: 通常状態

• 1: 強制終了

538 第 20章 IEEE1394

Cycle Timer Register

offset 31 24 23 16 15 8 7 0
28h CYCT SECOND CYCT COUNT CYCT OFFSET

bit名 機能

CYCT OFFSET<12:0>
Cycle Offset ビット (RW - 初期値: 00h)
この領域は 24.576MHz のクロックでカウントアップします。Modulo3072 で動作しま
す。

CYCT COUNT<24:13>
Cycle Count ビット (RW - 初期値: 00h)
この領域はCycleField レジスタがキャリーしたときにカウントアップし、Isochronous
サイクルをカウントします。Modulo8000 で動作します。

CYCT SECOND<31:25>

Cycle Seconds ビット (RW - 初期値: 00h)
この領域は CycleCount レジスタがキャリーしたときにカウントアップし、秒をカウ
ントします。Modulo128 で動作します。

20.3. レジスタ 539

Isochrounous Configuration Register

offset: 30h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IC
F
G

IR
T
A

G

ICFG IRCHN

bit名 機能

ICFG IRCHN<29:24>

Channel ビット (RW - 初期値: 00h)
受信したい Isochronous チャンネルを設定します。設定範囲は 0 から 63 です。

ICFG IRTAG<31:30>

Tag ビット (RW - 初期値: 00h)
受信したい Tag を設定します。

ATF Data Register

offset 31 24 23 16 15 8 7 0
40h ATF data

bit名 機能

ATF
Data<31:0>

ATF Data ビット (W - 初期値: XXXX XXXXh)
Asynchronous パケット送信データ書き込み用レジスタ。内部のAsynchronous 送信用
バッファ内にデータが書かれます。

540 第 20章 IEEE1394

ARF Data Register

offset 31 24 23 16 15 8 7 0
44h ARF data

bit名 機能

ARF
Data<31:0>

ARF Data ビット (R - 初期値: XXXX XXXXh)
Asynchronous パケット受信データ読みだし用レジスタ。内部のAsynchronous 受信用
バッファからデータが読み出されます。

ITF Data Register

offset 31 24 23 16 15 8 7 0
48h ITF data

bit名 機能

ITF
Data<31:0>

ITF Data ビット (W - 初期値: XXXX XXXXh)
Isochronous パケット送信データ書き込み用レジスタ。内部の Isochronous 送信用バッ
ファ内にデータが書かれます。

IRF Data Register

offset 31 24 23 16 15 8 7 0
4Ch IRF data

bit名 機能

IRF
Data<31:0>

IRF Data ビット (R - 初期値: XXXX XXXXh)
Isochronous パケット受信データ読みだし用レジスタ。内部の Isochronous 受信用バッ
ファからデータが読み出されます。

20.3. レジスタ 541

Buffer Status and Control Register

offset: 50h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FFCNT

B
SC

SE
L
F
F

IR
F

F
U

L
L

IR
F

E
M

P

IT
F

F
U

L
L

IT
F

E
M

P

A
R

F
F
U

L
L

A
R

F
E

M
P

A
T

F
F
U

L
L

A
T

F
E

M
P

bit名 機能

ATF EMP<0> ATF Empty ビット (R - 初期値: 1b)

• 0 = バッファが空ではない状態を示します。

• 1 = バッファが空の状態を示します。

ATF Data レジスタからアクセスする Asynchronous 送信バッファが空であることを
示します。

ATF FULL<1> ATF Full ビット (R - 初期値: 0b)

• 0 = バッファが一杯ではない状態を示します。

• 1 = バッファが一杯の状態を示します。

ATF Data レジスタからアクセスする Asynchronous 送信バッファが一杯であること
を示します。

ARF EMP<2> ARF Empty ビット (R - 初期値: 1b)

• 0 = バッファが空ではない状態を示します。

• 1 = バッファが空の状態を示します。

ARF Data レジスタからアクセスする Asynchronous 受信バッファが空であることを
示します。

ARF FULL<3>ARF Full ビット (R - 初期値: 0b)

• 0 = バッファが一杯ではない状態を示します。

• 1 = バッファが一杯の状態を示します。

ARF Data レジスタからアクセスする Asynchronous 受信バッファが一杯であること
を示します。

542 第 20章 IEEE1394

bit名 機能

ITF EMP<4> ITF Empty ビット (R - 初期値: 1b)

• 0 = バッファ内が全て空ではないことを示します。

• 1 = バッファ内が全て空であることを示します。

ITF Data レジスタからアクセスする Isochronous 送信バッファが空であることを示し
ます。

ITF FULL<5> ITF Full ビット (R - 初期値: 0b)

• 0 = バッファが一杯ではない状態を示します。

• 1 = バッファが一杯の状態を示します。

ITF Data レジスタからアクセスする Isochronous 送信バッファが一杯であることを示
します。

IRF EMP<6> IRF Empty ビット (R - 初期値: 1b)

• 0 = バッファが空ではない状態を示します。

• 1 = バッファが空の状態を示します。

IRF Data レジスタからアクセスする Isochronous 受信バッファが空であることを示し
ます。

IRF FULL<7> IRF Full ビット (R - 初期値: 0b)

• 0 = バッファが一杯ではない状態を示します。

• 1 = バッファが一杯の状態を示します。

IRF Data レジスタからアクセスする Isochronous 受信バッファが一杯であることを示
します。

BSC SELFF<14:13>
Select FIFO Count ビット (RW - 初期値: 00b)

• 00 = ATF の空き容量を Quadlet 単位で FFCNT に示します。

• 01 = ARF の有効データ量を Quadlet 単位で FFCNT に示します。

• 10 = ITF の空き容量を Quadlet 単位で FFCNT に示します。

• 11 = IRF の有効データ量を Quadlet 単位で FFCNT に示します。

FFCNT<25:16>
FIFO count ビット (R - 初期値: 00b)
BSC SELFF で選択された受信 FIFO のカウント値を Quadlet 単位で示します。

• 送信 Fifo の場合は、FIFO の残り容量が表示されます。

• 受信 Fifo の場合は、FIFO にあるデータ量が表示されます。

20.3. レジスタ 543

Interrupt Register

offset: 54h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
H

Y
L
K

O
N

P
H

Y
C

N
A

IN
T

C
M

D
R

ST

IN
T

C
Y

A
R

B
F
L

IN
T

C
Y

L
O

S

IN
T

C
Y

D
O

N

IN
T

C
Y

ST
A

R
T

IN
T

C
Y

SE
C

IN
T

SE
T

N
T

R
J

IN
T

H
D

E
R

R

IN
T

T
C

E
R

R

IN
T
A

C
K

E
R

R

IN
T

P
H

Y
R

C
V

IN
T

B
U

SR
ST

IN
T

B
R

ST
F

IN
T

P
H

Y
IN

T

IN
T

IT
X

E
N

D

IN
T
A

T
X

E
N

D

IN
T

IR
X

E
N

D

IN
T
A

R
X

E
N

D

IN
T

IR
F
F
L
U

IN
T
A

R
F
F
L
U

IN
T

R
T

Y
E

X
P

bit名 機能

INTRTYEXP<0>
Retry Expired ビット (RW - 初期値: 0b)
Asynchronousパケット送信時、デスティネーションノードからAck Busy コードを返
送してきたら、リトライフェーズに入ります。設定した最大リトライ回数に達しても、

デスティネーションノードから Ack Busy コードを返送してきた場合に、この割り込
みビットを’1’ にセットされます。このビットは、このビットに’1’ を書き込むことで、
クリアされます。

INTARFFLU<1>

ARF Flushed ビット (RW - 初期値: 0b)
Asynchronousパケット受信を行ったとき、ARFバッファにルーティングされたパケッ
トが以下の要因にて正常受信できなかったため、受信データを破棄した場合に、’1’ に
セットされます。

• Asynchronous 受信バッファに受信パケットのデータ数分、空き領域がない。

• パケットのヘッダーおよびペイロード領域が CRC エラー。

• パケットのヘッダー内のデータレンクス設定値と実際のペイロード領域のデータ
数が一致しなかった。

このビットは、このビットに’1’ を書き込むことで、クリアされます。

INTIRFFLU<2>

IRF Flushed ビット (RW - 初期値: 0b)
Isochronous パケット受信を行ったとき、ARF バッファにルーティングされたパケッ
トが以下の要因にて正常受信できなかったため、受信データを破棄した場合に、’1’ に
セットされます。

• Isochronous 受信バッファに受信パケットのデータ数分、空き領域がない。

• パケットのヘッダーおよびペイロード領域が CRC エラー。

• パケットのヘッダー内のデータレンクス設定値と実際のペイロード領域のデータ
数が一致しなかった。

このビットは、このビットに’1’ を書き込むことで、クリアされます。

544 第 20章 IEEE1394

bit名 機能

INTARXEND<3>

AsynRxEnd ビット (RW - 初期値: 0b)
Asynchronous パケット受信を行ったとき、ARF バッファにデータが格納された場合
に’1’ にセットされます。このビットは、このビットに’1’ を書き込むことで、クリア
されます。

INTIRXEND<4>

IsoRxEnd ビット (RW - 初期値: 0b)
Isochronous パケット受信を行ったとき、IRF バッファにデータが格納された場合に’1’
にセットされます。このビットは、このビットに’1’ を書き込むことで、クリアされま
す。

INTATXEND<5>

AsynTxEnd ビット (RW - 初期値: 0b)
Asynchronousパケット送信を行った場合、送信動作を完了し、返送された送信先から
の Ack コードを受信した時に’1’ にセットされます。また、リトライ動作に入った場
合はそのリトライフェーズが完了したとき、または途中 AckErr がセットされた場合
も’1’ にセットされます。このビットは、このビットに’1’ を書き込むことで、クリア
されます。

INTITXEND<6>

IsoTxEnd ビット (RW - 初期値: 0b)
Isochronous パケット送信を行った場合、転送したいパケットを転送し終わったとき
に’1’ にセットされます。このビットは、このビットに’1’ を書き込むことで、クリア
されます。

INTPHYINT<7>
PhyInterrupt ビット (RW - 初期値: 0b)
接続されている PHY から割り込み要因がきた場合に’1’ にセットされます。このビッ
トは、このビットに’1’ を書き込むことで、クリアされます。

INTBRSTF<8>
BusResetFinish ビット (RW - 初期値: 0b)
バスリセットが終了し、Subaction Gap を検出した場合に’1’ にセットされます。この
ビットは、このビットに’1’ を書き込むことで、クリアされます。

INTBUSRST<9>
BusReset ビット (RW - 初期値: 0b)
PHY はバスリセットモードになった場合に’1’ にセットされます。このビットは、こ
のビットに’1’ を書き込むことで、クリアされます。

INTPHYRCV<10>

PhyRegRcvd ビット (RW - 初期値: 0b)
PHY のレジスタへのリード要求を発行後、Phy Control Register のRegister Data に
PHY からのデータが格納された場合に’1’にセットされます。このビットは、このビッ
トに’1’ を書き込むことで、クリアされます。

20.3. レジスタ 545

bit名 機能

INTACKERR<11>
AckError ビット (RW - 初期値: 0b)
送信した Asynchronous パケットに対してデスティネーションから返送されてきたア
クノリッジパケットが正常に受信できなかった場合に’1’ にセットされます。このビッ
トは、このビットに’1’ を書き込むことで、クリアされます。

INTTCERR<12>
tCodeError ビット (RW - 初期値: 0b)
パケット送信時、パケットヘッダー内の tCode 領域に、LLC がサポートしていない
コードが設定された場合に’1’ にセットされます。このビットは、このビットに’1’ を
書き込むことで、クリアされます。

INTHDERR<13>
HeadError ビット (RW - 初期値: 0b)
パケット受信時、あるエラーを含むヘッダーを持つパケットを受信した場合に’1’にセッ
トされます。受信データは破棄されます。このビットは、このビットに’1’ を書き込む
ことで、クリアされます。

INTSENTRJ<14>
SentReject ビット (RW - 初期値: 0b)
Asynchronous 及び Isochronous パケット受信時、その受信バッファにそのパケット容
量分の空き領域がなく、完全にそのパケットを受信できず、LLC がそのソースコード
に対してビジーのアクノリッジパケットを返送した場合に’1’ にセットされます。この
ビットは、このビットに’1’ を書き込むことで、クリアされます。

INTCYSEC<15>
CycleSecond ビット (RW - 初期値: 0b)
LLC が持っているサイクルタイマーが 1 秒をカウントした場合に’1’ にセットされま
す。このビットは、このビットに’1’ を書き込むことで、クリアされます。

INTCYSTART<16>
CycleStart ビット (RW - 初期値: 0b)
LLC ノードが、サイクルマスターとなったときサイクルスタートパケットを発行して、
または非サイクルマスターとなったときサイクルスタートパケットを受信して、新し

い Isochronous サイクルがスタートした場合に’1’ にセットされます。

INTCYDON<17>

CycleDone ビット (RW - 初期値: 0b)
ある Isochronous サイクルが終了した場合に’1’ にセットされます。このビットは、こ
のビットに’1’ を書き込むことで、クリアされます。

INTCYLOS<18>
CycleLost ビット (RW - 初期値: 0b)
LLC のノードがサイクルマスターではない場合に、あるサイクルスタートパケットを
受信して内部のサイクルタイマーを更新した後、そのサイクルタイマーで 250 μ s の
間、次のサイクルスタートパケットを受信できなかった場合に’1’ にセットされます。
このビットは、このビットに’1’ を書き込むことで、クリアされます。

546 第 20章 IEEE1394

bit名 機能

INTCYARBFL<19>
CycleArbitrationFail ビット (RW - 初期値: 0b)
LLC のノードがサイクルマスターである場合に、サイクルスタートパケット発行の調
停要求を出し、調停が失敗した場合に’1’ にセットされます。このビットは、このビッ
トに’1’ を書き込むことで、クリアされます。

INTCMDRST<20>
CommandReset ビット (RW - 初期値: 0b)
CSR 空間のリセット領域にアドレスされたパケットを受信した場合に’1’ にセットさ
れます。このビットは、このビットに’1’ を書き込むことで、クリアされます。
ARF バッファにそのパケット分の空きがあれば、そのパケットは ARF に格納されま
す。そのパケット分の空きがなければ、そのパケットはARF に格納されず、CMDRST
割り込みのみを処理します。

PHY CNA<30>CableNotActive ビット (RW - 初期値: 0b)
接続されている PHY が接続しているケーブルを検出していない場合に’1’ にセットさ
れます。このビットは、このビットに’1’ を書き込むことで、クリアされます。

PHY LKON<31>

LonkOn ビット (RW - 初期値: 0b)
接続されている PHY から LinkOn 信号がアサートした場合に’1’ にセットされます。
このビットは、このビットに’1’ を書き込むことで、クリアされます。

Interrupt Mask Register

offset: 58h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

P
H

Y
L
K

O
N

P
H

Y
C

N
A

IN
T

C
M

D
R

ST

IN
T

C
Y

A
R

B
F
L

IN
T

C
Y

L
O

S

IN
T

C
Y

D
O

N

IN
T

C
Y

ST
A

R
T

IN
T

C
Y

SE
C

IN
T

SE
T

N
T

R
J

IN
T

H
D

E
R

R

IN
T

T
C

E
R

R

IN
T
A

C
K

E
R

R

IN
T

P
H

Y
R

C
V

IN
T

B
U

SR
ST

IN
T

B
R

ST
F

IN
T

P
H

Y
IN

T

IN
T

IT
X

E
N

D

IN
T
A

T
X

E
N

D

IN
T

IR
X

E
N

D

IN
T
A

R
X

E
N

D

IN
T

IR
F
F
L
U

IN
T
A

R
F
F
L
U

IN
T

R
T

Y
E

X
P

初期値: 0000 0000h
Interrupt レジスタ内の各割込発生要因を INT 信号に反映させたくない場合、このレジスタでマスクし

ます。このレジスタの並びは Interrupt レジスタと同様です。各ビットとも’1’ の設定でマスクされます。
なお、Interrupt レジスタで未定義の部分に当たるMask ビットは必ずマスク (’1’ を設定) して下さい。

20.3. レジスタ 547

TGo Register

offset: 5Ch

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IT
G

o

A
T

G
o

bit名 機能

ATGo<0> AT Go ビット (RW - 初期値: 0b)
Asynchronous パケットの送信開始を、このレジスタへ’1’ をセットすることにより本
コアへ知らせます。このビットは、送信終了後、自動的に’0’ にリセットされます。

ITGo<1> IT Go ビット (RW - 初期値: 0b)
Isochronous パケットの送信開始を、このレジスタへ’1’ をセットすることにより本コ
ア へ知らせます。このビットは、送信終了後、自動的に’0’ にリセットされます。

548 第 20章 IEEE1394

ATF Control Register

offset: 60h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ATC PKTLEN

A
T

C
T

G
O

L
E

N

A
T

C
T

G
O

E
O

P

A
T

C
C

N
T

E
O

P

A
T

C
D

R
E

Q
F
L

A
T

C
D

R
E

Q
E

N

A
T

C
D

A
C

K
E

N

A
T

C
B

M
E

N

bit 名 機能
ATC BMEN<0> Burst Mode Enable ビット (RW - 初期値: 0b)

• 0 = BMACK 信号が随時ノンアクティブ状態になります。

• 1 = BMREQ 信号に対してバースト転送が可能ならば BMACK で応答しバースト転送を行います。

ATC DACKEN<1>

Dack Detect Enable ビット (RW - 初期値: 0b)

• 0 = DACK 信号に対して応答しません。

• 1 = DACK 信号で FIFO へのアクセスを有効とします。

ATC DREQEN<2>

DREQ Enable ビット (Rw - 初期値: 0b)

• 0 = DREQ 信号が随時ノンアクティブ状態になります。

• 1 = DREQ 信号を送出し DMA アクセスを要求します。

ATC DREQFL<3>
DMAC Flush Signal Detect Enable ビット (RW - 初期値: 0b)
一時的にバスを開放する為に DMAC からの FLX により DREQ をノンアクティブにします。

• 0 = バス開放を行いません。

• 1 = バスを開放する為に、FLX 信号により DREQ 信号を一時的にノンアクティブにします。

ATC CNTEOP<4>
DMA Continue or Stop Select ビット (RW - 初期値: 0b)
DMAC からの EOP により DREQEN ビットの制御を設定します。

• 0 = EOP 検出時 DREQEN をノンアクティブにし DMA 転送を終了させます。(自動停止)

• 1 = EOP 検出しても DREQEN を変化させません。(継続転送)

ATC TGOEOP<14>
DMA EOP Detect and Auto Tx Enable ビット (RW - 初期値: 0b)
DMAC からの EOP により ATGo ビットの制御を設定します。

• 0 = EOP 検出しても自動送信しません。

• 1 = EOP 検出時自動送信するために ATGo をアクティブにします。

ATC TGOLEN<15>

DMA Packet Length Count Detect and Auto Tx Enable ビット (RW - 初期値: 0b)
ATC PKTLEN に指定したデータ長に達した時に ATGo ビットの制御を設定します。

• 0 = 自動送信しません。

• 1 = 自動送信するために ATGo をアクティブにします。

ATC PKTLEN<24:16>

DMA Packet Length Setup Register ビット (RW - 初期値: 0b) 自動転送するパケットのレンクス長を
設定します。

20.3. レジスタ 549

ARF Control Register

offset: 64h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A
R

C
D

R
E

Q
H

O
L
D

A
R

C
C

N
T

E
O

P

A
R

C
D

R
E

Q
F
L

A
R

C
D

R
E

Q
E

N

A
R

C
D

A
C

K
E

N

A
R

C
B

M
E

N

bit名 機能
ARC BMEN<0> Burst Mode Enable ビット (RW - 初期値: 0b)

• 0 = BMACK 信号が随時ノンアクティブ状態になります。

• 1 = BMREQ 信号に対してバースト転送が可能ならば BMACK で応答しバースト転送
を行います。

ARC DACKEN<1>

Dack Detect Enable ビット (RW - 初期値: 0b)

• 0 = DACK 信号に対して応答しません。

• 1 = DACK 信号で FIFO へのアクセスを有効とします。

ARC DREQEN<2>

DREQ Enable ビット (Rw - 初期値: 0b)

• 0 = DREQ 信号が随時ノンアクティブ状態になります。

• 1 = DREQ 信号を送出し DMA アクセスを要求します。

ARC DREQFL<3>
DMAC Flush Signal Detect Enable ビット (RW - 初期値: 0b)
一時的にバスを開放する為に DMAC からの FLX により DREQ をノンアクティブにします。

• 0 = バス開放を行いません。

• 1 = バスを開放する為に、FLX 信号により DREQ 信号を一時的にノンアクティブにし
ます。

ARC CNTEOP<4>
DMA Continue or Stop Select ビット (RW - 初期値: 0b)
DMAC からの EOP により DREQEN ビットの制御を設定します。

• 0 = EOP 検出時 DREQEN をノンアクティブにし DMA 転送を終了させます。(自動
停止)

• 1 = EOP 検出しても DREQEN を変化させません。(継続転送)

ARC DREQHOLD<5>

DREQ Signal Hold Enable ビット (RW - 初期値: 0b)
DMAC からの FLX を検出するまで、DREQ 信号の有効状態の制御を設定します。

• 0 = DREQ 信号が、FLX を検出までのホールドをしません。

• 1 = DREQ 信号が、FLX を検出するまでホールドされます。

550 第 20章 IEEE1394

ITF Control Register

offset: 68h

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ITC PKTLEN

IT
C

T
G

O
L
E

N

IT
C

T
G

O
E

O
P

IT
C

C
N

T
E

O
P

IT
C

D
R

E
Q

F
L

IT
C

D
R

E
Q

E
N

IT
C

D
A

C
K

E
N

IT
C

B
M

E
N

bit 名 機能
ITC BMEN<0> Burst Mode Enable ビット (RW - 初期値: 0b)

• 0 = BMACK 信号が随時ノンアクティブ状態になります。

• 1 = BMREQ 信号に対してバースト転送が可能ならば BMACK で応答しバースト転送を行います。

ITC DACKEN<1>

Dack Detect Enable ビット (RW - 初期値: 0b)

• 0 = DACK 信号に対して応答しません。

• 1 = DACK 信号で FIFO へのアクセスを有効とします。

ITC DREQEN<2>

DREQ Enable ビット (Rw - 初期値: 0b)

• 0 = DREQ 信号が随時ノンアクティブ状態になります。

• 1 = DREQ 信号を送出し DMA アクセスを要求します。

ITC DREQFL<3>
DMAC Flush Signal Detect Enable ビット (RW - 初期値: 0b)
一時的にバスを開放する為に DMAC からの FLX により DREQ をノンアクティブにします。

• 0 = バスを開放しません。

• 1 = バスを開放する為に、FLX 信号により DREQ 信号を一時的にノンアクティブにします。

ITC CNTEOP<4>
DMA Continue or Stop Select ビット (RW - 初期値: 0b)
DMAC からの EOP により DREQEN ビットの制御を設定します。

• 0 = EOP 検出時 DREQEN をノンアクティブにし DMA 転送を終了させます。(自動停止)

• 1 = EOP 検出しても DREQEN を変化させません。(継続転送)

ITC TGOEOP<14>
DMA EOP Detect and Auto Tx Enable ビット (RW - 初期値: 0b)
DMAC からの EOP により ITGo ビットの制御を設定します。

• 0 = EOP 検出しても自動送信しません。

• 1 = EOP 検出時自動送信するために ITGo をアクティブにします。

ITC TGOLEN<15>

DMA Packet Length Count Detect and Auto Tx Enable ビット (RW - 初期値: 0b)
ITC PKTLEN に指定したデータ長に達した時に ITGo ビットの制御を設定します。

• 0 = 自動送信しません。

• 1 = 自動送信するために ITGo をアクティブにします。

ITC PKTLEN<24:16>

DMA Packet Length Setup Register ビット (RW - 初期値: 0b)
自動転送するパケットのレンクス長を設定します。

20.3. レジスタ 551

IRF Control Register

offset: 6Ch

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IR
C

D
R

E
Q

H
O

L
D

IR
C

C
N

T
E

O
P

IR
C

D
R

E
Q

F
L

IR
C

D
R

E
Q

E
N

IR
C

D
A

C
K

E
N

IR
C

B
M

E
N

bit名 機能
IRC BMEN<0> Burst Mode Enable ビット (RW - 初期値: 0b)

• 0 = BMACK 信号が随時ノンアクティブ状態になります。

• 1 = BMREQ 信号に対してバースト転送が可能ならば BMACK で応答しバースト転送
を行います。

IRC DACKEN<1>

Dack Detect Enable ビット (RW - 初期値: 0b)

• 0 = DACK 信号に対して応答しません。

• 1 = DACK 信号で FIFO へのアクセスを有効とします。

IRC DREQEN<2>

DREQ Enable ビット (Rw - 初期値: 0b)

• 0 = DREQ 信号が随時ノンアクティブ状態になります。

• 1 = DREQ 信号を送出し DMA アクセスを要求します。

IRC DREQFL<3>
DMAC Flush Signal Detect Enable ビット (RW - 初期値: 0b)
一時的にバスを開放する為に DMAC からの FLX により DREQ をノンアクティブにします。

• 0 = バスを開放しません。

• 1 = バスを開放する為に、FLX 信号により DREQ 信号を一時的にノンアクティブにし
ます。

IRC CNTEOP<4>
DMA Continue or Stop Select ビット (RW - 初期値: 0b)
DMAC からの EOP により DREQEN ビットの制御を設定します。

• 0 = EOP 検出時 DREQEN をノンアクティブにし DMA 転送を終了させます。(自動
停止)

• 1 = EOP 検出しても DREQEN を変化させません。(継続転送)

ARC DREQHOLD<5>

DREQ Signal Hold Enable ビット (RW - 初期値: 0b)
DMAC からの FLX を検出するまで、DREQ 信号の有効状態の制御を設定します。

• 0 = DREQ 信号が、FLX を検出までのホールドをしません。

• 1 = DREQ 信号が、FLX を検出するまでホールドされます。

552 第 20章 IEEE1394

20.4 データフォーマット

20.4.1 アシンクロナス データフォーマット

クワドレット送信

リクエスト送信 (quadlet/block read request and quadlet write request):

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B
us

ID spd tLabel rt tCode priority

destinationID destinationOffset H

destinationOffset L

quadlet data(for quadlet write request)

リスポンス送信 (quadlet/block write response and quadlet read response):

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B
us

ID spd tLabel rt tCode priority

destinationID rCode (reserved)

(reserved)

quadlet data(for quadlet read response)

20.4. データフォーマット 553

bit名 機能

BusID BusID フィールド
このフィールドは IEEE1394 パケットフォーマットのヘッダー領域内、ソース領域に
設定するBusID をコンフィグレーションレジスタ設定を有効にするか、3FF固定とす
るかを選択します。

• 0 = BusID をコンフィグレーションレジスタの設定値を有効にします。

• 1 = BusID を 3FF 固定とします。

本ビットを’1’ に設定した場合、コンフィグレーションレジスタの BusID レジスタ設
定は無効となります。

spd speed フィールド
このフィールドは転送する速度を設定します。設定値はコード説明部分参照のこと。

tLabel Transaction Label フィールド
このフィールドは転送されるそれぞれのトランザクションのためにユニークなタグを

定義します。要求時に送った tLabel はただしく応答する場合のトランザクションラベ
ルとして用います。

rt retry フィールド
このフィールドはこのパケットがリトライを行っているパケットかどうかを定義する

ために用います。そして、リトライプロトコルは相手先ノードのよってフォローされ

ます。設定値はコード説明部分参照のこと。

tCode Transaction Code フィールド
このフィールドはトランザクションコードを設定します。トランザクションコードは

パケットの形式、タイプを定義するのに用いられます。設定値はコード説明部分参照

のこと。

priority priority フィールド
このフィールドはバックプレーン環境で有効になります。このため、ここでは必ず 0000b
を設定しなければなりません。

destinationID destination ID フィールド
このフィールドは送信先 (destination) のバス、ノード ID を設定します。16 ビット長
のうち上位 10 ビットは相手先のバス ID (destination bus ID) を、下位 6 ビットは相
手先のフィジカル ID (destination physical ID) を設定します。設定値の中には特別な
意味を持つものもあります。詳細はコード説明部分参照のこと。

destination
Offset

destination Offset Address フィールド
このフィールドは要求したパケットの送信先ノードの下位 48 ビットのアドレスを定
義します。設定値は Quadlet データの読み込み要求 (read request for quadlet data)、
Quadlet データの書き込み要求 (write request for quadlet data) の場合はQuadlet 単
位に合わせた形で定義しなければなりません。

rcode reply code フィールド
このフィールドはこのトランザクションの結果を指定します。設定値はコード説明部

分参照のこと。

554 第 20章 IEEE1394

フロック送信

ブロックライト (ロック) リクエスト送信:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B
us

ID spd tLabel rt tCode priority

destinationID destinationOffset H

destinationOffset L

dataLength extended tCode

block data quadlet1

other block data quadlets

padding (if necessary)

ブロックリード (ロック) リスポンス送信:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B
us

ID

spd tLabel rt tCode priority

destinationID rCode (reserved)

(reserved)

dataLength extended tCode

block data quadlet1

other block data quadlets

padding (if necessary)

20.4. データフォーマット 555

bit名 機能

BusID BusID フィールド
このフィールドは IEEE1394 パケットフォーマットのヘッダー領域内、ソース領域に
設定するBusID をコンフィグレーションレジスタ設定を有効にするか、3FF固定とす
るかを選択します。

• 0 = BusID をコンフィグレーションレジスタの設定値を有効にします。

• 1 = BusID を 3FF 固定とします。

本ビットを’1’ に設定した場合、コンフィグレーションレジスタの BusID レジスタ設
定は無効となります。

spd speed フィールド
このフィールドは転送する速度を設定します。設定値はコード説明部分参照のこと。

tLabel Transaction Label フィールド
このフィールドは転送されるそれぞれのトランザクションのためにユニークなタグを

定義します。要求時に送った tLabel はただしく応答する場合のトランザクションラベ
ルとして用います。

rt retry フィールド
このフィールドはこのパケットがリトライを行っているパケットかどうかを定義する

ために用います。そして、リトライプロトコルは相手先ノードのよってフォローされ

ます。設定値はコード説明部分参照のこと。

tCode Transaction Code フィールド
このフィールドはトランザクションコードを設定します。トランザクションコードは

パケットの形式、タイプを定義するのに用いられます。設定値はコード説明部分参照

のこと。

priority priority フィールド
このフィールドはバックプレーン環境で有効になります。このため、ここでは必ず 0000b
を設定しなければなりません。

destinationID destination ID フィールド
このフィールドは送信先 (destination) のバス、ノード ID を設定します。16 ビット長
のうち上位 10 ビットは相手先のバス ID (destination bus ID) を、下位 6 ビットは相
手先のフィジカル ID (destination physical ID) を設定します。設定値の中には特別な
意味を持つものもあります。詳細はコード説明部分参照のこと。

destination
Offset

destination Offset Address フィールド
このフィールドは要求したパケットの送信先ノードの下位 48 ビットのアドレスを定
義します。設定値は Quadlet データの読み込み要求 (read request for quadlet data)、
Quadlet データの書き込み要求 (write request for quadlet data) の場合はQuadlet 単
位に合わせた形で定義しなければなりません。

556 第 20章 IEEE1394

bit名 機能

dataLength data length フィールド
このフィールドは blockData フィールドのデータ長を設定します。設定値の最大値は
speed フィールドの設定値に依存します。詳細はコード説明部分参照のこと。

extended tCode extended transaction code フィールド
このフィールドは拡張 tCode を定義します。この extended tCode は tCode が’lock
request’または’lock response’の場合のみ有効になります。その他の tCode の場合は
このフィールドには 0000h を設定しなければなりません。設定値の詳細はコード説明
部分参照のこと。

blockData block data フィールド
このフィールドは実際の転送データを設定します。もし、dataLength フィールドが 4
の倍数の値で定義されていない場合はこのフィールドでは 00h でQuadlet 単位が完結
するように埋める必要があります。

rcode reply code フィールド
このフィールドはこのトランザクションの結果を指定します。設定値はコード説明部

分参照のこと。

クワドレット受信

リクエスト受信 (quadlet/block read request and quadlet write request):

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

destinationID tLabel rt tCode priority

sourceID destinationOffset H

destinationOffset L

quadlet data(for quadlet write request)

spd AckSent

リスポンス受信 (quadlet/block write response and quadlet read response):

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

destinationID tLabel rt tCode priority

sourceID rcode (reserved)

(reserved)

quadlet data(for quadlet read response)

spd AckSent

20.4. データフォーマット 557

bit名 機能

destinationID destination ID フィールド
このフィールドは送信先 (destination) のバス、ノード ID を設定します。16 ビット長
のうち上位 10 ビットは相手先のバス ID (destination bus ID) を、下位 6 ビットは相
手先のフィジカル ID (destination physical ID) を設定します。設定値の中には特別な
意味を持つものもあります。詳細はコード説明部分参照のこと。

tLabel Transaction Label フィールド
このフィールドは転送されるそれぞれのトランザクションのためにユニークなタグを

定義します。要求時に送った tLabel はただしく応答する場合のトランザクションラベ
ルとして用います。

rt retry フィールド
このフィールドはこのパケットがリトライを行っているパケットかどうかを定義する

ために用います。そして、リトライプロトコルは相手先ノードのよってフォローされ

ます。設定値はコード説明部分参照のこと。

tCode Transaction Code フィールド
このフィールドはトランザクションコードを設定します。トランザクションコードは

パケットの形式、タイプを定義するのに用いられます。設定値はコード説明部分参照

のこと。

priority priority フィールド
このフィールドはバックプレーン環境で有効になります。このため、ここでは必ず 0000b
を設定しなければなりません。

sourceID source ID フィールド
このフィールドは送信元 (source) のバス、ノード ID が格納されています。16 ビット
長のうち上位 10 ビットは相手先のバス ID (destination bus ID) を、下位 6 ビットは
相手先のフィジカル ID (destination physical ID) になります。値の中には特別な意味
を持つものもあります。詳細はコード説明部分参照のこと。

destination
Offset

destination Offset Address フィールド
このフィールドは要求したパケットの送信先ノードの下位 48 ビットのアドレスを定
義します。設定値は Quadlet データの読み込み要求 (read request for quadlet data)、
Quadlet データの書き込み要求 (write request for quadlet data) の場合はQuadlet 単
位に合わせた形で定義しなければなりません。

quadlet Data quadlet data フィールド
このフィールドは転送されてきたデータが格納されています。

spd speed フィールド
このフィールドは転送する速度を設定します。設定値はコード説明部分参照のこと。

AckSent ackSentフィールド
このフィールドはこのパケットを受信した後、そのアクノリッジとして送り返したAck
コードが格納されています。設定値はコード説明部分参照のこと。

rcode reply code フィールド
このフィールドはこのトランザクションの結果を指定します。設定値はコード説明部

分参照のこと。

558 第 20章 IEEE1394

ブロック受信

ブロックライト (ロック) リクエスト受信:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

destinationID tLabel rt tCode priority

sourceID destinationOffset H

destinationOffset L

dataLength extended tCode

block data quadlet1

other block data quadlets

spd AckSent

ブロックリード (ロック) リスポンス受信:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

destinationID tLabel rt tCode priority

sourceID rnode (reserved)

(reserved)

dataLength extended tCode

block data quadlet1

other block data quadlets

spd AckSent

20.4. データフォーマット 559

bit名 機能
destinationID destination ID フィールド

このフィールドは送信先 (destination) のバス、ノード ID を設定します。16 ビット長のうち
上位 10 ビットは相手先のバス ID (destination bus ID) を、下位 6 ビットは相手先のフィジカ
ル ID (destination physical ID) を設定します。設定値の中には特別な意味を持つものもありま
す。詳細はコード説明部分参照のこと。

tLabel Transaction Label フィールド
このフィールドは転送されるそれぞれのトランザクションのためにユニークなタグを定義しま
す。要求時に送った tLabel はただしく応答する場合のトランザクションラベルとして用います。

rt retry フィールド
このフィールドはこのパケットがリトライを行っているパケットかどうかを定義するために用い
ます。そして、リトライプロトコルは相手先ノードのよってフォローされます。設定値はコード
説明部分参照のこと。

tCode Transaction Code フィールド
このフィールドはトランザクションコードを設定します。トランザクションコードはパケットの
形式、タイプを定義するのに用いられます。設定値はコード説明部分参照のこと。

priority priority フィールド
このフィールドはバックプレーン環境で有効になります。このため、ここでは必ず 0000b を設
定しなければなりません。

sourceID source ID フィールド
このフィールドは送信元 (source) のバス、ノード ID が格納されています。16 ビット長のうち
上位 10 ビットは相手先のバス ID (destination bus ID) を、下位 6 ビットは相手先のフィジカ
ル ID (destination physical ID) になります。値の中には特別な意味を持つものもあります。詳
細はコード説明部分参照のこと。

destination
Offset

destination Offset Address フィールド
このフィールドは要求したパケットの送信先ノードの下位 48 ビットのアドレスを定義します。
設定値は Quadlet データの読み込み要求 (read request for quadlet data)、Quadlet データの
書き込み要求 (write request for quadlet data) の場合はQuadlet 単位に合わせた形で定義しな
ければなりません。

dataLength data length フィールド
このフィールドは blockData フィールドのデータ長を設定します。設定値の最大値は speed
フィールドの設定値に依存します。詳細はコード説明部分参照のこと。

extended tCode extended transaction code フィールド
このフィールドは拡張 tCode を定義します。この extended tCode は tCode が’lock request’
または’lock response’の場合のみ有効になります。その他の tCode の場合はこのフィールドに
は 0000h を設定しなければなりません。設定値の詳細はコード説明部分参照のこと。

blockData block data フィールド
このフィールドは実際の転送データを設定します。もし、dataLength フィールドが 4 の倍数の
値で定義されていない場合はこのフィールドでは 00h で Quadlet 単位が完結するように埋める
必要があります。

spd speed フィールド
このフィールドは転送する速度を設定します。設定値はコード説明部分参照のこと。

AckSent ackSentフィールド
このフィールドはこのパケットを受信した後、そのアクノリッジとして送り返した Ack コード
が格納されています。設定値はコード説明部分参照のこと。

rcode reply code フィールド
このフィールドはこのトランザクションの結果を指定します。設定値はコード説明部分参照のこ
と。

560 第 20章 IEEE1394

20.4.2 アシンクロナス ストリーム データフォーマット

アシンクロナスストリーム送信

アシンクロナスストリーム送信:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

spd tCode reserved

dataLength tag channel sy

Asynchronous Stream Data

padding (if necessary)

bit名 機能

tCode Transaction Code フィールド
このフィールドはトランザクションコードを設定します。トランザクションコードは

パケットの形式、タイプを定義するのに用いられます。値は 0xA でなければなりませ
ん。

dataLength data length フィールド
このフィールドは blockData フィールドのデータ長を設定します。

tag tag フィールド
このフィールドはアシンクロナスストリーム転送の tag を格納します。

channel channel フィールド
このフィールドはアシンクロナスストリーム転送チャンネルの番号を格納します。

spd speed フィールド
このフィールドは転送する速度を設定します。設定値はコード説明部分参照のこと。

sy sync フィールド
このフィールドはアシンクロナスストリーム転送の sync を格納します。

Asynchronous
Stream Data

Asynchronous Stream Data フィールド
このフィールドは実際の転送データを設定します。もし、dataLength フィールドが 4
の倍数の値で定義されていない場合はこのフィールドでは 00h でQuadlet 単位が完結
するように埋める必要があります。

20.4. データフォーマット 561

アシンクロナスストリーム受信:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dataLength tag channel tCode sy

Asynchronous Stream Data

spd errCode

bit名 機能

dataLength data length フィールド
このフィールドは blockData フィールドのデータ長を設定します。

tag tag フィールド
このフィールドはアシンクロナスストリーム転送の tag を格納します。

channel channel フィールド
このフィールドはアシンクロナスストリーム転送チャンネルの番号を格納します。

sy sync フィールド
このフィールドはアシンクロナスストリーム転送の sync を格納します。

tCode Transaction Code フィールド
このフィールドはトランザクションコードを設定します。トランザクションコードは

パケットの形式、タイプを定義するのに用いられます。値は 0xA でなければなりませ
ん。

Asynchronous
Stream Data

Asynchronous Stream Data フィールド
このフィールドは実際の転送データを設定します。

spd speed フィールド
このフィールドは転送する速度を設定します。設定値はコード説明部分参照のこと。

errCode errCode フィールド
このフィールドはこのパケットを受信した時のアクノリッジが格納されます。ただし、

Asynchronous転送と異なりこのフィールドの値は返送されません。設定値はコード説
明部分参照のこと。

562 第 20章 IEEE1394

20.4.3 アイソクロナス データフォーマット

送信

アイソクロナス送信 (ノーマルモード):

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dataLength tag channel spd sy

Asynchronous Stream Data

sy

bit名 機能

dataLength data length フィールド
このフィールドは blockData フィールドのデータ長を設定します。

tag tag フィールド
このフィールドはアイソクロナス転送の tag を格納します。

channel channel フィールド
このフィールドはアイソクロナス転送チャンネルの番号を格納します。

spd speed フィールド
このフィールドは転送する速度を設定します。設定値はコード説明部分参照のこと。

sy sync フィールド
このフィールドはアシンクロナス転送の sync を格納します。

Isochronous
Data

Isochronous Data フィールド
このフィールドは実際の転送データを設定します。もし、dataLength フィールドが 4
の倍数の値で定義されていない場合はこのフィールドでは 00h でQuadlet 単位が完結
するように埋める必要があります。

20.4. データフォーマット 563

受信

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

dataLength tag channel tCode sy

Isochronous Stream Data

sy

bit名 機能

dataLength data length フィールド
このフィールドは blockData フィールドのデータ長を設定します。

tag tag フィールド
このフィールドはアイソクロナス転送の tag を格納します。

channel channel フィールド
このフィールドはアイソクロナス転送チャンネルの番号を格納します。

sy sync フィールド
このフィールドはアシンクロナス転送の sync を格納します。

tCode Transaction Code フィールド
このフィールドはトランザクションコードを設定します。トランザクションコードは

パケットの形式、タイプを定義するのに用いられます。値は 0xA でなければなりませ
ん。

spd speed フィールド
このフィールドは転送する速度を設定します。設定値はコード説明部分参照のこと。

errCode errCode フィールド
このフィールドはこのパケットを受信した時のアクノリッジが格納されます。ただし、

Asynchronous転送と異なりこのフィールドの値は返送されません。設定値はコード説
明部分参照のこと。

20.4.4 自己識別パケット送信

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1110b

SelfID Packet Data

bit名 機能

SelfID
Packet Data

SelfID Packet Data フィールド
Bit31 が 1、Bit30 が 0 である。

564 第 20章 IEEE1394

20.4.5 PHY コントロールパケット

送信

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1110b

PHY Packet Quadlet1

PHY Packet Quadlet2 (PHY Packet Quadlet1 の反転)

PHY コントロールパケットを送信する場合最初のQuadlet には上記示すデータをATF バッファに格納
し、その後 1394 で規定されているPHY Control Packetを格納します。このときの、PHY Control Packet
のデータは反転データも一緒に格納する必要が有ります。実際の送信では最初の Quadlet は送信されず、
PHY Packet Quadlet のみが送信されます。PHY コントロールパケットは、100Mbps のスピードで転送
されます。

受信

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1110b

PHY Packet Quadlet1

PHY コントロールパケットを受信した場合、最初のQuadlet には上記に示すデータがARF バッファに
格納されます。その後 1394 で規定されているPHY Control Packetが格納されます。PHY Control Packet
の反転データが異なっていた場合でも、その PHY Control Packet は、ARF バッファに格納されません。

20.4.6 コード説明

以下は IEEE1394 で規定されているパケットフォーマットに用いるコードを示しています。

リトライコード (rt):
コード 説明

00b Retry 1

01b Retry X

10b Retry A

11b Retry B

20.4. データフォーマット 565

トランザクションコード (tCode):
コード 説明 コード 説明

0h Write request for data quadlet 8h Cycle start

1h Write request for data block 9h Lock request

2h Write response Ah Isochronous data block

3h Reserved Bh Lock response

4h Read request for data quadlet Ch Reserved

5h Read request for data block Dh Reserved

6h Read response for data quadlet Eh Reserved (internal use)

7h Read response for data block Fh Reserved

Bus Number/Node Number 表:
Destination Bus ID Destination Node ID 内容

0-3Feh 0-3Eh Bus ID 及び node ID で定義されたノードに転送

3FFh 0-3Eh ローカルバス内の node ID で定義されたノードに転送

0-3Feh 3Fh Bus ID で定義されたバスにブロードキャスト転送

3FFh 3Fh ローカルバス内にブロードキャスト転送

拡張トランザクションコード (Extended tCode) 表:
コード 説明

0000h Reserved

0001h Mask swap

0002h Compare swap

0003h Fetch add

0004h Little add

0005h Bounded add

0006h Wrap add

0007h Vender dependant

0008h-FFFFh Reserved

Speed コード (spd) 表:
コード Speed

00b 100Mbps

01b 200Mbps

10b 400Mbps

Others Reserved

566 第 20章 IEEE1394

アクノリッジコード (Ack) 表:
コード 説明

0h Reserved

1h Ack complete

2h Ack pending

3h Reserved

4h Ack busy X

5h Ack busy A

6h Ack busy B

7h Reserved

8h Reserved

9h Reserved

Ah Reserved

Bh Reserved

Ch Reserved

Dh Ack data error

Eh Ack type error

Fh Reserved

アシンクロナスパケット内応答コード (rcode) 表:
コード 説明 内容

0h Resp complete ノードは要求された動作を成功裡に完了した

1h Reserved 未使用

2h Reserved 未使用

3h Reserved 未使用

4h Resp conflict error 応答しているノードによって資源の衝突が検出された

5h Resp data error ハードウェアエラー、データは有効ではない

6h Resp type error パケットタイプエラー又は無効なエラーを格納している

7h Resp address error 指定されたノード内のアドレス位置はアクセスできない

8h Reserved 未使用

9h Reserved 未使用

Ah Reserved 未使用

Bh Reserved 未使用

Ch Reserved 未使用

Dh Reserved 未使用

Eh Reserved 未使用

Fh Reserved 未使用

20.5. 機能 567

20.5 機能

20.5.1 ホストインターフェース

LLC の制御及び、送信/受信データの転送はすべてホストインターフェースから行われます。内部レジ
スタ及び、IEEE1394 のパケットデータは基本的に 32 ビット幅でアクセスします。

レジスタアクセス

以下は、レジスタへのアクセスタイミングを示します。

568 第 20章 IEEE1394

DMA 転送

送信/受信用バッファとのデータ転送方法に DMA 転送の機能をサポートしています。すべての送受信
バッファにそれぞれ 1DMA 転送チャンネルを専用にするのに、「アシンクロナス送信バッファDMA チャ
ンネル」と「アシンクロナス受信バッファDMA チャンネル」と「アイソクロナス送信バッファDMA チャ
ンネル」と「アイソクロナス受信バッファDMA チャンネル」の四つのDMA 転送チャンネルを設けてい
ます。各DMA チャンネルは、それぞれの制御レジスタを持っていて、独自の制御設定ができます。
送信データを送信バッファに DMA 転送で転送する時は、DMAC に転送したいデータの大きさを設定

し、実行する。その後DREQEN レジスタビットを’1’ にすることでDREQ 要求がDMAC に対して発行
されるため、DMA 転送が実行されます。
受信データを受信バッファからホスト側にDMA 転送で転送する場合は、FFCNT レジスタビットから

データ長を読み込んでその値をDMAC にセットし、DMAC を実行する。その後DREQEN レジスタビッ
トを’1’ にすることで DREQ 要求が DMAC に対して発行されるため、DMA 転送が実行されます。

20.5. 機能 569

送信バッファ(ATF と ITF) への DMA 転送には、TGOLEN レジスタビットによる DMA 転送モード
と TGOEOP レジスタビットによる DMA 転送モードがあります。

TGOLEN レジスタビットにより DMA 転送する場合には、PKTLEN レジスタに設定された値になっ
た時、DREQ をディセーブルし、TGo(ATGo 又は ITGo) を発行して自動送信をさせ、次のパケットを送
信出来るようになった時、DREQ をイネーブルします。

TGOEOP レジスタビットによりDMA 転送する場合には、DMAC からの EOPX を検出時、DREQ を
ディセーブルし、TGo(ATGo 又は ITGo) を発行して、自動送信させます。

割り込み処理

LLC の Interrupt レジスタ、Interrupt Mask レジスタで定義された割り込み要因についてホストに通
知する手段として H INTX O 端子を持っています。この H INTX O信号はアクティブローで Interrupt
Mask レジスタにてマスクされていない割り込み要因の OR を取った形でアサートされます。

Interrupt レジスタ内のすべてのビットに’1’ をライトすることで、各ビットがクリアされ、H INTX O
端子はネゲートされます。

570 第 20章 IEEE1394

20.5.2 PHY インターフェース

PHYとのインターフェースは、SYCLKと LREQとCTL[0:1] とCTL[0:7] などによって構成されます。
転送速度によって使われるD のビット数が違います。100Mbps 転送速度にはD[0:1] を使って、200Mbps
転送速度には D[0:3] を使って、400Mbps 転送速度には D[0:7] を使います。
下記の図では、LLC と PHY の DC 接続について示します。PHY からの CAN 信号と接続する必要が

ない場合に、LLC の PHY CAN I 入力はローに固定してください。また、外部から 8KHz クロックを提
供していないときに、LLC の SYS 8KCLK I 入力もローに固定してください。

20.5. 機能 571

PHY コントロール

IEEE1394リンクレイヤーコントローラ (LLC) は、PHYをコントロールするために、4種類の動作モー
ドで定義される通信手段を使って行われます。それぞれの動作モードはCTL[0:1] 端子の条件によって定義
されます。

PHY が LINK-PHY バスを駆動する場合:
PHY CTL I[0:1] 動作 内容

00b Idle 何も動作しておらずアイドル状態 (デフォルトモード)

01b Status PHY チップからステータス情報の転送が行われている

10b Receive PHY チップから受信パケット内容の転送が行われている

11b Grant リンクレイヤーコントローラは、送信パケットを PHY チップに転送
するために、PHY-LINK バスの駆動を許されている

リンクレイヤーコントローラが LINK-PHY バスを駆動する場合:
PHY CTL I[0:1] 動作 内容

00b Idle リンクレイヤーコントローラが転送完了したために、PHY-LINK のバ
スを開放する

01b Hold リンクレイヤーコントローラは送出するデータを準備する間バスをホー

ルドしている。または、現在のデータ転送を完了して、次のパケット

の送出前に調停せずに所有権を保有しようとしている

10b Transmit PHY チップに送信パケットのデータを転送している

11b Reserved 未使用

サービス要求

シリアルバスにアクセスまたは、PHY のレジスタをアクセスするための要求として、リンクレイヤー
コントローラは PHY LREQ O 端子に短いシリアルストリームを送ります。ストリームには要求するタイ
プ、転送するパケットの速度、読み出しまたは書き込みコマンドの情報を含んでいます。要求の種類によっ

て、ストリームのビット長とフォーマットが違います。

572 第 20章 IEEE1394

シリアルバス要求

シリアルバス要求は、PHY LREQ O に以下の 8ビット長のフォーマットにて行われます (P1394a)。

フォーマット:
Bit タイプ 内容

0 Start Bit 転送開始を示す。いつも’1’ を転送する

1-3 Request Type 要求のタイプを示す。要求タイプ表を参照すること

4-6 Request Speed 要求するPHY チップの転送速度を示す。転送速度表を参照すること。

7 Stop Bit 転送完了を示す。いつも’0’ を転送する。

要求タイプ表:
PHY LREQ O[1:3] タイプ 内容 対応転送

000b ImmReq 即時バス要求 アシンクロナスのアクノリッジ

パケット転送

001b IsoReq アイソクロナス要求 アイソクロナスパケット転送

010b PriReq 優先バス要求 サイクルスタートパケット転送

011b FairReq 平等バス要求 アシンクロナス転送

100b RdReg PHY レジスタ読み出しバス要求 PHY レジスタリード

101b WrReg PHY レジスタ書き込み要求 PHY レジスタライト

110b AccCtrl アシンクロナス調停加速制御要求 アシンクロナス転送

111b Reserved 未使用 未使用

転送速度表:
PHY LREQ O[4:6] Data Rate

000b 100Mbps

010b 200Mbps

100b 400Mbps

PHY レジスタ読み出し要求

PHY レジスタ読み出し要求は、PHY LREQ O に以下の 9 ビット長のフォーマットにて行われます。

フォーマット:
Bit(s) タイプ 内容

0 Start Bit 転送開始を示す。いつも’1’ を転送する

1-3 Request Type 要求のタイプを示す。要求タイプ表を参照すること

4-7 Address 読み出す PHY のレジスタのアドレスを示す。

8 Stop Bit 転送完了を示す。いつも’0’ を転送する。

20.5. 機能 573

PHY レジスタ書き込み要求

PHY レジスタ書き込み要求は、PHY LREQ O に以下の 17 ビット長のフォーマットにて行われます。

フォーマット:
Bit(s) タイプ 内容

0 Start Bit 転送開始を示す。いつも’1’ を転送する

1-3 Request Type 要求のタイプを示す。要求タイプ表を参照すること

4-7 Address 書き込む PHY のレジスタのアドレスを示す。

8-15 Data 書き込む PHY のレジスタのデータを示す。

16 Stop Bit 転送完了を示す。いつも’0’ を転送する。

転送

ステータス転送

PHYは、ステータス情報を持つ又はバスアイドルを検出した時、ステータス転送を起動します。PHYは
PHY CTL I[0:1] 線を 01b(ステータスを示す) に駆動し、PHY D I[0:1] でステータスを配信します。PHY
は、通常に最初の 4 ステータスビット (S[0:1] と S[2:3]) だけを PHY/Link インターフェースに転送しま
す。もし別のノードからパケットを受信したら、このステータス転送を中断します。

PHY レジスタ読み出し要求によって、PHY は 16 ビットの完整ステータスパケットを PHY/Link イン
ターフェースに転送します。

各ビットの意味:
Bit(Sn) タイプ 内容

0 Arbitration Reset Gap Arbitration Reset Gap を検出

1 Subaction Gap Subaction Gap を検出

2 Bus Reset Bus Reset を検出

3 PHY Interrupt PHY 割り込み発生

4-7 Address PHY レジスタのアドレス

8-15 Data レジスタデータ

574 第 20章 IEEE1394

パケット送信

Single Packet 送信:

Concatenated Packet 送信:

SPDコード表:

SPD[0:7] Data Rate

00XXXXXX 100Mbps

0100XXXX 200Mbps

01010000 400Mbps

20.5. 機能 575

パケット受信

注: アイドル状態からパケット受信状態に入れば、PHY CTL I[0:1] は、00b から 10b に変更します。
ただし、ステータス転送状態が中断されて受信状態に入る場合、PHY CTL I[0:1] は 01b から 10b に変

更します。

20.5.3 バッファのコントロール

IEEE1394 の送信、受信ともホスト側はパケット単位でバッファにアクセスします。
Buffer Status and Control Register によって、バッファの Empty/Full ステータスの検視ができます。

Reset レジスタ内の各バッファのリセットビットを行った場合は、リセットされたバッファは初期状態に
戻り、その内のデータは全て失われ、Empty フラグがアクティブになります。

送信用バッファ

Isochronous パケットを送信するとき、送信したい Isochronous パケットを Isochronous 送信バッファ
(ITF)に書き込んで、ITGoで送信コマンドを発行します。Isochronousパケット送信終了後、Isochronous送
信バッファ内に、送信した Isochronousパケットの格納された領域のみが空けられます。ホストは ITXEND
割り込みにて、その Isochronous パケット送信の終了がわかります。

Asynchronousパケットを送信するとき、送信したいAsynchronous パケットをAsynchronous 送信バッ
ファ(ATF) に書き込んで、ATGo で送信コマンドを発行します。現在送信中のパケットデータは、そのデ
スティネーションコードから Complete、Pending の Ack コードの返答があるまで ATF 内にバッファリ
ングされたままです。よってAck コードがビジーの時は、そのリトライフェーズ中そのバッファリングし
ているデータを、リトライ回数内繰り返し送信します。その間に Complete、Pending Ack コードの返答
があった及びリトライカウント値が設定した最大リトライ回数を超えた場合にそのパケットが入っている

ATF 内の領域のみを自動的にフラッシュします。リトライフェーズ中にエラーの Ack コードを受けた場
合、設定した最大リトライ回数に満たなくても、その時点でフェーズを中止し、ATF をフラッシュします。
ホストは、ATXEND 割り込みにて、そのパケット送信の終了がわかります。
基本的に、Asynchronous送信時、ATGo を発行した時点でATF に入っているパケットは 1 パケットの

みで、その送信パケットの転送が終了し、ATXEND 割り込みを検出した後、次の転送したいパケットが
ATF に入り始めることができます。

Isochronous送信の場合に、複数の転送したい Isochrnous パケットが ITF に入ることができます。ITGo
コマンドの発行で、一番前の Isochronous パケットを転出して、ITXEND 割り込みが発生します。次の
Isochronous サイクルで、ITGo コマンドの発行により、次の Isochronous パケットを転送できます。

576 第 20章 IEEE1394

Asynchronous Stream パケットを送信したい時、送信データフォーマットで Asynchronous Stream パ
ケットをAsynchronous送信バッファ(ATF)に格納して、ATGoで転送コマンドを発行して、Asynchronous
Stream パケットの送信ができます。

20.5. 機能 577

受信用バッファ

受信した Isochronous パケットが Isochronous 受信バッファ(IRF) に全て格納されて、IRXEND 割り込
みが発生します。この割り込みの検出によって、ホスト側は Isochronous パケットを受信したのがわかっ
て、Isochronous 受信バッファ(IRF) から受信した Isochronous パケットを読みだせます。
受信した Asynchronous パケットが Asynchronous 受信バッファ(ARF) に全て格納されて、ARXEND

割り込みが発生します。この割り込みの検出によって、ホスト側は Asynchronous 受信バッファにパケッ
トを受信したのがわかって、Asynchronous 受信バッファ(ARF) から受信した Asynchronous パケットを
読み出せます。ARF バッファ内に受信したパケット分の空き領域がない場合に、Ack Busy X コードを送
信元ノードに返送し、そのパケットの再送要求 (Retry) を行うことになります。
受信したパケットのデータ数分バッファ空き領域がない、そのパケットのヘッダー及びペイロード領域

が CRC エラー、ヘッダー内のデータレンクス領域値と実際のペイロード領域内のデータ数が一致しない、
の条件で、そのパケットを自動的にフラッシュします。

Asynchronous Stream パケット (Isochronous サイクル外の Isochronous パケット) を受信した時、受信
データフォーマットで受信した Asynchronous Stream パケットを Asynchronous 受信バッファ(ARF) に
格納します。

578 第 20章 IEEE1394

20.5.4 制御フロー

電源投入時の LLC の設定は以下のようになります。

(a) H RSTX I をアサートし、リセットを行います。

(b) バス初期化時に必要な初期設定を行います。例えば、SelfID パケットを受信するために
Packet Control RegisterのPKTCTL SIDレジスタビットの設定と、Control RegisterのCTL REN
レジスタビットの設定など。

(c) PHY Control RegisterのPHY PCビットやPHY ISOXビットを適当な値に設定し、PHY PD
ビットを’0’に設定し、PHY RSTX ビットと PHY LPS ビットを’1’に設定して、IEEE1394バ
スの初期化を行います。

(d) バス初期化終了後、PHYとの通信によって、ルートノードになったかどうかの情報及びNodeID
を取得して、LLC の対応レジスタを適当な値に設定します。

(e) Control Register の CTL REN レジスタビットと CTL TEN レジスタビットをイネーブルし
て、下記のフローでパケットの送信と受信を行うことができます。

20.5. 機能 579

Asynchronous 送信

580 第 20章 IEEE1394

Asynchronous 受信

20.5. 機能 581

Isochronous 送信

582 第 20章 IEEE1394

Isochronous 受信

20.5. 機能 583

20.5.5 Asynchronous パケット送信時のBusNumber

LLCではAsynchronousパケット送信時、IEEE1394パケットフォーマットのヘッダー内、ソース領域に自
ノードのバスナンバーを組み込む機能を持っています。組み込まれる値は、LLCのNode Identification Register
の NID BUSID ビットで設定された値、もしくは”3FFh” のどちらか選択された値となります。

Node Identification Register のNID BUSID ビット設定値を有効にするには、送信バッファ内パケット
フォーマットの 1Quadlet 目の BusID ビットを’0’ に設定する必要があります。バスナンバーを”3FFh” の
固定値とするには、BusID ビットを’1’ に設定する必要があります。

BusID ビットを’1’ に設定した場合、Node Identification Register の NID BUSID ビット設定値は無効
となります。

585

21
Universal Asynchronous Receiver/Transmitter

初期アドレス: Channel0:0xffff6000 Channel1:0xffff6080

21.1 アドレスマップ
offset 31 24 23 16 15 8 7 0

0x0000 RB
0x0000 THR
0x0000 DL1
0x0004 IER
0x0004 DL2
0x0008 IIR
0x0008 FCR
0x000c LCR
0x00010 MCR
0x0014 LSR
0x0018 MSR

21.1.1 Receiver Buffer (RB) / Transmitter Holding Register (THR)

オフセット: 0x0000

7 0

bit名 機能

7-0 送信 FIFO の入力および受信 FIFO の出力．

586 第 21章 Universal Asynchronous Receiver/Transmitter

21.1.2 Interrupt Enable Register (IER)

オフセット: 0x0004

7 4 3 2 1 0

bit名 機能

0 Received Data availble interrupt.
‘ 0 ’- Disabled.
‘ 1 ’- Enabled.

1 Transmitter Holding Register empty interrupt.
‘ 0 ’- Disabled.
‘ 1 ’- Enabled.

2 Receiver Line Status Interrupt.
‘ 0 ’- Disabled.
‘ 1 ’- Enabled.

3 Modem Status Interrupt.
‘ 0 ’- Disabled.
‘ 1 ’- Enabled.

7-4 Reserved. Should be logic‘ 0 ’.

21.1.3 Interrupt Identification Register (IIR)

オフセット: 0x0008

7 6 5 4 3 1 0

21.1. アドレスマップ 587

bit名 機能

0 When this is‘0’, an interrupt is pending. When this is‘1’, no interrupt is pending.

3-1 The following table displays the list of possible interrupts along with the bits they
enable, priority, and their source and reset control.

Prio- Interrupt Interrupt Source Interrupt Reset
rity Type Control

011 1th Receiver Parity, Overrun or Reading the Line
Line Framing errors or Status Register

Status Break Interrupt

010 2nd Receiver FIFO trigger level FIFO drops below
Data reached trigger level

available

110 2nd Timeout There’s at least 1 Reading from the
Indication character in the FIFO FIFO (Receiver

but no character has Buffer Register)
been input to the
FIFO or read from

it for the last 4
char times.

001 3rd Transmitter Transmitter Holding Writing to the
Holding Register Empty Transmitter Holding
Register Register or reading
empty the IIR

000 4th Modem CTS, DSR, RI or Reading the Modem
Status DCD Status Register

5-4 Reserved. Should be logic‘ 0 ’.

7-6 Reserved. Should be logic‘ 1 ’for compatibility reason.

21.1.4 FIFO Control Register (FCR)

オフセット: 0x0008

7 6 5 3 2 1 0

588 第 21章 Universal Asynchronous Receiver/Transmitter

bit名 機能

0 Ignored(Used to enable FIFOs in NS16550D). Since this UART only supports FIFO
mode, this bit is ignored.

1 Writing a‘ 1’to bit 1 clears the Receiver FIFO and resets its logic. But it doesn’
t clear the shift register, i.e. receiving of the current character continues.

2 Writing a‘ 1 ’to bit 2 clears the Transmitter FIFO and resets its logic. The shift
register is not clreared, i.e. transmitting of the current character continues.

5-3 Ignored.

7-6 7-6 Define the Receiver FIFO Interrupt trigger level.
‘ 00 ’- 1 bytes
‘ 01 ’- 4 bytes
‘ 10 ’- 8 bytes
‘ 11 ’- 16 bytes

21.1.5 Line Control Register (LCR)

オフセット: 0x000c

7 6 5 4 3 2 1 0

21.1. アドレスマップ 589

bit名 機能

1-0 Select number of bits in each character.
‘ 00 ’- 5 bits
‘ 01 ’- 6 bits
‘ 10 ’- 7 bits
‘ 11 ’- 8 bits

2 Specify the number of generated stop bits.
‘ 0 ’- 1 stop bit.
‘ 0’- 1.5 stop bits when 5-bit character length selected and 2 bits otherwise. Note
that the receiver always checks the first stop bit only.

3 Parity Enable.
‘ 0 ’- No parity
‘ 1 ’- Parity bit is generated on each outgoing character and is checked on each
incoming one.

4 Even Parity select.
‘ 0’- Odd number of‘ 1’is transmitted and checked in each word (data and parity
combined). In other words, if the data has an even number of‘ 1 ’in it, then the
parity bit is‘ 1 ’.
‘ 1 ’- Even number of‘ 1 ’is transmitted in each word.

5 Stick Parity bit.
‘ 0 ’- Stick Parity disabled.
‘ 1 ’- If bits 3 and 4 are logic‘ 1 ’, the parity bit is transmitted and checked as
logic‘ 0’. If bit 3 is‘ 1’and bit 4 is‘ 0’then the parity bit is transmitted and
checked as‘ 1 ’.

6 Break Control bit.
‘ 1 ’- The srial out is forced into logic‘ 0 ’(break state).
‘ 0 ’- Break is disabled.

7 Divisor Latch Access bit.
‘ 1 ’- The divisor latches can be accessed.
‘ 0 ’- The normal registers are accessed.

21.1.6 Modem Control Register (MCR)

オフセット: 0x0010

7 5 4 3 2 1 0

590 第 21章 Universal Asynchronous Receiver/Transmitter

bit名 機能

0 Data Terminal Ready (DTR) signal control.
‘ 0 ’- DTR is‘ 1 ’
‘ 1 ’- DTR is‘ 0 ’

1 Request To Send (RTS) signal control
‘ 0 ’- RTS is‘ 1 ’
‘ 1 ’- RTS is‘ 0 ’

2 Out1. In loopback mode, connected Ring Indicator (RI) signal input.

3 Out2. In loopback mode, connected to Data Carrier Detect (DCD) input.

4 Loopback mode.
‘ 0 ’- normal operation.
‘ 1 ’ - loopback mode. When in loopback mode, the Serial Output Signal
(STX PAD O) is set to logic‘ 1‘ . The signal of the transmitter shift register
is internally connected to the input of the receiver shift register.
The following connections are made:
DTR → DSR
RTS → CTS
Out1 → RI
Out2 → DCD

7-5 Ignored.

21.1.7 Line Status Register (LSR)

オフセット: 0x0014

7 6 5 4 3 2 1 0

21.1. アドレスマップ 591

bit名 機能

0 Data Ready (DR) indicator.
‘ 0 ’- No characters in the FIFO.
‘ 1 ’- At least one character has been received and is in the FIFO.

1 Overrun Error (OE) INDICATOR.
‘ 1 ’- If the FIFO is full and another character has been received in the receiver
shift register. If another character is starting to arrive, it will overwrite the data in
the shift register but the FIFO will remain intact. The bit is cleared upon reading
from the register. Generates Receiver Line Status interrupt.
‘ 0 ’- No overrun state.

2 Parity Error (PE) indicator.
‘ 1’- The character that is currently at the top of the FIFO has been received with
parity error. The bit is cleared upon reading from the register. Generate Receiver
Line Status interrupt.
‘ 0 ’- No parity error in the current character.

3 Framing Error (FE) indicator.
‘ 1 ’- The received character at the top of the FIFO did not have a valid stop bit.
The UART core tries re-synchronizing by assuming that the bit received was a start
bit. Of course, generally, it might be that all the following data is corrupt. The bit
is cleared upon reading from the register. Generates Receiver Line Status interrupt.
‘ 0 ’- No framing error in the current character.

4 Break Interrupt (BI) indicator.
‘1’- A break condition has been reached in the current character. The break occurs
when the line is held in logic 0 for a time of one character (start bit + data + parity
+ stop bit). In that case, one zero character enters the FIFO and the UART waits
for a valid start bit to receive next character. The bit is cleared upon reading from
the register. Generates Receiver Line Status interrupt.
‘ 0 ’- No break condition in the current character.

5 Transmit FIFO is empty.
‘ 1 ’ - The transmitter FIFO is empty. Generates Transmitter Holding Register
Empty interrupt. The bit is cleared in the following cases: The LSR has been read,
the IIR has been read or data has been written to the transmitter FIFO.
‘ 0 ’- Otherwise.

6 Transmitter Empty indicator.
‘ 1’- Both the transmitter FIFO and transmitter shift register are empty. The bit
is cleared upon reading from the register or upon writing data to the transmit FIFO.
‘ 0 ’- Otherwise.

7 ‘1’- At least one parity error, framing error or break indications have been received
and are inside the FIFO. The bit is cleared upon reading from the register.
‘ 0 ’- Otherwise.

592 第 21章 Universal Asynchronous Receiver/Transmitter

21.1.8 Modem Status Register (MSR)

オフセット: 0x0018

7 6 5 4 3 2 1 0

bit名 機能

0 Delta Clear To Send (DCTS) indicator.
‘ 1 ’- The CTS line has changed its state.

1 Delta Data Set Ready (DDSR) indicator.
‘ 1 ’- The DSR line has changed its state.

2 Trailing Edge of Ring Indicator (TERI) detector. The RI line has changed its state
from low to high state.

3 Delta Data Carrier Detect (DDCD) indicator.
‘ 1 ’- The DCD line has changed its state.

4 Complement of the CTS input or equals to RTS in loopback mode.

5 Complement of the DSR input or equals to DTR in loopback mode.

6 Complement of the RI input or equals to Out1 in loopback mode.

7 Complement of the DCD input or equals to Out2 in loopback mode.

21.1.9 Divisor Latches (DL)

オフセット: 0x0000(DL1), 0x0004(DL2)
The divisor latches can be accessed by setting the 7th bit of LCR to‘ 1 ’. You should restore this

bit to‘ 0 ’after setting the divisor latches in order to restore access to the other registers that occupy
the same addresses.

7 0
DL1

7 0
DL2

21.2. 動作/使用方法 593

bit名 機能

DL1, DL2 The 2 bytes form one 16-bit register, which is internally accessed as a single number.
You should therefore set all 2 bytes of the register to ensure normal operation. The
register is set to the default value of 0 on reset, which disables all serial I/O operations
in order to ensure explicit setup of the register in the software. The value set should
be equal to (system clock speed) / (16 times desired baud rate). The internal counter
starts to work when the LSB of DL is written, so when setting the divisor, write the
MSB first and the LSB last.

21.2 動作/使用方法

This UART core is very similar in operation to the standard 16550 UART chip with the main exception
being that only the FIFO mode is supported. The scratch register is removed, as it serves no purpose.

21.2.1 Initialization

Upon reset the core performs the following tasks:

• The receiver and transmitter FIFOs are cleared.

• The receiver and transmitter shift registers are cleared.

• The Divisor Latch register is set to 0.

• The Line Control Register is set to communication of 8 bits of data, no parity, 1 stop bit.

• All interrupts are disabled in the Interrupt Enable Register.

For proper operation, perform the following:

• Set the Line Control Register to the desired line control parameters. Set bit 7 to‘ 1 ’to allow
access to the Divisor Latches.

• Set the Divisor Latches, MSB first, LSB next.

• Set bit 7 of LCR to 0 to disable access to Divisor Latches. At this time the transmission engine
starts working and data can be sent and received.

• Set the FIFO trigger level. Generally, higher trigger level values produce less interrupt to the
system, so setting it to 14 bytes is recommended if the system responds fast enough.

• Enable desired interrupts by setting appropriate bits in the Interrupt Enable register.

Remember that (Input Clock Speed)/(Divisor Latch value) = 16 × the communication baud rate.
Since the protocol is asynchronous and the sampling of the bits is performed in the perceived middle of
the bit time, it is highly immune to small differences in the clocks of the sending and receiving sides, yet
no such assumption should be made calculating the Divisor Latch values.

595

22
DDR SDRAM I/F

• 主記憶

– 32/128 bit I/Fのいずれかを選択可能

• Link SDRAM

– 32 bit I/F

• 2/2.5/3の CAS Latencyに対応

• tWTR(Internal Write to Read Command Delay)が 1の DDRチップにのみ対応

• 設定レジスタはワードアクセスのみ有効

22.1 レジスタマップ

DDR SDRAM I/F 初期アドレス

主記憶 I/F FFFFF000

Link SDRAM FFFFE000

offset 31 24 23 16 15 8 7 0
0x0 - State S
0x4 - CS - RAS - CAS
0x8 - EMRS
0xC - MRS2 - MRS1
0x10 -
0x14 - RFC - RP - RCD - MRD
0x18 - RASmax - RASmin
0x1C - REFRESH
0x20 - W

596 第 22章 DDR SDRAM I/F

22.1.1 主記憶 I/F幅設定レジスタ

オフセット: 0x20

31 1
-

0
W

bit名 機能

W Width :Default 0 本ビットで主記憶 I/Fのビット幅を設定する。 本レジスタは主記
憶 I/Fでのみ有効である。 0: 32 bit 1: 128 bit

22.1.2 I/F起動レジスタ

オフセット: 0x0

31 8
-

7 1
State

0
S

bit名 機能

State State (Read Only) 本ビットは I/Fの内部状態を示す。

S Start :Default 1 本ビットで I/Fの起動/停止を設定する。 0: I/F起動 1: I/F停止

22.1.3 メモリモジュール設定レジスタ

オフセット: 0x4

31 18
-

17 16
CS

15 12
-

11 8
RAS

7 4
-

3 0
CAS

22.1. レジスタマップ 597

bit名 機能

State CS: Default 2(主記憶 128 bit I/F) 2(主記憶 32 bit I/F) 1(Link SDRAM I/F) 本ビッ
トは各 I/Fの CS出力信号の接続本数を設定する。

RAS Row Address Width: Default 12(主記憶 128 bit I/F) 13(主記憶 32 bit I/F) 13(Link
SDRAM I/F) 本ビットは各 I/Fに接続されている DDRチップの Row Address幅を
設定する。

CAS Column Address Width: Default 10(主記憶 128 bit I/F) 9(主記憶 32 bit I/F) 9(Link
SDRAM I/F) 本ビットは各 I/Fに接続されている DDRチップの Column Address
幅を設定する。

22.1.4 EMRS設定レジスタ

オフセット: 0x8

31 12
-

11 0
EMRS

bit名 機能

EMRS Extended Mode Register Set: Default 0 本レジスタは I/Fの起動時に、DDRチップ
の Extended Mode Reigister Set に書き込む値を設定する。

22.1.5 MRS設定レジスタ

オフセット: 0xC

31 28
-

27 16
MRS2

15 12
-

11 0
MRS1

bit名 機能

MRS2 Mode Register Set 2: Default 0x21 本レジスタは I/Fの起動時に、DDR チップの
Mode Reigister Set に二度目に書き込む値を設定する。

MRS1 Mode Register Set 1: Default 0x121 本レジスタは I/Fの起動時に、DDRチップの
Mode Reigister Set に最初に書き込む値を設定する。

598 第 22章 DDR SDRAM I/F

22.1.6 DDR設定レジスタ 1

オフセット: 0x14

31 28
-

27 24
RFC

23 20
-

19 16
RP

15 12
-

11 8
RCD

7 4
-

3 0
MRD

bit名 機能

RFC tRFC: Default 9 本レジスタは、I/Fに接続されているDDRチップの tRFC値をサイ
クル単位で指定する。サイクルの周期は DDRチップに与えているクロックと同じで
ある。

RP tRP: Default 2 本レジスタは、I/Fに接続されているDDRチップの tRP値をサイク
ル単位で指定する。サイクルの周期は DDRチップに与えているクロックと同じであ
る。

RCD tRCD: Default 1 本レジスタは、I/Fに接続されている DDRチップの tRCD値をサ
イクル単位で指定する。サイクルの周期は DDRチップに与えているクロックと同じ
である。

MRD tMRD: Default 1 本レジスタは、I/Fに接続されているDDRチップの tMRD値をサ
イクル単位で指定する。サイクルの周期は DDRチップに与えているクロックと同じ
である。

22.1.7 DDR設定レジスタ 2

オフセット: 0x18

31 30
-

29 16
RASmax

15 14
-

13 0
RASmin

bit名 機能

RASmax tRAS max: Default 0x2328 本レジスタは、I/F に接続されている DDR チップの
tRASmax値をサイクル単位で指定する。サイクルの周期はDDRチップに与えている
クロックと同じである。

RASmin tRAS min: Default 6 本レジスタは、I/Fに接続されている DDRチップの tRASmin
値をサイクル単位で指定する。サイクルの周期は DDRチップに与えているクロック
と同じである。

22.1.8 リフレッシュインターバル設定レジスタ

オフセット: 0x18

22.1. レジスタマップ 599

31 16
-

15 0
REFRESH

bit名 機能

REFRESH REFRESH: Default 0x48a8 本レジスタは、I/Fに接続されているDDRチップのリフ
レッシュ周期をサイクル単位で指定する。サイクルの周期は DDRチップに与えてい
るクロックと同じである。

601

23
Serial Peripheral Interface Unit

23.1 Outline

Serial Peripheral Interface Unitはクロック同期式のシリアルインターフェースであり、SPIの規格に準
拠した周辺機器を制御する。本ユニットは 4つのスレーブに対応するが、M-RMTPではチップセレクト
(cs)が 3本しか外に出ていないため、スレーブ 3の設定は意味を持たない。

23.2 Interface

23.2.1 Address Format

Serial Peripheral Interface Unitの初期ベースアドレスは 0xffffb000である。Serial Peripheral Interface
Unitの制御レジスタのアドレスは次のようになる。

5 0
Offset

Field Name Range Description

Offset 5:0 設定する項目を指定する。

23.2.2 Control Register

Serial Peripheral Interface Unitの制御を行う場合、以下に示す Offsetをアドレスの Offsetに指定する
ことにより、該当設定レジスタにアクセスする。

602 第 23章 Serial Peripheral Interface Unit

Slave Control offset: 0x00
Slaveの設定を行う。

31 5
Reserved

4 1
SS

0
A

Field Name Range Description

Auto (A) 0 1 に設定すると自動的にデータ転送を繰り返す。0を設定すると、マ
ニュアルで SPIの転送を行う。

Slave Select (SS) 4:1 Auto bitが 0の場合は、アクセスする Slaveを指定する。複数の bit
が 0の場合、下位の bitが優先される。Auto bitが 1の場合は、自動
でアクセス Slaveを指定する。複数の bitが 0の場合、下位の bitから
順番にアクセスを行う。

FIFO Control offset: 0x04
FIFOの設定を行う。

31 10
Reserved

9 8
CLR

7 4
DREQ

3 0
INTR

Field Name Range Description

Interrupt (INTR) 3:0 1を設定した場合、要因により割り込みを発生させる。
0: 受信 FIFOにデータが半分たまると割り込みを発生させる。
1: 受信 FIFOがいっぱいになると割り込みを発生させる
2: 送信 FIFOのデータが半分未満になると割り込みを発生させる。
3: 送信 FIFOが空になると割り込みを発生させる。

DMA Request
(DREQ)

7:4 1を設定した場合、要因により DMA Requestを発生させる。
4: 受信 FIFOにデータが半分たまると DMA Requestを発生させる。
5: 受信 FIFOがいっぱいになると DMA Requestを発生させる。
6: 送信 FIFOのデータが半分より少くなると DMA Requestを発生させる。
7: 送信 FIFOがからになると DMA Requestを発生させる。

Clear (CLR) 9:8 1にすると FIFOをクリアする。この bitは自動的に 0になる。
8: 受信 FIFOをクリアする。
9: 送信 FIFOをクリアする。

23.2. Interface 603

FIFO Status offset: 0x08 (Read Only)

31 6
Reserved

5
TF

4
TH

3
TE

2
RF

1
RH

0
RE

Field Name Range Description

Rx Empty (RE) 0 受信 FIFOが空の場合 1になる。

Rx Half (RH) 1 受信 FIFOに半分以上データがたまっている場合 1になる。

Rx Full (RF) 2 受信 FIFOがいっぱいの場合 1になる。

Tx Empty (RE) 3 送信 FIFOが空の場合 1になる。

Tx Half (RH) 4 送信 FIFOに半分以上データがたまっている場合 1になる。

Tx Full (RF) 5 送信 FIFOがいっぱいの場合 1になる。

FIFO offset: 0x0c

31 0
FIFO

Field Name Range Description

FIFO 31:0 書き込みの場合は送信 FIFOに値が書き込まれる。Slave Controlレジ
スタのAuto bitが 0の場合、値を書き込むことにより、データの転送
を開始する。読み込みの場合は受信 FIFOから値が読み出される。

604 第 23章 Serial Peripheral Interface Unit

Interrupt offset: 0x10
割り込みの要因を示す。1を書き込むことにより、その bitをクリアする。

31 4
Reserved

3
TE

2
TH

1
RF

0
RH

Field Name Range Description

Rx Half (RH) 0 受信 FIFOに半分以上データがたまっている。

Rx Full (RF) 1 受信 FIFOがいっぱいである。

Tx Half (RH) 2 送信 FIFOのデータが半分未満になった。

Tx Empty (RE) 3 送信 FIFOが空である。

Interval offset: 0x14

31 0
Interval

Field Name Range Description

Interval 31:0 Slave ControlレジスタのAuto bitが 1の場合、Slaveに対する一連の
アクセスが終わった後の待ち時間を指定する。

23.2. Interface 605

Mode0 offset: 0x20
Slave Select0用の設定を行なう。

31
W

30
R

29
L

28 24
Size

23
OL

22
HA

21 0
Clock Ratio

Field Name Range Description

Clock Ratio 21:0 同期クロックで出力するクロックの分周率を指定する。実際には指定

した数値 × 2で SPIの内部クロックを分周し、出力する。0を指定し
た場合は 222 × 2分周される。デフォルトは 0。

HA, OL 23:22 SPIの動作モードを指定する。
0x0 同期クロックは正極性。立ち上りでデータを受け取る。

0x1 同期クロックは正極性。立ち下りでデータを受け取る。

0x2 同期クロックは負極性。立ち上りでデータを受け取る。

0x3 同期クロックは負極性。立ち下りでデータを受け取る。

Size 28:24 データの転送サイズ。指定した値 + 1 bitを転送する。

LSB (L) 29 1を指定すると LSBから転送を開始する。0の場合はMSBから転送
する。

Read Enable (R) 30 0を指定すると外部からの入力を読み込み、受信 FIFOに値を格納す
る。1の場合は外部からのデータを読み込まない。

Write Enable (W) 31 0を指定すると送信FIFOのデータを外部に転送する。1の場合はデー
タを送信しない。

606 第 23章 Serial Peripheral Interface Unit

Mode1 offset: 0x24
Slave Select1用の設定を行なう。

31
W

30
R

29
L

28 24
Size

23
OL

22
HA

21 0
Clock Ratio

Field Name Range Description

Clock Ratio 21:0 同期クロックで出力するクロックの分周率を指定する。実際には指定

した数値 × 2で SPIの内部クロックを分周し、出力する。0を指定し
た場合は 222 × 2分周される。デフォルトは 0。

HA, OL 23:22 SPIの動作モードを指定する。
0x0 同期クロックは正極性。立ち上りでデータを受け取る。

0x1 同期クロックは正極性。立ち下りでデータを受け取る。

0x2 同期クロックは負極性。立ち上りでデータを受け取る。

0x3 同期クロックは負極性。立ち下りでデータを受け取る。

Size 28:24 データの転送サイズ。指定した値 + 1 bitを転送する。

LSB (L) 29 1を指定すると LSBから転送を開始する。0の場合はMSBから転送
する。

Read Enable (R) 30 0を指定すると外部からの入力を読み込み、受信 FIFOに値を格納す
る。1の場合は外部からのデータを読み込まない。

Write Enable (W) 31 0を指定すると送信FIFOのデータを外部に転送する。1の場合はデー
タを送信しない。

23.2. Interface 607

Mode2 offset: 0x28
Slave Select2用の設定を行なう。

31
W

30
R

29
L

28 24
Size

23
OL

22
HA

21 0
Clock Ratio

Field Name Range Description

Clock Ratio 21:0 同期クロックで出力するクロックの分周率を指定する。実際には指定

した数値 × 2で SPIの内部クロックを分周し、出力する。0を指定し
た場合は 222 × 2分周される。デフォルトは 0。

HA, OL 23:22 SPIの動作モードを指定する。
0x0 同期クロックは正極性。立ち上りでデータを受け取る。

0x1 同期クロックは正極性。立ち下りでデータを受け取る。

0x2 同期クロックは負極性。立ち上りでデータを受け取る。

0x3 同期クロックは負極性。立ち下りでデータを受け取る。

Size 28:24 データの転送サイズ。指定した値 + 1 bitを転送する。

LSB (L) 29 1を指定すると LSBから転送を開始する。0の場合はMSBから転送
する。

Read Enable (R) 30 0を指定すると外部からの入力を読み込み、受信 FIFOに値を格納す
る。1の場合は外部からのデータを読み込まない。

Write Enable (W) 31 0を指定すると送信FIFOのデータを外部に転送する。1の場合はデー
タを送信しない。

608 第 23章 Serial Peripheral Interface Unit

Mode3 offset: 0x2c
Slave Select3用の設定を行なう。

31
W

30
R

29
L

28 24
Size

23
OL

22
HA

21 0
Clock Ratio

Field Name Range Description

Clock Ratio 21:0 同期クロックで出力するクロックの分周率を指定する。実際には指定

した数値 × 2で SPIの内部クロックを分周し、出力する。0を指定し
た場合は 222 × 2分周される。デフォルトは 0。

HA, OL 23:22 SPIの動作モードを指定する。
0x0 同期クロックは正極性。立ち上りでデータを受け取る。

0x1 同期クロックは正極性。立ち下りでデータを受け取る。

0x2 同期クロックは負極性。立ち上りでデータを受け取る。

0x3 同期クロックは負極性。立ち下りでデータを受け取る。

Size 28:24 データの転送サイズ。指定した値 + 1 bitを転送する。

LSB (L) 29 1を指定すると LSBから転送を開始する。0の場合はMSBから転送
する。

Read Enable (R) 30 0を指定すると外部からの入力を読み込み、受信 FIFOに値を格納す
る。1の場合は外部からのデータを読み込まない。

Write Enable (W) 31 0を指定すると送信FIFOのデータを外部に転送する。1の場合はデー
タを送信しない。

Configuration offset: 0x30 (Read Only)

31 2
Reserved

1 0
FS

Field Name Range Description

FIFO Size (FS) 1:0 FIFOのサイズを示す。
0x1 : 8 Entry
0x2 : 16 Entry
0x3 : 32 Entry

23.3. Operation 609

23.3 Operation

本 SPI Unitは 4本の Slave Selectを持ち、各 Slaveに対して個別の設定を行うことができる。設定は各
SlaveのModeレジスタで行う。
本 SPI Unitは Slaveへのアクセスの方法として、自動で継続的に Slaveから値を読み込むモードと、1

つ 1つ送受信を行うモードがある。

23.3.1 Manual Mode

1つ 1つ送受信を行う場合、Slave Controlレジスタの Auto bitを 0にし、アクセスする Slaveを Slave
Controlレジスタの Slave Select bitで指定する。
値を送信したい場合は、各 SlaveのModeレジスタのW bitを 0にする。送信したい値を FIFOに書き

込むことにより、インターフェースから値が送信される。

値を受信したい場合は、各 SlaveのModeレジスタの R bitを 0にする。FIFOに値を書き込むことに
よりインターフェスが動作し、Slaveから値を受信する。受信した値は受信 FIFOに書き込まれる。

SPIは送受信を同時に行うことができる。各 SlaveのModeレジスタのW bitと R bitを両方 0にす
ることにより、送受信を同時に行う。

23.3.2 Auto Mode

Auto Modeは Slaveから自動で継続的に値を読み出す場合に使用する。Slave ControlレジスタのAuto
bitを 1にすることにより Auto Modeとして動作する。値を読み出す Slaveは Slave Controlレジスタの
Slave Select bitで指定する。
各 Slaveに対するアクセスは各 SlaveのModeレジスタの設定による。そのため、Modeレジスタの R

bitを 0にし、W bitを 1にする必要がある。
Auto Modeでは、SPI Unitは Slave Controlレジスタの Slave Select bitが 0 になっている Slaveに

対して下位側 (0番)から順番にアクセスを行う。指定された全ての Slaveに対してアクセスを行った後、
Intervalレジスタで指定されているサイクル数だけ待った後、指定された Slaveに対してアクセスを開始
する。

611

24
Parallel I/O Unit

24.1 Outline

Parallel I/O Unitは 16 bitの入出力を提供する。ただし、M-RMTPでは 16 bit中 15bitが入出力ピン
として外部に接続されているため、bit 15は意味をもたない。

24.2 Interface

24.2.1 Address Format

Parallel I/O Unitの初期ベースアドレスは 0xffffc000である。Parallel I/O Unitの制御レジスタのアド
レスは次のようになる。

4 0
Offset

Field Name Range Description

Offset 4:0 設定する項目を指定する。

24.2.2 Control Register

Parallel I/O Unitの制御を行う場合、以下に示すOffsetをアドレスのOffsetに指定することにより、該
当設定レジスタにアクセスする。

612 第 24章 Parallel I/O Unit

Data offset: 0x00

31 16
Reserved

15 0
Data

Field Name Range Description

Data 15:0 bitが入力の場合は、読むことにより外部からの入力を得る。bitが出
力の場合は、書き込むことにより外部に出力を与える。

Direction offset: 0x04

31 16
Reserved

15 0
Direction

Field Name Range Description

Direction 15:0 0の場合は入力。1の場合は出力となる。

Interrupt Enable offset: 0x08

31 16
Reserved

15 0
Interrupt Enable

Field Name Range Description

Interrupt Enable 15:0 1の場合、Dataレジスタの対応する値が変化した時に割り込みを発生
させる。割り込み発生条件は Interrupt Upedge レジスタ、Interrupt
Downedgeレジスタで設定する。

24.2. Interface 613

Interrupt Sense offset: 0x0c

31 16
Reserved

15 0
Interrupt Sense

Field Name Range Description

Interrupt Sense 15:0 割り込みの発生要因になった bitに 1がセットされる。このレジスタ
に 1を書き込むと、対応する bitがクリアされる。

Interrupt Upedge offset: 0x10

31 16
Reserved

15 0
Interrupt Upedge

Field Name Range Description

Interrupt Upedge 15:0 1の場合、データが 0から 1に変化した時に割り込みを発生させる。

Interrupt Downedge offset: 0x14

31 16
Reserved

15 0
Interrupt Downedge

Field Name Range Description

Interrupt Downedge 15:0 1の場合、データが 1から 0に変化した時に割り込みを発生させる。

614 第 24章 Parallel I/O Unit

Configuration offset: 0x18 (Read Only)

31 2
Reserved

1 0
BW

Field Name Range Description

Bit Width (BW) 1:0 Parallel I/Oの Bit Widthを示す。

0x1 : 8 Bit 0x2 : 16 Bit 0x3 : 32 Bit

24.3 Operation

Parallel I/Oは 16 bitの幅を持ち、bitごとに入出力の方向を設定することができる。設定は Direction
レジスタで行う。

入力の場合、Parallel I/Oに入力されるクロックにより、I/OピンのデータがDataレジスタにラッチさ
れる。出力の場合、Dataレジスタの値が I/Oピンに出力される。
各 bit は指定した条件により割り込みを発生させることができる。割り込みを発生させるためには、

Interrupt Enableレジスタの対応する bitをを 1にセットする。また、割り込み発生条件により、Interrupt
Upedgeレジスタ、Interrupt Downedgeレジスタの対応する bitを 1にセットする。両方 1にセットした
場合、値が変化するたびに割り込みが発生する。

615

25
更新履歴

2006年 3月 30日
PCIインターフェースのMailboxのアドレスマップ (ローカル側オフセット)を修正。

2006年 3月 30日
更新履歴の追加。

2006年 4月 18日
MDMAの仕様を追加。

2006年 6月 13日
ベクトル演算器の仕様を追加。

2006年 7月 11日
ベクトル命令のニーモニックを修正。

2006年 7月 13日
ベクトルシフト命令のオペランドの位置を修正。

2006年 7月 19日
ベクトル制御レジスタの説明を追加。

2006年 8月 25日
概要の I/O部分を修正。全体のプロック図を修正。

2006年 9月 11日
例外処理の割り込み信号を修正。

616 第 25章 更新履歴

2006年 12月 15日
命令の説明文を加筆・修正。アドレスマップを修正。MMUの制御レジスタに TLBリードレジスタを追
加。MMUで発生しない例外を削除。

2007年 4月 11日
IEEE1394のマニュアルを修正。

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

